1
|
Liu X, He L, Fan Z, Li B, Zhao Y. Screening and application of aptamers as fluorescent biosensors for selective and sensitive detection of hepatocellular carcinoma and in vivo targeted delivery studies. Mikrochim Acta 2024; 191:689. [PMID: 39436463 DOI: 10.1007/s00604-024-06769-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
The incidence of primary hepatocellular carcinoma (HCC) has recently ranked fifth in the world, and the incidence rate is increasing year by year worldwide. Therefore, early diagnosis is the highest priority in the treatment of HCC. In this paper, four anti-HCC aptamers were obtained using magnetic bead SELEX technology. Among them, Apt-1 had the smallest Kd value(5.9 nM) and the highest affinity. Flow cytometry results showed that the FITC-aptamers only specifically recognized HCC serum. Circular dichronism (CD) spectral characterization showed a positive peak near 275 nm and a negative peak near 250 nm for all aptamers, elucidating that the secondary structure formed by the candidate aptamers was a stem-loop B-DNA structure. In addition, molecular docking simulations showed that the binding of the HCC target to the candidate aptamer sequences was mainly dominated by hydrogen bonding. The results of the aptamer sensing performance analysis showed that under the optimized assay conditions, a linear relationship (ranging from 1 nM to 1 µM) was achieved, with a limit of detection (LOD) down to 0.75 nM and a LOQ of 2.32 nM. This was further validated in clinical samples, with a positive detection rate of more than 90%. Furthermore, aptamer-mediated in vivo delivery of luciferase mRNA showed that Apt-1-luciferase mRNA could be targeted to the liver and hepatic luciferase expression was significantly increased. These results demonstrate that the aptamer paves the way for clinical application, evidencing significant potential to offer reference information for early diagnosis.
Collapse
Affiliation(s)
- Xuyan Liu
- Hebei Center for Ecological and Environmental Geology Research, Hebei GEO University, Shijiazhuang, 050031, China.
| | - Lei He
- School of Chemistry & Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Zhenxing Fan
- Inner Mongolia International Mongolian Medicine Hospital, Hohhot, 010020, China
| | - Baolin Li
- Qinhuangdao First Hospital Affiliated to Hebei Medical University, Qinhuangdao, 066000, China
| | - Yunwang Zhao
- School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, 010020, China.
| |
Collapse
|
2
|
Maleki F, Razmi H, Rashidi MR, Yousefi M, Ramezani S, Ghorbani M. Electrospun EU/HPMC nanofibers decorated by ZIF-8 nanoparticle as the advanced electrochemical biosensor modifier for sensitive and selective detection of c-MET cancer biomarker in human plasma sample. Biosens Bioelectron 2024; 257:116319. [PMID: 38669845 DOI: 10.1016/j.bios.2024.116319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
This research presents a selective and sensitive electrochemical biosensor for the detection of the mesenchymal-epithelial transition factor (c-MET). The biosensing is based on a modification of the SPCE (screen-printed carbon electrode) with the electrospun nanofiber containing eudragit (EU), hydroxypropyl methylcellulose (HPMC), and Zeolite imidazolate frameworks (ZIF-8) nanoparticles. EU/HPMC/ZIF-8 nanofibers have presented a high capability of electron transfer, and more active surface area than bare SPCE due to synergistic effects between EU, HPMC, and ZIF-8. On the other hand, EU/HPMC nanofibers provided high porosity, flexible structures, high specific surface area, and good mechanical strength. The presence of ZIF-8 nanoparticles improved the immobilization of anti-c-MET on the modified SPCE and also resulted in increasing the conductivity. By c-MET incubation on the modified SPCE, c-MET was connected to anti-c-MET, and consequently the electrochemical signal of [Fe(CN)6]3-/4- as the anion redox probe was reduced. In order to investigate the structural and morphological characteristics and elemental composition of electrospun nanofibers, various characterization methods including FE-SEM, XRD, FTIR, and EDS were used. Under optimum conditions with a working potential range -0.3-0.6 V (vs. Ag/AgCl), linear range (LR), correlation coefficient (R2), sensitivity, and limit of detection (LOD) were acquired at 100 fg/mL-100 ng/mL, 0.9985, 53.28 μA/cm2.dec, and 1.28 fg/mL, respectively. Moreover, the mentioned biosensor was investigated in a human plasma sample to determine c-MET and showed ideal results including reproducibility, stability, and good selectivity against other proteins.
