1
|
Mohammadi F, Zahraee H, Zibadi F, Khoshbin Z, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Progressive cancer targeting by programmable aptamer-tethered nanostructures. MedComm (Beijing) 2024; 5:e775. [PMID: 39434968 PMCID: PMC11491555 DOI: 10.1002/mco2.775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024] Open
Abstract
Scientific research in recent decades has affirmed an increase in cancer incidence as a cause of death globally. Cancer can be considered a plurality of various diseases rather than a single disease, which can be a multifaceted problem. Hence, cancer therapy techniques acquired more accelerated and urgent approvals compared to other therapeutic approaches. Radiotherapy, chemotherapy, immunotherapy, and surgery have been widely adopted as routine cancer treatment strategies to suppress disease progression and metastasis. These therapeutic approaches have lengthened the longevity of countless cancer patients. Nonetheless, some inherent limitations have restricted their application, including insignificant therapeutic efficacy, toxicity, negligible targeting, non-specific distribution, and multidrug resistance. The development of therapeutic oligomer nanoconstructs with the advantages of chemical solid-phase synthesis, programmable design, and precise adjustment is crucial for advancing smart targeted drug nanocarriers. This review focuses on the significance of the different aptamer-assembled nanoconstructs as multifunctional nucleic acid oligomeric nanoskeletons in efficient drug delivery. We discuss recent advancements in the design and utilization of aptamer-tethered nanostructures to enhance the efficacy of cancer treatment. Valuably, this comprehensive review highlights self-assembled aptamers as the exceptionally intelligent nano-biomaterials for targeted drug delivery based on their superior stability, high specificity, excellent recoverability, inherent biocompatibility, and versatile functions.
Collapse
Affiliation(s)
- Fatemeh Mohammadi
- Targeted Drug Delivery Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Pharmaceutical BiotechnologySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Hamed Zahraee
- Targeted Drug Delivery Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Pharmaceutical BiotechnologySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Farkhonde Zibadi
- Department of Medical Biotechnology and NanotechnologyFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Zahra Khoshbin
- Targeted Drug Delivery Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Medicinal ChemistrySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Mohammad Ramezani
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| | - Mona Alibolandi
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| | - Khalil Abnous
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Medicinal ChemistrySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Pharmaceutical BiotechnologySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
2
|
Cao C, Yu Q, Yu Z, Tang K, Gan N. Phage-Modified Clear Hydrogel for Simultaneous Detection of Multiple Bacteria. Anal Chem 2024; 96:16007-16016. [PMID: 39331836 DOI: 10.1021/acs.analchem.4c03465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
The proliferation speed of live foodborne pathogens is fast. A small number of pathogens will have a great impact on food and the environment if positive samples are not detected timely. In this study, transparent porous hydrogel stir bars, modified by two different phages (corresponding to two different bacteria (Escherichia coli and Hafnia sp)), have been developed for rapid detection of foodborne bacteria. A large number of samples can be analyzed simultaneously with a small animal live imager device to screen out the positive samples, while an adenosine triphosphate (ATP) bioluminescence sensor can be used to quantify the number of bacteria in the positive samples. The phage has good specificity and capture ability to bacteria, which makes the method highly sensitive. In addition, the use of multiple phages also enables the method to detect multiple bacteria simultaneously. The three-dimensional structure of the hydrogel allows it to modify more phages, and its transparent nature also allows the inside bioluminescence to be detected. Both can enhance the sensitivity of the detection. Finally, the reagents needed for bioluminescence, such as d-luciferin, can also be preencapsulated in the hydrogel, thus simplifying the detection step. Under the best conditions, the detection range of the method is 102-108 CFU·mL-1, and the limit of detection is 30 CFU·mL-1 within 11 min. The test results of actual samples show that there is no difference between using the method developed through this study and the traditional plate counting method, but the detection time is greatly shortened.
Collapse
Affiliation(s)
- Cong Cao
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Qianfeng Yu
- School of Public Health, Ningbo Univesity, Ningbo 315211, China
| | - Zhenzhong Yu
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Keqi Tang
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Ning Gan
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510315, China
| |
Collapse
|
3
|
He HJ, da Silva Ferreira MV, Wu Q, Karami H, Kamruzzaman M. Portable and miniature sensors in supply chain for food authentication: a review. Crit Rev Food Sci Nutr 2024:1-21. [PMID: 39066550 DOI: 10.1080/10408398.2024.2380837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Food fraud, a pervasive issue in the global food industry, poses significant challenges to consumer health, trust, and economic stability, costing an estimated $10-15 billion annually. Therefore, there is a rising demand for developing portable and miniature sensors that facilitate food authentication throughout the supply chain. This review explores the recent advancements and applications of portable and miniature sensors, including portable/miniature near-infrared (NIR) spectroscopy, e-nose and colorimetric sensors based on nanozyme for food authentication within the supply chain. After briefly presenting the architecture and mechanism, this review discusses the application of these portable and miniature sensors in food authentication, addressing the challenges and opportunities in integrating and deploying these sensors to ensure authenticity. This review reveals the enhanced utility of portable/miniature NIR spectroscopy, e-nose, and nanozyme-based colorimetric sensors in ensuring food authenticity and enabling informed decision-making throughout the food supply chain.
