1
|
Liu C, Guo P, Ran XY, Zhu YL, Wang BJ, Zhang JH, Xie SM, Yuan LM. Chiral-induced synthesis of chiral covalent organic frameworks core-shell microspheres for HPLC enantioseparation. Mikrochim Acta 2024; 191:281. [PMID: 38649632 DOI: 10.1007/s00604-024-06347-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Abstract
Two chiral covalent organic frameworks (CCOFs) core-shell microspheres based on achiral organic precursors by chiral-induced synthesis strategy for HPLC enantioseparation are reported for the first time. Using n-hexane/isopropanol as mobile phase, various kinds of racemates were selected as analytes and separated on the CCOF-TpPa-1@SiO2 and CCOF-TpBD@SiO2-packed columns with a low column backpressure (3 ~ 9 bar). The fabricated two CCOFs@SiO2 chiral columns exhibited good separation performance towards various racemates with high column efficiency (e.g., 19,500 plates m-1 for (4-fluorophenyl)ethanol and 18,900 plates m-1 for 1-(4-chlorophenyl)ethanol) and good reproducibility. Some effects have been investigated such as the analyte mass and column temperature on the HPLC enantioseparation. Moreover, the chiral separation results of the CCOF-TpPa-1@SiO2 chiral column and the commercialized Chiralpak AD-H column show a good complementarity. This study demonstrates that the usage of chiral-induced synthesis strategy for preparing CCOFs core-shell microspheres as a novel stationary phase has a good application potential in HPLC.
Collapse
Affiliation(s)
- Cheng Liu
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Ping Guo
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Xiao-Yan Ran
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Yu-Lan Zhu
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Bang-Jin Wang
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Jun-Hui Zhang
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, People's Republic of China.
| | - Sheng-Ming Xie
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, People's Republic of China.
| | - Li-Ming Yuan
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, People's Republic of China
| |
Collapse
|
2
|
Ma M, Zhang Y, Huang F, Xu Y. Chiral hydroxyl-controlled covalent organic framework-modified stationary phase for chromatographic enantioseparation. Mikrochim Acta 2024; 191:203. [PMID: 38492084 DOI: 10.1007/s00604-024-06289-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/27/2024] [Indexed: 03/18/2024]
Abstract
Chiral covalent organic frameworks (CCOFs) possess a superior chiral recognition environment, abundant pore configuration, and favorable physicochemical stability. In the post-synthetic chiral modification of COFs, research usually focused on increasing the density of chiral sites as much as possible, and little attention has been paid to the influence of the density of chiral sites on the spatial structure and chiral separation performance of CCOFs. In this article, 1,3,5-tris(4-aminophenyl) benzene (TPB), 2,5-dihydroxyterephthalaldehyde (DHTP), and 2,5-dimethoxyterephthalaldehyde (DMTP) served as the platform molecules to directly establish hydroxyl-controlled COFs through Schiff base condensation reactions. Then the novel chiral selectors 6-deoxy-6-[1-(2-aminoethyl)-3-(4-(4-isocyanatobenzyl)phenyl)urea]-β-cyclodextrin (UB-β-CD) were pended into the micropore structures of COFs via covalent bond for further construction the [UB-β-CD]x-TPB-DMTP COFs (x represents the density of chiral sites). The chiral sites density on [UB-β-CD]x-TPB-DMTP COFs was regulated by changing the construction proportion of DHTP to obtain a satisfactory CCOFs and significantly improve the ability of chiral separation. [UB-β-CD]x-TPB-DMTP COFs were coated on the inner wall of a capillary via a covalently bonding strategy. The prepared open tubular capillary exhibited strong and broad enantioselectivity toward a variety of chiral analytes, including sixteen racemic amino acids and six model chiral drugs. By comparing the outcomes of chromatographic separation, we observed that the density of chiral sites in CCOFs was not positively correlated with their enantiomeric separation performance. The mechanism of chiral recognition [UB-β-CD]x-TPB-DMTP COFs were further demonstrated by molecular docking simulation. This study not only introduces a new high-efficiency member of the COFs-based CSPs family but also demonstrates the enantioseparation potential of CCOFs constructed with traditional post-synthetic modification (PSM) strategy by utilizing the inherent characteristics of porous organic frameworks.