Collapse
Affiliation(s)
- Fatemeh Maleki
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, 53714-161, Tabriz, Iran
| | - Habib Razmi
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, 53714-161, Tabriz, Iran.
| | | | - Mehdi Yousefi
- Department of Immunology, School of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Soghra Ramezani
- Faculty of Textile Engineering, Urmia University of Technology, Urmia 5716693188, Iran
| | - Marjan Ghorbani
- Iran Polymer and Petrochemical Institute, PO Box:14965/115, Tehran, Iran.
| |
Collapse
|
3
|
Mahmoudi-Maleki R, Majidi MR, Sohrabi H, Mahmoudi E, Fooladvand H, Coruh A, Niaei A. Exploring the potential of SrTi 0.7Fe 0.3O 3 perovskite/Chitosan nanosheets for the development of a label-free electrochemical sensing assay for determination of naproxen in human plasma samples. Anal Biochem 2024; 690:115513. [PMID: 38531530 DOI: 10.1016/j.ab.2024.115513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/09/2024] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
Naproxen is a nonsteroidal anti-inflammatory drug used to treat nonrheumatic inflammation, migraine, and gout. Therefore, the determination of naproxen in pharmaceutical and biological samples is of particular importance. In the present work, SrTi0.7Fe0.3O3 perovskite/Chitosan nanosheets were used to modify the surface of a glassy carbon electrode (GCE) for highly sensitive determination of naproxen. To ensure the successful synthesis of the perovskite nanosheets, morphological studies including scanning electron microscopy (SEM), Energy-dispersive X-ray (EDX), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) were carried out. The electrochemical investigations of naproxen on the modified surface of GCE were investigated and the limit of detection (LOD) and limit of quantification (LOQ) were acquired 0.50 and 1.67 μM, respectively. Additionally, the linear range (LR) of 1.99-130.84 μM was obtained for the oxidation of naproxen. The obtained results have been proved that the mentioned method is simple, sensitive, and specific with a short analysis time. The dominant analytical features of the designed sensor are possessing a low detection limit, excellent stability, repeatability, and high selectivity in the presence of naproxen. For investigation of the applicability of the designed assay in real sample analysis, human plasma samples have been examined and a recovery index was acquired 95%.
Collapse
Affiliation(s)
| | - Mir Reza Majidi
- Department of Analytical Chemistry, University of Tabriz, Tabriz, 51666 16471, Iran.
| | - Hessamaddin Sohrabi
- Department of Analytical Chemistry, University of Tabriz, Tabriz, 51666 16471, Iran.
| | - Elham Mahmoudi
- Catalyst and Reactor Research Lab., Department of Chemical & Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Homa Fooladvand
- Department of Analytical Chemistry, University of Tabriz, Tabriz, 51666 16471, Iran
| | - Ali Coruh
- Department of Physics, Sakarya University, Sakarya, Turkey
| | - Aligholi Niaei
- Catalyst and Reactor Research Lab., Department of Chemical & Petroleum Engineering, University of Tabriz, Tabriz, Iran; Department of Physics, Sakarya University, Sakarya, Turkey
| |
Collapse
|
4
|
Mokni M, Tlili A, Khalij Y, Attia G, Zerrouki C, Hmida W, Othmane A, Bouslama A, Omezzine A, Fourati N. Designing a Simple Electrochemical Genosensor for the Detection of Urinary PCA3, a Prostate Cancer Biomarker. MICROMACHINES 2024; 15:602. [PMID: 38793175 PMCID: PMC11123437 DOI: 10.3390/mi15050602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024]
Abstract
This study investigates the feasibility of a simple electrochemical detection of Prostate Cancer Antigen 3 (PCA3) fragments extracted from patients' urine, using a thiolated single-strand DNA probe immobilized on a gold surface without using a redox probe. To enhance the PCA3 recognition process, we conducted a comparative analysis of the hybridization location using two thiolated DNA probes: Probe 1 targets the first 40 bases, while Probe 2 targets the fragment from bases 47 to 86. Hybridization with PCA3 followed, using square wave voltammetry. The limit of detection of the designed genosenors were of the order of (2.2 ng/mL), and (1.6 ng/mL) for Probes 1 and 2, respectively, and the subsequent sensitivities were of the order of (0.09 ± 0.01) µA-1 · µg-1 · mL and (0.10 ± 0.01) µA-1 · µg-1 · mL. Specificity tests were then conducted with the sensor functionalized with Probe 2, as it presents better analytical performances. The electrochemical results indicate that the designed sensor can clearly discriminate a complementary target from a non-complementary one. A further modeling of the calibration curves with the Power Law/Hill model indicates that the dissociation constant increases by one order of magnitude, confirming the ability of the designed sensor to perfectly discriminate complementary targets from non-complementary ones.
