1
|
Elhami A, Mobed A, Soleimany R, Yazdani Y, Kazemi ES, Mohammadi M, Saffarfar H. Sensitive and Cost-Effective Tools in the Detection of Ovarian Cancer Biomarkers. ANALYTICAL SCIENCE ADVANCES 2024; 5:e202400029. [PMID: 39479573 PMCID: PMC11519542 DOI: 10.1002/ansa.202400029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 11/02/2024]
Abstract
Women diagnosed with late-stage ovarian cancer suffer a very high rate of mortality. Accordingly, it is imperative to detect and diagnose the disease as early as possible in its development. Achievement of this aim implies relatively large-scale screening of women at an age of clinical significance through assay of biomarkers for disease present in blood or serum. Biosensor detection offers an attractive technology for the automated detection of such species. Among several biomarkers that have been identified that are present in patients with ovarian cancer, the only one that is commonly tested for in clinical use is cancer antigen 125, which is considered to be a poor biomarker for the disease. Here, we describe several biosensors that developed in the past decade for the detection of ovarian cancer biomarkers such as CA125, human epididymis protein 4 (HE4) and apolipoprotein A1. The challenges presented by the fabrication of biosensor devices for detecting ovarian cancer and the limited number of biosensors developed for this purpose are discussed.
Collapse
Affiliation(s)
- Anis Elhami
- Dentistry facultyAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Ahmad Mobed
- Social Determinants of Health Research CenterTabriz University of Medical SciencesTabrizIran
| | - Reza Soleimany
- Faculty of MedicineImam Reza HospitalTabriz University of Medical SciencesTabrizIran
| | - Yalda Yazdani
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Esmat Sadat Kazemi
- Department of Obstetrics and GynecologyAlzahra HospitalTabriz University of Medical SciencesTabrizIran
| | - Mahya Mohammadi
- Student Research CommitteeSchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Hossein Saffarfar
- Cardiovascular Research Center, TehranTehran University of Medical SciencesTehranIran
| |
Collapse
|
2
|
Juma MW, Birech Z, Mwenze NM, Ondieki AM, Maaza M, Mokhotjwa SD. Localized surface plasmon resonance sensing of Trenbolone acetate dopant using silver nanoparticles. Sci Rep 2024; 14:5721. [PMID: 38459089 PMCID: PMC10923944 DOI: 10.1038/s41598-024-56456-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/06/2024] [Indexed: 03/10/2024] Open
Abstract
In this work, localized surface plasmon resonance (LSPR) sensing as applicable in the detection of Trenbolone acetate dopant is demonstrated. We show that the LSPR of the Trenbolone acetate/silver nanoparticle (Tren Ac/AgNPs) complex is sensitive to changes in the adsorbent concentration. The results show an average redshift of + 18 nm in the LSPR peak with variations in intensity and broadening behavior of the LSPR band of the Tren Ac/AgNPs complex. AgNPs were synthesized using laser ablation in liquid (LAL) technique with water as the solvent. UV-Vis spectroscopy was used for absorbance measurements and particle size and morphology were monitored using scanning electron microscopy (SEM). The aggregation behavior of the Tren Ac/AgNPs complex was monitored using energy-dispersive X-ray spectroscopy (EDS). Molecular Electrostatic Potential (MEP) and the HOMO-LUMO orbitals of the optimized Trenbolone acetate structure were obtained using Density Function Theory (DFT). The molecule was optimized at the B3LYP level of theory using the 6-311 basis set carried out using the Gaussian 09 software package. The results showed that O2- is Trenbolone acetate's active site that would interact with Ag+ to form a complex that would influence the plasmon behavior. The results presented in this work demonstrate the feasibility of LSPR for anabolic androgenic steroid detection.
Collapse
Affiliation(s)
- Moses Wabwile Juma
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa.
- NANOAFNET, iThemba LABS-National Research Foundation of South Africa, 1 Old Faure Road, Cape Town, 7129, Western Cape, South Africa.