Collapse
Affiliation(s)
- Mingxuan Ma
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province, 225000, People's Republic of China
| | - Yanli Zhang
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province, 225000, People's Republic of China
| | - Fuhong Huang
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province, 225000, People's Republic of China
| | - Yuan Xu
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province, 225000, People's Republic of China.
| |
Collapse
|
3
|
Yang L, Liu R, Li C, Gu B, Ye J, Chen L, Chu Q. Chiral zeolite beta used as stationary phase for enantioseparation in miniaturized open tubular capillary electrochromatography with amperometric detection. Anal Chim Acta 2024; 1292:342242. [PMID: 38309852 DOI: 10.1016/j.aca.2024.342242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND With the rapid growth of the demand for optically pure compounds in the fields of biology, medicine and stereospecific synthesis, it is of great importance to develop efficient, economical, simple enantioseparation and analysis methods. Open tubular capillary electrochromatography (OT-CEC) has attracted much attention in the field of chiral separation, but its column capacity and the sensitivity of common-used optical detection are relatively low. Zeolite beta nanomaterial is both enantioselective and size-selective, providing suitable chiral microenvironment for chiral recognition, and amperometric detection (AD) avoids the low sensitivity caused by the short optical path in optical detection to some extent. RESULTS Zeolite beta nanomaterials with different particle sizes (25, 50 and 200 nm) were synthesized, and the morphology and structure were characterized by scanning electron microscopy and X-ray diffraction. Then, a novel chiral OT column was prepared by one-step method using zeolite beta nanomaterial as chiral stationary phase, and its separation performance was characterized by miniaturized CEC with AD (mini-CEC-AD) device. Under the optimum conditions, six groups of chiral drugs achieved baseline separation. Norepinephrine enantiomers were used for evaluating the inter-day, intra-day and inter-column reproducibility of the prepared open-tubular column. The relative standard deviations of migration time, peak area, resolution and selectivity factor were within 8.7 %. The limits of detection for norepinephrine enantiomers were 0.18 μg mL-1 (S/N = 3), and the average recoveries were in range of 96.7-105.0 %. This developed method has been successfully applied to the analysis of impurity enantiomer in potassium dichromate (+)-norepinephrine injection sample. SIGNIFICANCE Zeolite beta nanomaterial was used as the stationary phase to prepare chiral OT columns for the first time, and this one-step preparation method is simple and easy. The introduction of zeolite beta enriches the types of chiral stationary phase materials in electrochromatographic columns, and mini-OT-CEC-AD system provides an alternative for fast enantioseparation of chiral compounds.
Collapse
Affiliation(s)
- Li Yang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Ru Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Chaodan Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Boning Gu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Jiannong Ye
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Li Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
| | - Qingcui Chu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
4
|
Yao H, Dong X, Xiong H, Liu J, Zhou J, Ye Y. Functional cotton fabric-based TLC-SERS matrix for rapid and sensitive detection of mixed dyes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 280:121464. [PMID: 35717930 DOI: 10.1016/j.saa.2022.121464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/21/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
A facile cotton fabric with a built-in TLC-SERS structure was fabricated to demonstrate an integrated TLC separation and SERS identification of mixed dyes. The soft and flexible SERS fabric was firstly fabricated using a simple method in which gold nanoparticles were in-situ synthesized on cotton fabrics by heating. β-CD was then grafted onto cotton fabric through crosslinking with citric acid in presence of sodium hypophosphite monohydrate via esterification reaction. The adsorption and TLC development performance of β-CD grafted fabrics were comprehensively investigated with two organic dyes, one anionic dye and one nonionic dye. Besides, the recyclable adsorption and separation performance were tested to evaluate its sustainable application prospects. It displayed less adsorption capacity loss and reusable separation performance after several cycles than the pristine cotton fabrics. Finally, two sets of mixed dyes were successfully separated on the TLC fabrics and then identified via on-site SERS according to their different migration distance. The developed TLC-SERS fabric shows the advantage of quick, easy to handle, low-cost, sensitive, and could be exploited in on-site study of synthetic dyes in art objects, textile and packaging products or forensic applications.