Collapse
Affiliation(s)
- Meriem Mokni
- SATIE Laboratory, UMR CNRS 8029, Cnam, 292 rue Saint Martin, 75003 Paris, France; (M.M.); (A.T.); (G.A.); (C.Z.)
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Route Ceinture Sahloul, Sousse 4054, Tunisia; (Y.K.); (A.B.); (A.O.)
| | - Amal Tlili
- SATIE Laboratory, UMR CNRS 8029, Cnam, 292 rue Saint Martin, 75003 Paris, France; (M.M.); (A.T.); (G.A.); (C.Z.)
- LIMA Laboratory, Faculty of Medicine of Monastir, University of Monastir, Avenue Avicenne, Monastir 5019, Tunisia;
| | - Yassine Khalij
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Route Ceinture Sahloul, Sousse 4054, Tunisia; (Y.K.); (A.B.); (A.O.)
| | - Ghada Attia
- SATIE Laboratory, UMR CNRS 8029, Cnam, 292 rue Saint Martin, 75003 Paris, France; (M.M.); (A.T.); (G.A.); (C.Z.)
| | - Chouki Zerrouki
- SATIE Laboratory, UMR CNRS 8029, Cnam, 292 rue Saint Martin, 75003 Paris, France; (M.M.); (A.T.); (G.A.); (C.Z.)
| | - Wissem Hmida
- Sahloul University Hospital, Urology Department, Street Route Ceinture Sahloul, Sousse 4054, Tunisia;
| | - Ali Othmane
- LIMA Laboratory, Faculty of Medicine of Monastir, University of Monastir, Avenue Avicenne, Monastir 5019, Tunisia;
| | - Ali Bouslama
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Route Ceinture Sahloul, Sousse 4054, Tunisia; (Y.K.); (A.B.); (A.O.)
- Faculty of Pharmacy of Monastir, University of Monastir, Avenue Ibn Sina, Monastir 5000, Tunisia
| | - Asma Omezzine
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Route Ceinture Sahloul, Sousse 4054, Tunisia; (Y.K.); (A.B.); (A.O.)
- Faculty of Pharmacy of Monastir, University of Monastir, Avenue Ibn Sina, Monastir 5000, Tunisia
| | - Najla Fourati
- SATIE Laboratory, UMR CNRS 8029, Cnam, 292 rue Saint Martin, 75003 Paris, France; (M.M.); (A.T.); (G.A.); (C.Z.)
| |
Collapse
|
5
|
Nazari-Vanani R, Negahdary M. Recent advances in electrochemical aptasensors and genosensors for the detection of pathogens. ENVIRONMENTAL RESEARCH 2024; 243:117850. [PMID: 38081349 DOI: 10.1016/j.envres.2023.117850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
In recent years, pathogenic microorganisms have caused significant mortality rates and antibiotic resistance and triggered exorbitant healthcare costs. These pathogens often have high transmission rates within human populations. Rapid diagnosis is crucial in controlling and reducing the spread of pathogenic infections. The diagnostic methods currently used against individuals infected with these pathogens include relying on outward symptoms, immunological-based and, some biomolecular ones, which mainly have limitations such as diagnostic errors, time-consuming processes, and high-cost platforms. Electrochemical aptasensors and genosensors have emerged as promising diagnostic tools for rapid, accurate, and cost-effective pathogen detection. These bio-electrochemical platforms have been optimized for diagnostic purposes by incorporating advanced materials (mainly nanomaterials), biomolecular technologies, and innovative designs. This review classifies electrochemical aptasensors and genosensors developed between 2021 and 2023 based on their use of different nanomaterials, such as gold-based, carbon-based, and others that employed other innovative assemblies without the use of nanomaterials. Inspecting the diagnostic features of various sensing platforms against pathogenic analytes can identify research gaps and open new avenues for exploration.
