1
|
Huang L, Zhou Y, Xu L, Ruan X, Huang Z, Ke Y, Lin L, Tang Q. Accurate and sensitive dual-response fluorescence detection of microRNAs based on an upconversion nanoamplicon with red emission. RSC Adv 2024; 14:32911-32921. [PMID: 39429926 PMCID: PMC11487471 DOI: 10.1039/d4ra05061d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer. In recent years, researchers have found a close relationship between microRNAs (miRNAs) and OSCC. In addition, miRNAs are highly stable in tissues and circulation, and are also considered potential biomarkers for cancer detection and prognosis. Among a variety of tools for miRNAs with low abundance, single red-emitting UCNP-based biosensors have attracted special interest due to their unique properties, including deep organizational penetration, weak radiation damage, and low autofluorescence. Additionally, the measurement of low-abundance analytes via enzyme-free signal amplification is also an effective means. Herein, by taking advantage of red-emitting UCNPs and an enzyme-toehold-mediated strand displacement cascade, a dual-signal amplification biosensor was constructed. The recycled miRNA can be regarded as a catalyst for the assembly of multiple H1/H2 duplexes, which promoted the response signal of augmented analyte expression. Moreover, the proposed biosensors improved the measurement accuracy via a dual-signal response to obviously avert false-positive signals. The proposed method was applied to measure miRNA-222 (a model analyte) in serum samples, and the results were similar to those of polymerase chain reaction (PCR), with spiked recoveries ranging from 91.2% to 101.7%. The proposed assay has the merits of high sensitivity, strong recognition, and low background, indicating broad potential for the measurement of diverse analytes in biological samples.
Collapse
Affiliation(s)
- Lingling Huang
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University Fuzhou 350001 China
- Department of Stomatology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University Fuzhou 350001 China
| | - Yi Zhou
- Department of Stomatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science Xiangyang 441000 China
| | - Liang Xu
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University Fuzhou 350001 China
| | - Xin Ruan
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University Fuzhou 350001 China
- Department of Stomatology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University Fuzhou 350001 China
| | - Zhao Huang
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University Fuzhou 350001 China
| | - Yue Ke
- Department of Stomatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science Xiangyang 441000 China
| | - Lisong Lin
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University Fuzhou 350001 China
- Department of Stomatology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University Fuzhou 350001 China
| | - Qiuling Tang
- Department of Stomatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science Xiangyang 441000 China
| |
Collapse
|
2
|
Hayashi H, Enami A, Fujita H, Kuroiwa S, Ohashi K, Kuwahara M, Osaka T, Momma T. Field-effect transistor biosensor with signal amplification by ternary initiation complexes for detection of wide-range RNA concentration. Talanta 2024; 273:125846. [PMID: 38452594 DOI: 10.1016/j.talanta.2024.125846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/08/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024]
Abstract
Electrical detection of RNAs using transistor-based biosensors has attracted attention as a strategy for medical diagnosis and environmental monitoring. Herein, we demonstrated a proof-of-concept for specific, sensitive, and label-free RNA detection using a field-effect transistor (FET) biosensor with signal amplification by ternary initiation complexes (SATIC), which is an isothermal one-step nucleic acid amplification initiated by the combination of target RNA, circular DNA template and DNA primer. The SATIC system-applied FET biosensor specifically and quantitatively detected the target RNA with a single-nucleotide difference via the negative charges derived from the amplification products formed by a nucleic acid amplification reaction with φ29 DNA polymerase on the gate surface. In particular, the control of the amplification time allowed the detection of target RNA molecules over a wide concentration range, resulting in a detection limit of up to 6 copies/μL. Therefore, a transistor-based bioassay using the SATIC system could be useful for simple and sensitive nucleic acid analysis.
Collapse
Affiliation(s)
- Hiroki Hayashi
- Graduate School of Advanced Science and Engineering, Waseda University, Okubo 3-4-1, Shinjuku-ku, Tokyo, 169-8555, Japan.
| | - Akihiro Enami
- Graduate School of Advanced Science and Engineering, Waseda University, Okubo 3-4-1, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Hiroto Fujita
- Graduate School of Integrated Basic Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo, 156-8550, Japan
| | - Shigeki Kuroiwa
- Research Organization for Nano & Life Innovation, Waseda University, Wasedatsurumaki-cho 513, Shinju-ku, Tokyo, 162-0041, Japan
| | - Keishi Ohashi
- Research Organization for Nano & Life Innovation, Waseda University, Wasedatsurumaki-cho 513, Shinju-ku, Tokyo, 162-0041, Japan
| | - Masayasu Kuwahara
- Graduate School of Integrated Basic Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo, 156-8550, Japan
| | - Tetsuya Osaka
- Graduate School of Advanced Science and Engineering, Waseda University, Okubo 3-4-1, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Toshiyuki Momma
- Graduate School of Advanced Science and Engineering, Waseda University, Okubo 3-4-1, Shinjuku-ku, Tokyo, 169-8555, Japan; Research Organization for Nano & Life Innovation, Waseda University, Wasedatsurumaki-cho 513, Shinju-ku, Tokyo, 162-0041, Japan.