Collapse
Affiliation(s)
- Huifang Yao
- Hubei Key Laboratory of the Forensic Science, Hubei University of Police, Wuhan 430035, China
| | - Xiaxiao Dong
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Hong Xiong
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Jinwei Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Ji Zhou
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| | - Yong Ye
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
5
|
Zhang L, Tan QG, Fan JQ, Sun C, Luo YT, Liang RP, Qiu JD. Microfluidics for chiral separation of biomolecules. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Yan Y, Cai X, Cheng S, Xie X, Lan Y, Wu J, Fan J, Zheng S, Cai S, Zhang W. Beta‐cyclodextrin covalent organic framework coated silica composite as chiral stationary phase for high‐performance liquid chromatographic separation. SEPARATION SCIENCE PLUS 2022. [DOI: 10.1002/sscp.202200104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yilun Yan
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, School of Chemistry South China Normal University Guangzhou P. R. China
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine School of Chemistry South China Normal University Guangzhou P. R. China
| | - Xinting Cai
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, School of Chemistry South China Normal University Guangzhou P. R. China
| | - Siyuan Cheng
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, School of Chemistry South China Normal University Guangzhou P. R. China
| | - Xuexian Xie
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, School of Chemistry South China Normal University Guangzhou P. R. China
| | - Yixin Lan
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, School of Chemistry South China Normal University Guangzhou P. R. China
| | - Jialin Wu
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, School of Chemistry South China Normal University Guangzhou P. R. China
| | - Jun Fan
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, School of Chemistry South China Normal University Guangzhou P. R. China
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine School of Chemistry South China Normal University Guangzhou P. R. China
- SCNU Qingyuan Institute of Science and Technology Innovation Ltd Qingyuan P. R. China
| | - Shengrun Zheng
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, School of Chemistry South China Normal University Guangzhou P. R. China
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine School of Chemistry South China Normal University Guangzhou P. R. China
- SCNU Qingyuan Institute of Science and Technology Innovation Ltd Qingyuan P. R. China
| | - Songliang Cai
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, School of Chemistry South China Normal University Guangzhou P. R. China
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine School of Chemistry South China Normal University Guangzhou P. R. China
- SCNU Qingyuan Institute of Science and Technology Innovation Ltd Qingyuan P. R. China
| | - Weiguang Zhang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, School of Chemistry South China Normal University Guangzhou P. R. China
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine School of Chemistry South China Normal University Guangzhou P. R. China
- SCNU Qingyuan Institute of Science and Technology Innovation Ltd Qingyuan P. R. China
| |
Collapse
|
7
|
Li K, Xiong LX, Wang Y, Zhang YP, Wang BJ, Xie SM, Zhang JH, Yuan LM. Preparation and evaluation of a chiral porous organic cage based chiral stationary phase for enantioseparation in high performance liquid chromatography. J Chromatogr A 2022; 1679:463415. [PMID: 35977455 DOI: 10.1016/j.chroma.2022.463415] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022]
Abstract
Porous organic cages (POCs) are a new kind of porous molecular materials, which have gained widespread interest in many fields due to their intriguing properties, including excellent molecular solubility, inherent molecular cavity and rich host-guest chemistry. To date, many chiral POCs have been explored as chiral stationary phases (CSPs) for gas chromatographic (GC) separation of enantiomers. However, the applications of chiral POCs for high performance liquid chromatography (HPLC) enantiomeric separation is extremely rare. In this study, we report the construction of thiol-ene click reaction for the preparation of CSP for HPLC by using a [4+8]-type chiral POC NC4-R as chiral selector. The fabricated CSP showed good chiral resolution performance not only in normal-phase HPLC (NP-HPLC) but also in reversed-phase HPLC (RP-HPLC). Seventeen and ten racemates were well resolved in the two separation modes, respectively, including ketones, esters, alcohols, phenols, amines, ethers, organic acids, and amino acids. Moreover, the fabricated column also shows good chiral recognition complementarity to two popular chiral HPLC columns (Chiralpak AD-H and Chiralcel OD-H columns) and previously reported chiral POC NC1-R-based HPLC column, which can resolve some racemates that unable to be resolved by the two commercially available chiral HPLC columns and NC1-R-based column. The relative standard deviation (RSD) values (n = 4) of retention time and resolution (Rs) of analytes separated on the column were less than 0.3 % and 0.5 % after it was subjected to different injections, showing the good reproducibility and stability of the NC4-R-based column. This work demonstrated high potentials of chiral POCs for HPLC enantioseparation and the applicability of chiral POC-based HPLC columns can be broadened by developing more chiral POCs with diverse structures as chiral selector for HPLC.