- Department of Physics, University of South Africa, Muckleneuk Ridge, Pretoria, 0001, South Africa.
- Laser Physics and Spectroscopy Research Group, Department of Physics, University of Nairobi, P.O Box 30197-00100, Nairobi, Kenya.
| | - Zephania Birech
- Laser Physics and Spectroscopy Research Group, Department of Physics, University of Nairobi, P.O Box 30197-00100, Nairobi, Kenya
| | - Nancy Mwikali Mwenze
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa
- NANOAFNET, iThemba LABS-National Research Foundation of South Africa, 1 Old Faure Road, Cape Town, 7129, Western Cape, South Africa
- Department of Physics, University of South Africa, Muckleneuk Ridge, Pretoria, 0001, South Africa
- Laser Physics and Spectroscopy Research Group, Department of Physics, University of Nairobi, P.O Box 30197-00100, Nairobi, Kenya
| | - Annah Moraa Ondieki
- Laser Physics and Spectroscopy Research Group, Department of Physics, University of Nairobi, P.O Box 30197-00100, Nairobi, Kenya
| | - Malik Maaza
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa
- NANOAFNET, iThemba LABS-National Research Foundation of South Africa, 1 Old Faure Road, Cape Town, 7129, Western Cape, South Africa
- Department of Physics, University of South Africa, Muckleneuk Ridge, Pretoria, 0001, South Africa
| | - Simon Dhlamini Mokhotjwa
- Department of Physics, University of South Africa, Muckleneuk Ridge, Pretoria, 0001, South Africa
| |
Collapse
|
3
|
Wu KH, Huang WC, Wang JC, Wang SH. Paper-based colorimetric sensor using Photoshop and a smartphone app for the quantitative detection of carbofuran. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1043-1049. [PMID: 38268410 DOI: 10.1039/d3ay02211k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
We developed a smartphone-assisted microchemistry analyzer for the quantitative detection of carbofuran using a paper-based colorimetric sensor, Photoshop software, and a smartphone app. The changes in color of the carbofuran enzymatic reaction in the paper-based sensor were captured and analyzed using a smartphone-controlled analyzer with an LED light source and a smartphone camera. The high accuracy of this method was demonstrated for the determination of carbofuran with a linear response in the range 0.05-1.0 ppm and limits of detection (LOD) of 0.02 and 0.018 ppm using Photoshop and smartphone app colorimetric analysis, respectively. These two methods not only show the high sensitivity and highly quantitative relationships between the concentrations of commercial carbofuran and characteristic color values of the blue channel in smartphone images but were also applied to infusions of tea. Moreover, the smartphone app is able to GPS tag the location of the test and transmit the results to a website that displays quantitative results from carbofuran samples on a map.
Collapse
Affiliation(s)
- Kuo-Hui Wu
- Department of Chemistry and Materials Engineering, Chung Cheng Institute of Technology, National Defense University, Tahsi, Taoyuan, 33551, Taiwan.
| | - Wen-Chien Huang
- Department of Chemistry and Materials Engineering, Chung Cheng Institute of Technology, National Defense University, Tahsi, Taoyuan, 33551, Taiwan.
| | - Je-Chuang Wang
- Department of Chemistry and Materials Engineering, Chung Cheng Institute of Technology, National Defense University, Tahsi, Taoyuan, 33551, Taiwan.
| | - Shih-Hsien Wang
- Department of Chemistry and Materials Engineering, Chung Cheng Institute of Technology, National Defense University, Tahsi, Taoyuan, 33551, Taiwan.