| |
Collapse
|
3
|
Yu J, Han K. A Graphene Oxide-based Assay for Sensitive Osteonecrosis of the Femoral Head (ONFH) related microRNA Detection via Exonuclease-III Assisted Dual Signal Cycle. Mol Biotechnol 2023:10.1007/s12033-023-00924-7. [PMID: 37851192 DOI: 10.1007/s12033-023-00924-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023]
Abstract
Accurate detection of circulating microRNAs (miRNAs) plays a vital role in the diagnosis of various diseases. The current miRNA detection methods, however, are widely criticized for their low sensitivity and excessive background signal. Herein, we propose a graphene oxide (GO) based fluorescent biosensor for sensitive and reliable miRNA analysis with a low background signal by utilizing exonuclease III (Exo III)-assisted target recycling and hybridization chain reaction (HCR). To initiate Exo-III-assisted dual signal cycles, a hairpin DNA probe (H probe) was developed for selective miRNA binding. Dye quenching occurred when carboxyfluorescein (FAM)-labeled hairpins (HP1 and HP1) were unable to bind to their intended target and instead adsorb onto the surface of GO via p-stacking interactions. Exo III sequentially cleaved the 3'-strand of the H probe and the S probe upon attachment of the target miRNA, resulting in the release of the miRNA and the autonomous production of a "g" sequence. The released target miRNA then hybridized with a second H probe and progressed to the subsequent reaction phase. With the help of the HP1 and HP2 probes, a lengthy dsDNA product was produced when the "g" sequence triggered HCR. The dsDNA product was not absorbed by GO, and the material instead fluoresced brightly. As a result, the amount of miRNA of interest was measured. With a LOD of only 5.6 fM, this bioassay demonstrated excellent selectivity and great sensitivity.
Collapse
Affiliation(s)
- Jian Yu
- Orthopedics Department, Hebei Provincial Hospital of Traditional Chinese Medicine, No. 389 Zhongshan East Road, Chang'an District, Shijiazhuang City, 050000, Hebei, China
| | - Kun Han
- Orthopedics Department, Hebei Provincial Hospital of Traditional Chinese Medicine, No. 389 Zhongshan East Road, Chang'an District, Shijiazhuang City, 050000, Hebei, China.
| |
Collapse
|
4
|
Lee M, Kang S, Kim S, Park N. Advances and Trends in miRNA Analysis Using DNAzyme-Based Biosensors. BIOSENSORS 2023; 13:856. [PMID: 37754090 PMCID: PMC10526965 DOI: 10.3390/bios13090856] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/28/2023]
Abstract
miRNAs are endogenous small, non-coding RNA molecules that function in post-transcriptional regulation of gene expression. Because miRNA plays a pivotal role in maintaining the intracellular environment, and abnormal expression has been found in many cancer diseases, detection of miRNA as a biomarker is important for early diagnosis of disease and study of miRNA function. However, because miRNA is present in extremely low concentrations in cells and many types of miRNAs with similar sequences are mixed, traditional gene detection methods are not suitable for miRNA detection. Therefore, in order to overcome this limitation, a signal amplification process is essential for high sensitivity. In particular, enzyme-free signal amplification systems such as DNAzyme systems have been developed for miRNA analysis with high specificity. DNAzymes have the advantage of being more stable in the physiological environment than enzymes, easy to chemically synthesize, and biocompatible. In this review, we summarize and introduce the methods using DNAzyme-based biosensors, especially with regard to various signal amplification methods for high sensitivity and strategies for improving detection specificity. We also discuss the current challenges and trends of these DNAzyme-based biosensors.