Collapse
Affiliation(s)
- Kuan Li
- Department of Chemistry, Yunnan Normal University, Kunming 650500, P.R. China
| | - Ling-Xiao Xiong
- Department of Chemistry, Yunnan Normal University, Kunming 650500, P.R. China
| | - Ying Wang
- Department of Chemistry, Yunnan Normal University, Kunming 650500, P.R. China
| | - You-Ping Zhang
- Department of Chemistry, Yunnan Normal University, Kunming 650500, P.R. China
| | - Bang-Jin Wang
- Department of Chemistry, Yunnan Normal University, Kunming 650500, P.R. China
| | - Sheng-Ming Xie
- Department of Chemistry, Yunnan Normal University, Kunming 650500, P.R. China.
| | - Jun-Hui Zhang
- Department of Chemistry, Yunnan Normal University, Kunming 650500, P.R. China.
| | - Li-Ming Yuan
- Department of Chemistry, Yunnan Normal University, Kunming 650500, P.R. China
| |
Collapse
|
8
|
Chen Y, Xia L, Li G. The progress on porous organic materials for chiral separation. J Chromatogr A 2022; 1677:463341. [PMID: 35870277 DOI: 10.1016/j.chroma.2022.463341] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/02/2022] [Accepted: 07/12/2022] [Indexed: 11/25/2022]
Abstract
Chiral compounds have similar structures and properties, but their pharmacological action is very different or even opposite. Therefore, the separation of chiral compounds has great significance in pharmaceutical and agriculture. Porous organic materials are novel crystalline porous materials, which possess high surface area, controllable pore size, and favorable functionalization. Therefore, porous organic materials are considered to be an ideal material for chiral separation. In this review, we summarized the progress of chiral porous organic materials for chiral separation in recent years. Furthermore, the applications of chiral porous organic materials as chiral separation medias (chromatography stationary phases and membrane materials) in enantioseparation were highlighted. Finally, the remaining challenges and future directions for porous organic materials in chiral separation were also briefly outlined further to promote the development of porous organic materials in chiral separation.
Collapse
Affiliation(s)
- Yanlong Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
9
|
Fabrication of cellulose derivative coated spherical covalent organic frameworks as chiral stationary phases for high-performance liquid chromatographic enantioseparation. J Chromatogr A 2022; 1675:463155. [DOI: 10.1016/j.chroma.2022.463155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/06/2022] [Accepted: 05/16/2022] [Indexed: 11/23/2022]
|
10
|
Wang X, Wu J, Liu X, Qiu X, Cao L, Ji Y. Enhanced Chiral Recognition Abilities of Cyclodextrin Covalent Organic Frameworks via Chiral/Achiral Functional Modification. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25928-25936. [PMID: 35609238 DOI: 10.1021/acsami.2c05572] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
β-Cyclodextrin covalent organic frameworks (β-CD COFs) show great potential in enantioseparation due to their uniformly distributed chiral recognition sites and good chemical stability. The hydroxyl and amino groups of β-CD COFs enable facile post-modification to introduce the desired functionality into the frameworks. In this study, we perform post-modification of β-CD COFBPDA with 1,4-butane sultone and [(3R,4R)-4-acetyloxy-2,5-dioxooxolan-3-yl] acetate to construct two kinds of novel functional β-CD COFs. The capillary columns prepared with these two functional β-CD COFs separated chiral dihydropyridines and fluoroquinolones with excellent selectivity and repeatability in capillary electrochromatography, while β-CD COFBPDA-modified capillary columns did not present the chiral recognition ability for these drugs. The mechanism of chiral recognition and the enhanced enantioselectivity of functional β-CD COFs were further demonstrated by molecular docking simulation. The divergent chiral separation performances of β-CD COFs suggest that the introduction of functional groups enables the modification of β-CD COF properties and tuning of its chiral recognition abilities for the diversity of enantioseparation.
Collapse
Affiliation(s)
- Xuehua Wang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Jiaqi Wu
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Xue Liu
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Xin Qiu
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Liqin Cao
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Yibing Ji
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| |
Collapse
|
11
|
Fluorinated covalent organic frameworks as a stationary phase for separation of fluoroquinolones by capillary electrochromatography. Mikrochim Acta 2022; 189:237. [DOI: 10.1007/s00604-022-05333-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022]
|