| |
Collapse
|
4
|
Navarro J, Cepriá G, Camacho-Aguayo J, Martín S, González Orive A, de Marcos S, Galbán J. Towards new fluorometric methodologies based on the in-situ generation of gold nanoclusters. Talanta 2024; 266:125119. [PMID: 37657379 DOI: 10.1016/j.talanta.2023.125119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023]
Abstract
In this manuscript a method for the fluorometric determination of tyramine is described. It is based on the direct reaction between Au(III) and tyramine in a phosphate buffer which produces fluorescent gold nanoclusters (AuNC) (λexc = 320 nm, λem = 410 nm) with a diameter of 1.50 ± 0.06 nm. The Au(III) and buffer solutions are mixed and after 140 s, tyramine solution is added; which produces a fast and stable fluorescence signal. The formation of AuNC is demonstrated by STEM and, more importantly, this reaction could be followed by Atomic Fluorescence Microscopy (AFM). The method allows the determination of tyramine in the range from 6.0x10-7 M (limit of quantification) up to 1.2x10-4 M; with a relative standard deviation (RSD) ranges from 1.8% to 4.4% depending on the tyramine concentration. The mechanism of AuNC formation involves the Au(III) reduction via the phenol group and the complexation with the amine group. Putrescine and cadaverine do not produce interference, meanwhile histamine causes a proportional decrease in the signal which can be overcome by the standard addition method. The method was applied to the determination of tyramine in a tuna and cheese samples and the results obtained are in statistical agreement with these obtained using a validated or standard method.
Collapse
Affiliation(s)
- Jesús Navarro
- Analytical Biosensors Group (GBA), Analytical Chemistry Department, Faculty of Sciences, Instituto de Nanociencia y Materiales de Aragón (INMA), University of Zaragoza-CSIC, C/Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Gemma Cepriá
- Group of Analytical Spectroscopy and Sensors (GEAS), Instituto de Ciencias Ambientales (IUCA), Analytical Chemistry Department, Faculty of Sciences, University of Zaragoza, C/Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Javier Camacho-Aguayo
- Analytical Biosensors Group (GBA), Analytical Chemistry Department, Faculty of Sciences, Instituto de Nanociencia y Materiales de Aragón (INMA), University of Zaragoza-CSIC, C/Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Santiago Martín
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Departamento de Química Física, Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Alejandro González Orive
- Department of Chemistry, Materials and Nanotechnology Institute, University of La Laguna, Avda. Astrofísico Francisco Sánchez s/n, 38206, San Cristóbal de La Laguna, Spain
| | - Susana de Marcos
- Analytical Biosensors Group (GBA), Analytical Chemistry Department, Faculty of Sciences, Instituto de Nanociencia y Materiales de Aragón (INMA), University of Zaragoza-CSIC, C/Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Javier Galbán
- Analytical Biosensors Group (GBA), Analytical Chemistry Department, Faculty of Sciences, Instituto de Nanociencia y Materiales de Aragón (INMA), University of Zaragoza-CSIC, C/Pedro Cerbuna 12, 50009, Zaragoza, Spain.
| |
Collapse
|
5
|
Furletov A, Apyari V, Volkov P, Torocheshnikova I, Dmitrienko S. Solid-Phase Spectrometric Determination of Organic Thiols Using a Nanocomposite Based on Silver Triangular Nanoplates and Polyurethane Foam. SENSORS (BASEL, SWITZERLAND) 2023; 23:7994. [PMID: 37766049 PMCID: PMC10536471 DOI: 10.3390/s23187994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Adsorption of silver nanoparticles on polymers may affect the processes in which they participate, adjusting the analytical characteristics of methods for the quantitation of various substances. In the present study, a composite material based on silver triangular nanoplates (AgTNPs) and polyurethane foam was proposed for chemical analysis. The prospects of its application for the solid-phase/colorimetric determination of organic thiols were substantiated. It was found that aggregation of AgTNPs upon the action of thiols is manifested by a decrease in the AgTNPs' localized surface plasmon resonance band and its significant broadening. Spectral changes accompanying the process can be registered using household color-recording devices and even visually. Four thiols differing in their functional groups were tested. It was found that their limits of detection increase in the series cysteamine < 2-mercaptoethanol < cysteine = 3-mercaptopropionic acid and come to 50, 160, 500, and 500 nM, respectively. The applicability of the developed approach was demonstrated during the analysis of pharmaceuticals and food products.