Collapse
Affiliation(s)
- Minhyuk Lee
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea (S.K.)
| | - Seungjae Kang
- Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea
| | - Sungjee Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea (S.K.)
| | - Nokyoung Park
- Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea
| |
Collapse
|
5
|
Wang ZY, Sun MH, Zhang Q, Li PF, Wang K, Li XM. Advances in Point-of-Care Testing of microRNAs Based on Portable Instruments and Visual Detection. BIOSENSORS 2023; 13:747. [PMID: 37504145 PMCID: PMC10377738 DOI: 10.3390/bios13070747] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNAs that are approximately 22 nt in length and regulate gene expression post-transcriptionally. miRNAs play a vital role in both physiological and pathological processes and are regarded as promising biomarkers for cancer, cardiovascular diseases, neurodegenerative diseases, and so on. Accurate detection of miRNA expression level in clinical samples is important for miRNA-guided diagnostics. However, the common miRNA detection approaches like RNA sequencing, qRT-PCR, and miRNA microarray are performed in a professional laboratory with complex intermediate steps and are time-consuming and costly, challenging the miRNA-guided diagnostics. Hence, sensitive, highly specific, rapid, and easy-to-use detection of miRNAs is crucial for clinical diagnosis based on miRNAs. With the advantages of being specific, sensitive, efficient, cost-saving, and easy to operate, point-of-care testing (POCT) has been widely used in the detection of miRNAs. For the first time, we mainly focus on summarizing the research progress in POCT of miRNAs based on portable instruments and visual readout methods. As widely available pocket-size portable instruments and visual detection play important roles in POCT, we provide an all-sided discussion of the principles of these methods and their main limitations and challenges, in order to provide a guide for the development of more accurate, specific, and sensitive POCT methods for miRNA detection.
Collapse
Affiliation(s)
- Zhong-Yu Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China
| | - Ming-Hui Sun
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China
| | - Qun Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China
| | - Pei-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China
| | - Kun Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China
| | - Xin-Min Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China
| |
Collapse
|
6
|
Wu Y, Feng J, Hu G, Zhang E, Yu HH. Colorimetric Sensors for Chemical and Biological Sensing Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23052749. [PMID: 36904948 PMCID: PMC10007638 DOI: 10.3390/s23052749] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 06/12/2023]
Abstract
Colorimetric sensors have been widely used to detect numerous analytes due to their cost-effectiveness, high sensitivity and specificity, and clear visibility, even with the naked eye. In recent years, the emergence of advanced nanomaterials has greatly improved the development of colorimetric sensors. This review focuses on the recent (from the years 2015 to 2022) advances in the design, fabrication, and applications of colorimetric sensors. First, the classification and sensing mechanisms of colorimetric sensors are briefly described, and the design of colorimetric sensors based on several typical nanomaterials, including graphene and its derivatives, metal and metal oxide nanoparticles, DNA nanomaterials, quantum dots, and some other materials are discussed. Then the applications, especially for the detection of metallic and non-metallic ions, proteins, small molecules, gas, virus and bacteria, and DNA/RNA are summarized. Finally, the remaining challenges and future trends in the development of colorimetric sensors are also discussed.
Collapse
Affiliation(s)
- Yu Wu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Jing Feng
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Guang Hu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - En Zhang
- Chongqing Institute for Food and Drug Control, Chongqing 401121, China
| | - Huan-Huan Yu
- Chongqing Institute for Food and Drug Control, Chongqing 401121, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
7
|
Aamri ME, Mohammadi H, Amine A. Paper-Based Colorimetric Detection of miRNA-21 Using Pre-Activated Nylon Membrane and Peroxidase-Mimetic Activity of Cysteamine-Capped Gold Nanoparticles. BIOSENSORS 2023; 13:74. [PMID: 36671909 PMCID: PMC9855695 DOI: 10.3390/bios13010074] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Irregular expression of MicroRNA-21 (miRNA-21) is considered as a promising biomarker for early cancer diagnosis. In this paper, a new genosensor based on paper and nanozyme activity of cysteamine-capped gold nanoparticles (Cys/AuNPs) was developed to detect picomolar concentrations of miRNA-21. Such nanozyme catalyzes the colorimetric reaction of hydrogen peroxide (H2O2) and 3,3',5,5' tetramethylbenzidine (TMB), to produce a blue color measurable by a smartphone. Due to their positive charge, Cys/AuNPs were attached to the negative phosphate groups of the DNA strand backbone via electrostatic interactions, leading to the quantitative determination of miRNA-21 concentration by the peroxidase-like activity of Cys/AuNPs. Furthermore, a paper-based assay was carried out on nylon disk devices to allow fast immobilization of DNAprobe. After performing the paper-based assay, a good linear range was observed between 1 pM and 1 nM (Y = 0.080 [MiRNA-21]/pM + 13.846, R2 = 0.993) with a detection limit of 0.5 pM. The developed method was effective, selective, and sensitive for the miRNA-21 detection. The application of the proposed method for miRNA-21 detection was examined in a human serum sample, and a recovery rate of 90.0-97.6% was obtained showing the acceptable accuracy of the developed approach.
