1
|
Tomac I, Adam V, Labuda J. Advanced chemically modified electrodes and platforms in food analysis and monitoring. Food Chem 2024; 460:140548. [PMID: 39096799 DOI: 10.1016/j.foodchem.2024.140548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/22/2024] [Accepted: 07/18/2024] [Indexed: 08/05/2024]
Abstract
Electrochemical sensors and electroanalytical techniques become emerging as effective and low-cost tools for rapid assessment of special parameters of the food quality. Chemically modified electrodes are developed to change properties and behaviour, particularly sensitivity and selectivity, of conventional electroanalytical sensors. Within this comprehensive review, novel trends in chemical modifiers material structure, electrodes construction and flow analysis platforms are described and evaluated. Numerous recent application examples for the detection of food specific analytes are presented in a form of table to stimulate further development in both, the basic research and commercial field.
Collapse
Affiliation(s)
- Ivana Tomac
- Department of Applied Chemistry and Ecology, Faculty of Food Technology Osijek, J. J. Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia.
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Generála Píky 1999/5, 613 00 Brno, Czech Republic.
| | - Jan Labuda
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9, 812 37 Bratislava, Slovakia.
| |
Collapse
|
2
|
Role of anion size in the electrochemical performance of a Poly(thionine) redox conductive polymer using electrochemical impedance spectroscopy. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Shakeel A, Rizwan K, Farooq U, Iqbal S, Iqbal T, Awwad NS, Ibrahium HA. Polymer based nanocomposites: A strategic tool for detection of toxic pollutants in environmental matrices. CHEMOSPHERE 2022; 303:134923. [PMID: 35568211 DOI: 10.1016/j.chemosphere.2022.134923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/11/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
A large fraction of population is suffering from waterborne diseases due to the contaminated drinking water. Both anthropogenic and natural sources are responsible for water contamination. Revolution in industrial and agriculture sectors along with a huge increase in human population has brought more amount of wastes like heavy metals, pesticides and antibiotics. These toxins are very harmful for human health, therefore, it is necessary to sense their presence in environment. Conventional strategies face various problems in detection and quantification of these pollutants such as expensive equipment and requirement of high maintenance with limited portability. Recently, nanostructured devices have been developed to detect environmental pollutants. Polymeric nanocomposites have been found robust, cost effective, highly efficient and accurate for sensing various environmental pollutants and this is due to their porous framework, multi-functionalities, redox properties, great conductivity, catalytic features, facile operation at room temperature and large surface area. Synergistic effects between polymeric matrix and nanomaterials are responsible for improved sensing features and environmental adaptability. This review focuses on the recent advancement in polymeric nanocomposites for sensing heavy metals, pesticides and antibiotics. The advantages, disadvantages, operating conditions and future perspectives of polymeric nanocomposites for sensing toxic pollutants have also been discussed.
Collapse
Affiliation(s)
- Ahmad Shakeel
- Laboratory of Process Engineering, NeptunLab, Department of Microsystems Engineering (IMTEK), Albert Ludwig University of Freiburg, Freiburg, 79110, Germany; Freiburg Materials Research Center (FMF), Albert Ludwig University of Freiburg, Freiburg, 79104, Germany; Department of Chemical, Polymer & Composite Materials Engineering, University of Engineering & Technology, New Campus (KSK), Lahore, 54890, Pakistan; Faculty of Civil Engineering and Geosciences, Department of Hydraulic Engineering, Delft University of Technology, Stevinweg 1, 2628, CN, Delft, the Netherlands
| | - Komal Rizwan
- Department of Chemistry, University of Sahiwal, Sahiwal, 57000, Pakistan.
| | - Ujala Farooq
- Faculty of Aerospace Engineering, Department of Aerospace Structures and Materials, Delft University of Technology, Kluyverweg 1, 2629, HS, Delft, the Netherlands.