Collapse
Affiliation(s)
- Aleksei Furletov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vladimir Apyari
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Pavel Volkov
- Scientific-Research Institute of Chemical Reagents and Special Purity Chemicals, National Research Center “Kurchatov Institute”, 107076 Moscow, Russia
| | | | | |
Collapse
|
6
|
Banu A, Antony AM, Sasidhar BS, Patil SA, Patil SA. Palladium Nanoparticles Grafted onto Phytochemical Functionalized Biochar: A Sustainable Nanozyme for Colorimetric Sensing of Glucose and Glutathione. Molecules 2023; 28:6676. [PMID: 37764452 PMCID: PMC10537334 DOI: 10.3390/molecules28186676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
The devising and development of numerous enzyme mimics, particularly nanoparticles and nanomaterials (nanozymes), have been sparked by the inherent limitations imposed by natural enzymes. Peroxidase is one of the enzymes that is extensively utilized in commercial, medical, and biological applications because of its outstanding substrate selectivity. Herein, we present palladium nanoparticles grafted on Artocarpus heterophyllus (jackfruit) seed-derived biochar (BC-AHE@Pd) as a novel nanozyme to imitate peroxidase activity en route to the rapid and colorimetric detection of H2O2, exploiting o-phenylenediamine as a peroxidase substrate. The biogenically generated BC-AHE@Pd nanocatalyst was synthesized utilizing Artocarpus heterophyllus seed extract as the reducing agent for nanoparticle formation, while the residue became the source for biochar. Various analytical techniques like FT-IR, GC-MS, FE-SEM, EDS, TEM, SAED pattern, p-XRD, and ICP-OES, were used to characterize the BC-AHE@Pd nanocatalyst. The intrinsic peroxidase-like activity of the BC-AHE@Pd nanocatalyst was extended as a prospective nanosensor for the estimation of the biomolecules glucose and glutathione. Moreover, the BC-AHE@Pd nanocatalyst showed recyclability up to three recycles without any significant loss in activity.
Collapse
Affiliation(s)
- Aakhila Banu
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore 562112, Karnataka, India; (A.B.); (A.M.A.)
| | - Arnet Maria Antony
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore 562112, Karnataka, India; (A.B.); (A.M.A.)
| | - Balappa Somappa Sasidhar
- Chemical Sciences & Technology Division, National Institute for Interdisciplinary Science & Technology (CSIR-NIIST), Thiruvananthapuram 695019, Kerala, India;
| | - Shivaputra A. Patil
- Pharmaceutical Sciences Department, College of Pharmacy, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Siddappa A. Patil
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore 562112, Karnataka, India; (A.B.); (A.M.A.)
| |
Collapse
|
7
|
Arya SS, Dias SB, Jelinek HF, Hadjileontiadis LJ, Pappa AM. The convergence of traditional and digital biomarkers through AI-assisted biosensing: A new era in translational diagnostics? Biosens Bioelectron 2023; 235:115387. [PMID: 37229842 DOI: 10.1016/j.bios.2023.115387] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/11/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
Advances in consumer electronics, alongside the fields of microfluidics and nanotechnology have brought to the fore low-cost wearable/portable smart devices. Although numerous smart devices that track digital biomarkers have been successfully translated from bench-to-bedside, only a few follow the same fate when it comes to track traditional biomarkers. Current practices still involve laboratory-based tests, followed by blood collection, conducted in a clinical setting as they require trained personnel and specialized equipment. In fact, real-time, passive/active and robust sensing of physiological and behavioural data from patients that can feed artificial intelligence (AI)-based models can significantly improve decision-making, diagnosis and treatment at the point-of-procedure, by circumventing conventional methods of sampling, and in person investigation by expert pathologists, who are scarce in developing countries. This review brings together conventional and digital biomarker sensing through portable and autonomous miniaturized devices. We first summarise the technological advances in each field vs the current clinical practices and we conclude by merging the two worlds of traditional and digital biomarkers through AI/ML technologies to improve patient diagnosis and treatment. The fundamental role, limitations and prospects of AI in realizing this potential and enhancing the existing technologies to facilitate the development and clinical translation of "point-of-care" (POC) diagnostics is finally showcased.