Collapse
Affiliation(s)
- Razieh Nazari-Vanani
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Negahdary
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000, Brazil.
| |
Collapse
|
6
|
Maleki F, Rashidi MR, Razmi H, Ghorbani M. Label-free electrochemical immunosensor for detection of insulin-like growth factor-1 (IGF-1) using a specific monoclonal receptor on electrospun Zein-based nanofibers/rGO-modified electrode. Talanta 2023; 265:124844. [PMID: 37352780 DOI: 10.1016/j.talanta.2023.124844] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
A novel electrochemical immunosensor was developed for ultrasensitive determination of the hormone insulin-like growth factor 1 (IGF-1) based on immobilization of a specific monoclonal antibody on the electrospun nanofibers of Polyacrylonitrile (PAN)/Zein-reduced graphene oxide (rGO) nanoparticle. The nanofibers deposited on glassy carbon electrode (GCE) showed good electrochemical behaviors with synergistic effects between PAN, Zein, and rGO. PAN/Zein nanofibers were used due to flexibility, high porosity, good mechanical strength, high specific surface area, and flexible structures, while rGO nanoparticles were used to improve the detection sensitivity and anti-IGF-1 immobilizing. Different characterization techniques were applied consisting of FE-SEM, FT-IR, and EDS for the investigation of morphological features and nanofiber size. The redox reactions of [Fe(CN)6]4-/3- on the modified electrode surface were probed for studying the immobilization and determination processes, using differential pulse voltammetry (DPV) and cyclic voltammetry (CV). Under optimal conditions, LOD (limit of detection) and LOQ (limit of quantification) were obtained as 55.72 fg/mL and 185.73 fg/mL respectively, and sensitivity was acquired 136.29 μA/cm2.dec. Moreover, a wide linear range was obtained ranging from 1 pg/mL to 10 ng/mL for IGF-1. Furthermore, the proposed method was applied for the analysis of IGF-1 in several human plasma samples with acceptable results, and it also exhibited high selectivity, stability, and reproducibility.
Collapse
Affiliation(s)
- Fatemeh Maleki
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, 53714-161, Tabriz, Iran
| | | | - Habib Razmi
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, 53714-161, Tabriz, Iran.
| | - Marjan Ghorbani
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Ficek M, Cieślik M, Janik M, Brodowski M, Sawczak M, Bogdanowicz R, Ryl J. Boron-doped diamond nanosheet volume-enriched screen-printed carbon electrodes: a platform for electroanalytical and impedimetric biosensor applications. Mikrochim Acta 2023; 190:410. [PMID: 37736868 PMCID: PMC10516795 DOI: 10.1007/s00604-023-05991-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023]
Abstract
This paper focuses on the development of a novel electrode based on boron-doped diamond nanosheet full-volume-enriched screen-printed carbon electrodes (BDDPE) for use as an impedimetric biosensor. Impedimetric biosensors offer high sensitivity and selectivity for virus detection, but their use as point-of-care devices is limited by the complexity of nanomaterials' architecture and the receptor immobilisation procedures. The study presents a two-step modification process involving the electroreduction of diazonium salt at the BDDPE and the immobilisation of antibodies using zero-length cross-linkers for a selective impedimetric biosensor of Haemophilus influenzae (Hi). The incorporation of diamond nanosheets into BDDPE leads to enhanced charge transfer and electrochemical behaviour, demonstrating greatly improved electrochemically active surface area compared with unmodified screen-printed electrodes (by 44% and 10% on average for [Ru(NH3)6]Cl2 and K3[Fe(CN)6], respectively). The presented sensing system shows high specificity towards protein D in Hi bacteria, as confirmed by negative controls against potential interference from other pathogens, with an estimated tolerance limit for interference under 12%. The Hi limit of detection by electrochemical impedance spectroscopy was 1 CFU/mL (measured at - 0.13 V vs BDDPE pseudo-reference), which was achieved in under 10 min, including 5 min sample incubation in the presence of the analyte.
Collapse
Affiliation(s)
- Mateusz Ficek
- Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Mateusz Cieślik
- Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
- Department of Analytical Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Monika Janik
- Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
- Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
| | - Mateusz Brodowski
- Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Mirosław Sawczak
- Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, Gdańsk, Poland
| | - Robert Bogdanowicz
- Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland.
| | - Jacek Ryl
- Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland.
| |
Collapse
|