Collapse
|
8
|
Ashraf G, Zhong ZT, Asif M, Aziz A, Iftikhar T, Chen W, Zhao YD. State-of-the-Art Fluorescent Probes: Duplex-Specific Nuclease-Based Strategies for Early Disease Diagnostics. BIOSENSORS 2022; 12:bios12121172. [PMID: 36551139 PMCID: PMC9775407 DOI: 10.3390/bios12121172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 05/27/2023]
Abstract
Precision healthcare aims to improve patient health by integrating prevention measures with early disease detection for prompt treatments. For the delivery of preventive healthcare, cutting-edge diagnostics that enable early disease detection must be clinically adopted. Duplex-specific nuclease (DSN) is a useful tool for bioanalysis since it can precisely digest DNA contained in duplexes. DSN is commonly used in biomedical and life science applications, including the construction of cDNA libraries, detection of microRNA, and single-nucleotide polymorphism (SNP) recognition. Herein, following the comprehensive introduction to the field, we highlight the clinical applicability, multi-analyte miRNA, and SNP clinical assays for disease diagnosis through large-cohort studies using DSN-based fluorescent methods. In fluorescent platforms, the signal is produced based on the probe (dyes, TaqMan, or molecular beacon) properties in proportion to the target concentration. We outline the reported fluorescent biosensors for SNP detection in the next section. This review aims to capture current knowledge of the overlapping miRNAs and SNPs' detection that have been widely associated with the pathophysiology of cancer, cardiovascular, neural, and viral diseases. We further highlight the proficiency of DSN-based approaches in complex biological matrices or those constructed on novel nano-architectures. The outlooks on the progress in this field are discussed.
Collapse
Affiliation(s)
- Ghazala Ashraf
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zi-Tao Zhong
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Muhammad Asif
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Ayesha Aziz
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tayyaba Iftikhar
- Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Chen
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
9
|
Ma J, Yong L, Lei P, Li H, Fang Y, Wang L, Chen H, Zhou Q, Wu W, Jin L, Sun D, Zhang X. Advances in microRNA from adipose-derived mesenchymal stem cell-derived exosome: focusing on wound healing. J Mater Chem B 2022; 10:9565-9577. [PMID: 36398750 DOI: 10.1039/d2tb01987f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Skin wounds are a common condition causing economic burden and they represent an urgent clinical need, especially chronic wounds. Numerous studies have been conducted on the applications of stem cell therapy in wound healing, with adipose-derived mesenchymal stem cells (ADMSCs) playing a major role since they can be isolated easily, yielding a high number of cells, the less invasive harvesting required, the longer life span and no ethical issues. However, the lack of standardized doses and protocols, the heterogeneity of clinical trials, as well as the incompatibility of the immune system limit its application. Recent studies have demonstrated that specific stem cell functions depend on paracrine factors, including extracellular vesicles, in which microRNAs in exosomes (Exo-miRNAs) are essential in controlling their functions. This paper describes the application and mechanism whereby ADMSC-Exo-miRNA regulates wound healing. ADMSC-Exo-miRNA is involved in various stages in wounds, including modulating the immune response and inflammation, accelerating skin cell proliferation and epithelialization, promoting vascular repair, and regulating collagen remodeling thereby reducing scar formation. In summary, this acellular therapy based on ADMSC-Exo-miRNA has considerable clinical potential, and provides reference values for developing new treatment strategies for wound healing.
Collapse
Affiliation(s)
- Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
| | - Ling Yong
- Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610000, China
| | - Pengyu Lei
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
| | - Hua Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
| | - Lei Wang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
| | - Haojie Chen
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
| | - Qi Zhou
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou325000, China.
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China. .,Wenzhou City and Kunlong Technology Co., Ltd Joint Doctoral Innovation Station, Wenzhou Association for Science and Technology, Wenzhou 325000, China
| | - Xingxing Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou325000, China.