Collapse
Affiliation(s)
- Hong-Ju He
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | | | - Qianyi Wu
- Department of Agriculture and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hamed Karami
- Department of Petroleum Engineering, Collage of Engineering, Knowledge University, Erbil, Iraq
| | - Mohammed Kamruzzaman
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
4
|
Holliday EG, Zhang B. Machine learning-enabled colorimetric sensors for foodborne pathogen detection. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 111:179-213. [PMID: 39103213 DOI: 10.1016/bs.afnr.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
In the past decade, there have been various advancements to colorimetric sensors to improve their potential applications in food and agriculture. One application of growing interest is sensing foodborne pathogens. There are unique considerations for sensing in the food industry, including food sample destruction, specificity amidst a complex food matrix, and high sensitivity requirements. Incorporating novel technology, such as nanotechnology, microfluidics, and smartphone app development, into colorimetric sensing methodology can enhance sensor performance. Nonetheless, there remain challenges to integrating sensors with existing food safety infrastructure. Recently, increasingly advanced machine learning techniques have been employed to facilitate nondestructive, multiplex detection for feasible assimilation of sensors into the food industry. With its ability to analyze and make predictions from highly complex data, machine learning holds potential for advanced yet practical colorimetric sensing of foodborne pathogens. This article summarizes recent developments and hurdles of machine learning-enabled colorimetric foodborne pathogen sensing. These advancements underscore the potential of interdisciplinary, cutting-edge technology in providing safer and more efficient food systems.
Collapse
Affiliation(s)
- Emma G Holliday
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, United States
| | - Boce Zhang
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
5
|
Zhong Y, Wu J, Pan X, Liu B, Wang L. Aptamer-functionalized polydiacetylene biosensor for the detection of three foodborne pathogens. ANAL SCI 2024; 40:199-211. [PMID: 37856010 DOI: 10.1007/s44211-023-00445-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023]
Abstract
Rapid, simple and sensitive screening of foodborne pathogens is of great significance to ensure food safety. In this study, an aptamer-functionalized polydiacetylene (Apta-PDA) biosensor was developed for the detection of E. coli O157:H7, S. typhimurium or V. parahaemolyticus. First, aptamers responding to the target bacteria were modified on the surface of magnetic beads by covalent binding to form MBs-oligonucleotide conjugates for bacterial enrichment. Then, an Apta-PDA biosensor was obtained by connecting the aptamers to the PDA nanovesicles using the carbodiimide method. Molecular recognition occurred in the presence of the target bacteria, whereby the aptamer folded into a sequence-defined unique structure, resulting in an MBs-Apta/bacteria/Apta-PDA sandwich structure. Due to the optical properties of PDA, the blue-red transition of the detection system could be observed by the naked eye and quantified by the colorimetric response percentage (CR%). Under optimized conditions, the detection limits of E. coli O157:H7, S. typhimurium and V. parahaemolyticus were 39, 60 and 60 CFU/ml, respectively, with a selectivity of 100% and a reaction time of 30 min. Compared with the gold standard method, the accuracy of the three target bacteria detection reached 98%, 97.5% and 97%, respectively, and the sensitivity and specificity were both greater than 90%. The entire detection process was rapid and easy to execute without any special equipment, making this technology particularly suitable for resource-poor laboratories or regions.