| | - Shahid Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), H-12, Islamabad, 46000, Pakistan
| | - Tanveer Iqbal
- Department of Chemical, Polymer & Composite Materials Engineering, University of Engineering & Technology, New Campus (KSK), Lahore, 54890, Pakistan
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Department of Semi Pilot Plant, Nuclear Materials Authority, P.O. Box 530, El Maadi, Egypt
| |
Collapse
|
4
|
A Review on Graphene Quantum Dots for Electrochemical Detection of Emerging Pollutants. J Fluoresc 2022; 32:2223-2236. [PMID: 36042154 DOI: 10.1007/s10895-022-03018-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/19/2022] [Indexed: 10/14/2022]
Abstract
Graphene quantum dots which are known as zero-dimensional materials are gaining increasing attention from researchers all over the world. This is predicated upon their relatively unique chemiluminescent, fluorescent, electrochemiluminescent, and electronic properties. The precise mechanism of electrochemiluminescence continues to be a subject of debate in the research world, and this is important in identifying synthetic pathways for graphene quantum dots. Heavy metals and other emerging pollutants are global health and environmental concerns. Several studies have reported the sensitivity and limit of detection of graphene quantum dots up to the nano-, pico-, and femto- levels when used as sensors. This review seeks to bridge information gaps on the reported electrochemiluminescence chemosensors for emerging pollutants using graphene quantum dots under the sub-headings, synthesis, characterization, electrochemiluminescence chemosensor detection, and comparison with other detection methods.
Collapse
|
5
|
Angelopoulou P, Giaouris E, Gardikis K. Applications and Prospects of Nanotechnology in Food and Cosmetics Preservation. NANOMATERIALS 2022; 12:nano12071196. [PMID: 35407315 PMCID: PMC9000819 DOI: 10.3390/nano12071196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022]
Abstract
Cosmetic and food products containing water are prone to contamination during the production, storage, and transit process, leading to product spoilage and degraded organoleptic characteristics. The efficient preservation of food and cosmetics is one of the most important issues the industry is facing today. The use of nanotechnology in food and cosmetics for preservation purposes offers the possibility to boost the activity of antimicrobial agents and/or promote their safer distribution into the end product upon incorporation into packaging or film constructions. In this review, current preservation strategies are discussed and the most recent studies in nanostructures used for preservation purposes are categorized and analyzed in a way that hopefully provides the most promising strategies for both the improvement of product safety and shelf-life extension. Packaging materials are also included since the container plays a major role in the preservation of such products. It is conclusively revealed that most of the applications refer to the nanocomposites as part of the packaging, mainly due to the various possibilities that nanoscience offers to this field. Apart from that, the route of exposure being either skin or the gastrointestinal system involves safety concerns, and since migration of nanoparticles (NPs) from their container can be measured, concerns can be minimized. Conclusion: Nanomaterial science has already made a significant contribution to food and cosmetics preservation, and rapid developments in the last years reinforce the belief that in the future much of the preservation strategies to be pursued by the two industries will be based on NPs and their nanocomposites.
Collapse
Affiliation(s)
- Paraskevi Angelopoulou
- IPSP Nanomedicine, Medical & Pharmacy Department, School of Health Sciences, National and Kapodistrian University of Athens, 15772 Athens, Greece;
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Greece;
| | - Efstathios Giaouris
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Greece;
| | - Konstantinos Gardikis
- IPSP Nanomedicine, Medical & Pharmacy Department, School of Health Sciences, National and Kapodistrian University of Athens, 15772 Athens, Greece;
- R&D Department, APIVITA SA, Industrial Park, Markopoulo, 19003 Athens, Greece
- Correspondence:
| |
Collapse
|
6
|
Abstract
The use of graphene quantum dots as biomedical device and drug delivery system has been increasing. This nanoplatform of pure carbon has showed unique properties and showed to be safe for human use. The imatinib is a molecule designed to specifically inhibit the tyrosine kinase, used for leukemia treatment. In this study, we successfully decorated the graphene quantum dots (GQDs@imatinb) by a carbodiimide crosslinking reaction. The GQDs@imatinb were characterized by FTIR and AFM. The nanoparticles' in vitro behaviors were evaluated by cellular trafficking (internalization) assay and cell viability and apoptosis assays in various cancer cell lines, including suspension (leukemia) cells and adherent cancer cells. The results showed that the incorporation of the imatinib on the surface of the graphene quantum dots did not change the nanoparticles' morphology and properties. The GQDs@imatinb could be efficiently internalized and kill cancer cells via the induction of apoptosis. The data indicated that the prepared GQDs@imatinb might be a great drug nano-platform for cancer, particularly leukemia treatments.