Collapse
Affiliation(s)
- Sagar S Arya
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Sofia B Dias
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Interdisciplinary Center for Human Performance, Faculdade de Motricidade Humana, Universidade de Lisboa, Portugal.
| | - Herbert F Jelinek
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, P O Box 127788, Abu Dhabi, United Arab Emirates
| | - Leontios J Hadjileontiadis
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, P O Box 127788, Abu Dhabi, United Arab Emirates; Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, GR, 54124, Thessaloniki, Greece
| | - Anna-Maria Pappa
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, P O Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical Engineering and Biotechnology, Cambridge University, Cambridge, UK.
| |
Collapse
|
8
|
In situ enzymatic generation of Au/Pt nanoparticles as an analytical photometric system: proof of concept determination of tyramine. Mikrochim Acta 2023; 190:114. [PMID: 36877272 PMCID: PMC9988730 DOI: 10.1007/s00604-023-05698-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/23/2023] [Indexed: 03/07/2023]
Abstract
In situ enzymatic generation of bimetallic nanoparticles, mainly Au/Pt, overcomes the drawbacks (continuous absorbance drift, modest LOQ, and long-time reaction) observed when AuNP alone are produced. In this study, Au/Pt nanoparticles have been characterized by EDS, XPS, and HRTEM images using the enzymatic determination of tyramine with tyramine oxidase (TAO) as a model. Under experimental conditions, the Au/Pt NPs show an absorption maximum at 580 nm which can be related to the concentration of tyramine in the range 1.0 × 10-6M to 2.5 × 10-4M with a RSD of 3.4% (n = 5, using 5 × 10-6M tyramine). The Au/Pt system enables low LOQ (1.0 × 10-6 M), high reduction of the absorbance drift, and a significant shortening of the reaction time (i.e., from 30 to 2 min for a [tyramine] = 1 × 10-4M); additionally, a better selectivity is also obtained. The method has been applied to tyramine determination in cured cheese and no significant differences were obtained compared to a reference method (HRP:TMB). The effect of Pt(II) seems to involve the previous reduction of Au(III) to Au(I) and NP generation from this oxidation state. Finally, a three-step (nucleation-growth-aggregation) kinetic model for the generation of NPs is proposed; this has enabled us to obtain a mathematical equation which explains the experimentally observed variation of the absorbance with time.
Collapse
|
9
|
Progress of Endogenous and Exogenous Nanoparticles for Cancer Therapy and Diagnostics. Genes (Basel) 2023; 14:genes14020259. [PMID: 36833186 PMCID: PMC9957423 DOI: 10.3390/genes14020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
The focus of this brief review is to describe the application of nanoparticles, including endogenous nanoparticles (e.g., extracellular vesicles, EVs, and virus capsids) and exogenous nanoparticles (e.g., organic and inorganic materials) in cancer therapy and diagnostics. In this review, we mainly focused on EVs, where a recent study demonstrated that EVs secreted from cancer cells are associated with malignant alterations in cancer. EVs are expected to be used for cancer diagnostics by analyzing their informative cargo. Exogenous nanoparticles are also used in cancer diagnostics as imaging probes because they can be easily functionalized. Nanoparticles are promising targets for drug delivery system (DDS) development and have recently been actively studied. In this review, we introduce nanoparticles as a powerful tool in the field of cancer therapy and diagnostics and discuss issues and future prospects.
Collapse
|