Collapse
Affiliation(s)
- Yuhong Zhong
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China.
| | - Jiaqi Wu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310059, People's Republic of China
| | - Xiaoyan Pan
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
| | - Bo Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
| | - Lin Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
| |
Collapse
|
6
|
Rahimizadeh K, Zahra QUA, Chen S, Le BT, Ullah I, Veedu RN. Nanoparticles-assisted aptamer biosensing for the detection of environmental pathogens. ENVIRONMENTAL RESEARCH 2023; 238:117123. [PMID: 37717803 DOI: 10.1016/j.envres.2023.117123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/19/2023]
Abstract
Given the importance of public health, it is crucial to develop quick, targeted, highly sensitive, and accurate technologies to monitor pathogenic microbes in response to the growing concerns of food and environmental safety. Although conventional approaches for microbiological detection are available, they are laborious, and often skill demanding. Therefore, such approaches are incompetent in the on-site or high-throughput assessment of pathogenic microbes. Numerous efforts have been made to develop biosensors that use nucleic acid aptamer as the biorecognition element, which would avoid the abovementioned limitations. Incorporating nanomaterials (NMs) into aptamer-based biosensors (aptasensors) improves their sensitivity and specificity, opening exciting possibilities for various applications, such as bioanalysis of food and environmental samples. Over the last decade, nanomaterial-conjugated aptasensors have seen a steadily rising demand. To this end, the main goal of this study is to demonstrate the novelty in the design of nanomaterial-conjugated aptasensors and how they can be used to detect different pathogenic microbes in water and food. The intent of this paper is to evaluate the cutting-edge techniques that have appeared in nano-aptasensors throughout the past few years, such as manufacturing procedures, analytical credibility, and sensing mechanisms. Additionally, the fundamental performance parameters of aptasensing techniques (such as detection limits, and sensing ranges response) were also used to evaluate their practical applicability. Finally, it is anticipated that this study will inspire innovative ideas and techniques for the construction and use of aptasensors for monitoring pathogenic microorganisms in food, drinks, recreational water, and wastewater.
Collapse
Affiliation(s)
- Kamal Rahimizadeh
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia.
| | - Qurat Ul Ain Zahra
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia.
| | - Suxiang Chen
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia.
| | - Bao T Le
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia.
| | - Ismat Ullah
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430074, PR China.
| | - Rakesh N Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia.
| |
Collapse
|
7
|
Patra I, Kadhim MM, Mahmood Saleh M, Yasin G, Abdulhussain Fadhil A, Sabah Jabr H, Hameed NM. Aptasensor Based on Microfluidic for Foodborne Pathogenic Bacteria and Virus Detection: A Review. Crit Rev Anal Chem 2022; 54:872-881. [PMID: 35831973 DOI: 10.1080/10408347.2022.2099222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In today's world, which is entangled with numerous foodborne pathogenic bacteria and viruses, it appears to be essential to rethink detection methods of these due to the importance of food safety in our lives. The vast majority of detection methods for foodborne pathogenic bacteria and viruses have suffered from sensitivity and selectivity due to the small size of these pathogens. Besides, these types of sensing approaches can improve on-site detection platforms in the fields of food safety. In recent, microfluidics systems as new emerging types of portable sensing approaches can introduce efficient and simple biodevice by integration with several analytical methods such as electrochemical, optical and colorimetric techniques. Additionally, taking advantage of aptamer as a selective bioreceptor in the sensing of microfluidics system has provided selective, sensitive, portable and affordable sensing approaches. Furthermore, some papers use increased data transferability ability and computational power of these sensing platforms by exploiting smartphones. In this review, we attempted to provide an overview of the current state of the recent aptasensor based on microfluidic for screening of foodborne pathogenic bacteria and viruses. Working strategies, benefits and disadvantages of these sensing approaches are briefly discussed.
Collapse
Affiliation(s)
- Indrajit Patra
- An Independent Researcher, Ex Research Scholar at National Institute of Technology Durgapur, Durgapur, India
| | - Mustafa M Kadhim
- Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, Iraq
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University Of Anbar, Anbar, Iraq
| | - Ghulam Yasin
- Department of Botany, Bahauddin Zakariya University, Multan, Pakistan
| | - Ali Abdulhussain Fadhil
- College of Medical Technology, Medical Lab Techniques, Al-farahidi University, Baghdad, Iraq
| | - Huda Sabah Jabr
- Anesthesia Techniques Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Noora M Hameed
- Anesthesia techniques, Al-Nisour University College, Babylon, Iraq
| |
Collapse
|
8
|
Advances in Colorimetric Assay Based on AuNPs Modified by Proteins and Nucleic Acid Aptamers. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9100281] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This review is focused on the biosensing assay based on AuNPs (AuNPs) modified by proteins, peptides and nucleic acid aptamers. The unique physical properties of AuNPs allow their modification by proteins, peptides or nucleic acid aptamers by chemisorption as well as other methods including physical adsorption and covalent immobilization using carbodiimide chemistry or based on strong binding of biotinylated receptors on neutravidin, streptavidin or avidin. The methods of AuNPs preparation, their chemical modification and application in several biosensing assays are presented with focus on application of nucleic acid aptamers for colorimetry assay for determination of antibiotics and bacteria in food samples.
Collapse
|