Collapse
|
7
|
Bressi V, Ferlazzo A, Iannazzo D, Espro C. Graphene Quantum Dots by Eco-Friendly Green Synthesis for Electrochemical Sensing: Recent Advances and Future Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1120. [PMID: 33925972 PMCID: PMC8146976 DOI: 10.3390/nano11051120] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
The continuous decrease in the availability of fossil resources, along with an evident energy crisis, and the growing environmental impact due to their use, has pushed scientific research towards the development of innovative strategies and green routes for the use of renewable resources, not only in the field of energy production but also for the production of novel advanced materials and platform molecules for the modern chemical industry. A new class of promising carbon nanomaterials, especially graphene quantum dots (GQDs), due to their exceptional chemical-physical features, have been studied in many applications, such as biosensors, solar cells, electrochemical devices, optical sensors, and rechargeable batteries. Therefore, this review focuses on recent results in GQDs synthesis by green, easy, and low-cost synthetic processes from eco-friendly raw materials and biomass-waste. Significant advances in recent years on promising recent applications in the field of electrochemical sensors, have also been discussed. Finally, challenges and future perspectives with possible research directions in the topic are briefly summarized.
Collapse
Affiliation(s)
| | | | | | - Claudia Espro
- Dipartimento di Ingegneria, Università di Messina, Contrada di Dio, Vill. S. Agata, I-98166 Messina, Italy; (V.B.); (A.F.); (D.I.)
| |
Collapse
|
8
|
Li L, Chen B, Luo L, Liu X, Bi X, You T. Sensitive and selective detection of Hg2+ in tap and canal water via self-enhanced ECL aptasensor based on NH2–Ru@SiO2-NGQDs. Talanta 2021; 222:121579. [DOI: 10.1016/j.talanta.2020.121579] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/14/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022]
|
9
|
Sridhar A, Ponnuchamy M, Kumar PS, Kapoor A. Food preservation techniques and nanotechnology for increased shelf life of fruits, vegetables, beverages and spices: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2020; 19:1715-1735. [PMID: 33192209 PMCID: PMC7651826 DOI: 10.1007/s10311-020-01126-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/17/2020] [Indexed: 05/02/2023]
Abstract
Food wastage is a major issue impacting public health, the environment and the economy in the context of rising population and decreasing natural resources. Wastage occurs at all stages from harvesting to the consumer, calling for advanced techniques of food preservation. Wastage is mainly due to presence of moisture and microbial organisms present in food. Microbes can be killed or deactivated, and cross-contamination by microbes such as the coronavirus disease 2019 (COVID-19) should be avoided. Moisture removal may not be feasible in all cases. Preservation methods include thermal, electrical, chemical and radiation techniques. Here, we review the advanced food preservation techniques, with focus on fruits, vegetables, beverages and spices. We emphasize electrothermal, freezing and pulse electric field methods because they allow both pathogen reduction and improvement of nutritional and physicochemical properties. Ultrasound technology and ozone treatment are suitable to preserve heat sensitive foods. Finally, nanotechnology in food preservation is discussed.
Collapse
Affiliation(s)
- Adithya Sridhar
- Department of Chemical Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203 Kanchipuram, Chennai, India
| | - Muthamilselvi Ponnuchamy
- Department of Chemical Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203 Kanchipuram, Chennai, India
| | - Ponnusamy Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110 India
| | - Ashish Kapoor
- Department of Chemical Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203 Kanchipuram, Chennai, India
| |
Collapse
|
10
|
Highly efficient electrochemical gas reduction on a three-dimensional foam electrode: mechanism and application for the determination of hazardous mercury in complex matrix. Mikrochim Acta 2020; 187:517. [PMID: 32851503 DOI: 10.1007/s00604-020-04505-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
Abstract
For the first time a nickel foam electrode (NFE) is applied in the field of electrochemical vapor generation (EVG) to carry out the electrochemical vapor phase conversion of mercury. Systematical electrochemical and morphological research has demonstrated that the specific surface area of the NFE was several times larger than that of the metal/non-metal electrode with the same geometric size. At the same time, the 3D porous channel composed of multi-layer nickel wire ensures the full contact between reactant and interface. The evident enhancement of spectral signals on a Ni electrode (283%), compared with Pt (27%) and graphite (109%), confirmed that the NFE effectively enhances the yield of mercury reduction. The NFE exhibits low limit of detection (0.017 μg L-1) and a wide linear range (0.2-20 μg L-1) with recoveries of actual samples in the range 87.8-117% towards Hg2+. Although the NFE has no advantage in electronic transmission and catalytic performance, its excellent stability, especially anti-interference and other characteristics, is sufficient for the analysis of hazardous mercury in complex matrix including certified reference materials and real samples.
Collapse
|