| |
Collapse
|
10
|
Li Z, Xiao H, Li J, Yang Z, Jiang J, Ji J, Peng C, He Y. Graphene Oxide-Based Highly Sensitive Assay of Circulating MicroRNAs for Early Prediction of the Response to Neoadjuvant Chemotherapy in Breast Cancer. Anal Chem 2022; 94:16254-16264. [DOI: 10.1021/acs.analchem.2c04117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhijia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hongtao Xiao
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital affiliated to School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Junjie Li
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital affiliated to School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Zhongzhu Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jun Jiang
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital affiliated to School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Juan Ji
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital affiliated to School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yang He
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
11
|
Li X, Cheng Y, Xu R, Zhang Z, Qi X, Chen L, Zhu M. A smartphone-assisted microarray immunosensor coupled with GO-based multi-stage signal amplification strategy for high-sensitivity detection of okadaic acid. Talanta 2022; 247:123567. [PMID: 35623247 DOI: 10.1016/j.talanta.2022.123567] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 11/28/2022]
Abstract
Okadaic acid (OA) is one of the main virulence factors of diarrheal shellfish toxins (DSP), which can cause acute carcinogenic or teratogenic effects after ingestion of contaminated shellfish. Therefore, high-sensitivity and fast detection of OA is a key to preventing the occurrence of safety accidents. In this paper, we effectively established a smartphone-assisted microarray immunosensor combined with an indirect competitive ELISA (iELISA) for quantitative colorimetric detection of OA. To further improve the detection sensitivity and match the smartphone imaging, a novel graphene oxide (GO) composite probe was developed to realize the multi-stage signal amplification. The system exhibited a wide linear range for the detection of OA (0.02-33.6 ng ·mL-1) with low detection limit of 0.02 ng ·mL-1. The recovery of OA in spiked shellfish samples was in the range of 80%-103.5%, which indicates the good applicability of this biosensor. The whole detection system has advantages of simplicity, low cost, high sensitivity and portability, which is expected to be a powerful alternative tool for on-site detecting and early warning of the pollution of marine products.
Collapse
Affiliation(s)
- Xiaotong Li
- Institute of Eco-Environmental Forensics, Qingdao Institute of Humanities and Social Sciences, Shandong University, China
| | - Yongqiang Cheng
- Institute of Eco-Environmental Forensics, Qingdao Institute of Humanities and Social Sciences, Shandong University, China.
| | - Ranran Xu
- Institute of Eco-Environmental Forensics, Qingdao Institute of Humanities and Social Sciences, Shandong University, China
| | - Ziwei Zhang
- Institute of Eco-Environmental Forensics, Qingdao Institute of Humanities and Social Sciences, Shandong University, China
| | - Xiaoxiao Qi
- Institute of Eco-Environmental Forensics, Qingdao Institute of Humanities and Social Sciences, Shandong University, China
| | - Longyu Chen
- Institute of Eco-Environmental Forensics, Qingdao Institute of Humanities and Social Sciences, Shandong University, China
| | - Meijia Zhu
- Institute of Eco-Environmental Forensics, Qingdao Institute of Humanities and Social Sciences, Shandong University, China
| |
Collapse
|
12
|
Yu Q, Chen J, Fu W, Muhammad KG, Li Y, Liu W, Xu L, Dong H, Wang D, Liu J, Lu Y, Chen X. Smartphone-Based Platforms for Clinical Detections in Lung-Cancer-Related Exhaled Breath Biomarkers: A Review. BIOSENSORS 2022; 12:bios12040223. [PMID: 35448283 PMCID: PMC9028493 DOI: 10.3390/bios12040223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 12/24/2022]
Abstract
Lung cancer has been studied for decades because of its high morbidity and high mortality. Traditional methods involving bronchoscopy and needle biopsy are invasive and expensive, which makes patients suffer more risks and costs. Various noninvasive lung cancer markers, such as medical imaging indices, volatile organic compounds (VOCs), and exhaled breath condensates (EBCs), have been discovered for application in screening, diagnosis, and prognosis. However, the detection of markers still relies on bulky and professional instruments, which are limited to training personnel or laboratories. This seriously hinders population screening for early diagnosis of lung cancer. Advanced smartphones integrated with powerful applications can provide easy operation and real-time monitoring for healthcare, which demonstrates tremendous application scenarios in the biomedical analysis region from medical institutions or laboratories to personalized medicine. In this review, we propose an overview of lung-cancer-related noninvasive markers from exhaled breath, focusing on the novel development of smartphone-based platforms for the detection of these biomarkers. Lastly, we discuss the current limitations and potential solutions.
Collapse
Affiliation(s)
- Qiwen Yu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Jing Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310051, China;
| | - Wei Fu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Kanhar Ghulam Muhammad
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Yi Li
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Wenxin Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Linxin Xu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Hao Dong
- Research Center for Sensing Materials and Devices, Zhejiang Lab, Hangzhou 311100, China; (H.D.); (D.W.)
| | - Di Wang
- Research Center for Sensing Materials and Devices, Zhejiang Lab, Hangzhou 311100, China; (H.D.); (D.W.)
| | - Jun Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Yanli Lu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
- Correspondence: (Y.L.); (X.C.)
| | - Xing Chen
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
- Correspondence: (Y.L.); (X.C.)
| |
Collapse
|