1
|
Yu L, Song Y, Bi J, Gao Y, Jiang C, Yang Z, Qi H, Yu H, Yang W, Gong Q, Shi C, Wang M. Exploring the potent hydrolytic activity of chitosan-cerium complex microspheres resin for organophosphorus pesticide degradation. Heliyon 2024; 10:e33642. [PMID: 39027539 PMCID: PMC11255554 DOI: 10.1016/j.heliyon.2024.e33642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024] Open
Abstract
Chitosan is a biocompatible, non-toxic and renewable natural basic polysaccharide that can be cross-linked and reacted with Ce(IV) to form a physiologically active chitosan-Ce(IV) complex. To investigate this novel complex and its potential to hydrolyze phosphate ester bonds, chitosan-cerium complex microspheres resin (CS-CCMR) was prepared from chitosan and ceric ammonium nitrate by reversed-phase suspension cross-linking polymerization. CS-CCMR was characterized, its ability to hydrolyze disodium p-nitrobenzene phosphate (PNPP2Na) and organophosphorus pesticides was investigated, and the hydrolytic mechanism was explored. CS-CCMR was composed of dark yellow microspheres with smooth surfaces and dense pores. It was found that CS-CCMR contained 4.507 mg/g Ce(IV), indicating that coordination polymerization between Ce(IV) and chitosan was successful. The presence of Ce(IV) in CS-CCMR was confirmed by multiple analytical methods and it was found that coordination of Ce(IV) by chitosan was mediated by the nitrogen atom of the amino group and the oxygen atom of the hydroxyl group of chitosan. It was shown that CS-CCMR efficiently hydrolyzed the phosphate ester bonds of PNPP2Na and five organophosphorus pesticides. Hydrolysis of PNPP2Na is potentially accomplished by charge neutralization and nucleophilic substitution. The mechanism of parathion degradation by CS-CCMR involves modification of the nitro group to give aminoparathion, followed by cleavage of the P-O bond to generate diazinphos. Consequently, the novel chitosan-Ce(IV) complex exhibits great efficiency for hydrolysis of phosphate ester bonds and CS-CCMR is expected to be developed as an agent to reduce the possibility of contamination of fruit and vegetable drinks by organophosphorus pesticides.
Collapse
Affiliation(s)
- Lina Yu
- Shandong Peanut Research Institute, Qingdao, 266100, PR China
| | - Yu Song
- Shandong Peanut Research Institute, Qingdao, 266100, PR China
| | - Jie Bi
- Shandong Peanut Research Institute, Qingdao, 266100, PR China
| | - Yuan Gao
- Shandong Peanut Research Institute, Qingdao, 266100, PR China
| | - Chen Jiang
- Shandong Peanut Research Institute, Qingdao, 266100, PR China
| | - Zhen Yang
- Shandong Peanut Research Institute, Qingdao, 266100, PR China
| | - Hongtao Qi
- College of Life Sciences, Qingdao University, Qingdao, 266071, PR China
| | - Honghua Yu
- Shandong Innovation and Entrepreneurship Community of Science and Technology Special Commissioner, Jinan, 250000, PR China
| | - Weiqiang Yang
- Shandong Peanut Research Institute, Qingdao, 266100, PR China
| | - Qingxuan Gong
- Shandong Peanut Research Institute, Qingdao, 266100, PR China
| | - Chengren Shi
- Shandong Peanut Research Institute, Qingdao, 266100, PR China
| | - Mingqing Wang
- Shandong Peanut Research Institute, Qingdao, 266100, PR China
| |
Collapse
|
2
|
Hou J, Wang J, Han J, Wang J, Chao D, Dong Q, Fan D, Dong S. An intelligent ratiometric fluorescent assay based on MOF nanozyme-mediated tandem catalysis that guided by contrary logic circuit for highly sensitive sarcosine detection and smartphone-based portable sensing application. Biosens Bioelectron 2024; 249:116035. [PMID: 38244294 DOI: 10.1016/j.bios.2024.116035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/31/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
As the well-known test-indicator for early prostate cancer (PCa), sarcosine (SA) is closely related to the differential pathological process, which makes its accurate determination increasingly significant. Herein, we for the first time expanded the peroxidase (POD)-like property of facile-synthesized Zn-TCPP(Fe) MOF to fluorescent substrates and exploited it to ratiometric fluorescent (RF) sensing. By harnessing the effective catalytic oxidation of MOF nanozyme toward two fluorescent substrates (Scopoletin, SC; Amplex Red, AR) with contrary changes, and target-responsive (SA + SOx)/MOF/(SC + AR) tandem catalytic reaction, we constructed the first MOF nanozyme-based RF sensor for the quantitative determination of SA. Superior to previous works, the operation of this RF sensor is under the guidance of AND-(AND^NAND) contrary logic circuit. The dual-channel binary output changes (from 1/0 to 0/1) not only enable the intelligent logical recognition of SA, bringing strengthened reliability and accuracy, but also manifest the proof-of-concept discrimination of PCa individuals and healthy ones. Through recording the fluorescence alterations of SC (F465) and AR (F585), two segments of linear relationships between ratiometric values (F585/F465) and varied contents of SA are realized successfully. The LOD for SA could reach to as low as 39.98 nM, which outperforms all nanozyme-originated SA sensors reported till now. Moreover, this sensor also demonstrates high selectivity and satisfactory performance in human serum samples. Furthermore, the portable sensing of SA is realized under the assistance of smartphone-based RGB analysis, demonstrating the potential of point-of-care diagnostics of PCa in the future.
Collapse
Affiliation(s)
- Jingyu Hou
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Jun Wang
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Jiawen Han
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Juan Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; Intelligent Wearable Engineering Research Center of Qingdao, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Daiyong Chao
- Shandong Second Medical University, Weifang, 261053, China
| | - Qing Dong
- Shandong Second Medical University, Weifang, 261053, China
| | - Daoqing Fan
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
3
|
Wang R, Du Y, Fu Y, Guo Y, Gao X, Guo X, Wei J, Yang Y. Ceria-Based Nanozymes in Point-of-Care Diagnosis: An Emerging Futuristic Approach for Biosensing. ACS Sens 2023; 8:4442-4467. [PMID: 38091479 DOI: 10.1021/acssensors.3c01692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
In recent years, there has been a notable increase in interest surrounding nanozymes due to their ability to imitate the functions and address the limitations of natural enzymes. The scientific community has been greatly intrigued by the study of nanoceria, primarily because of their distinctive physicochemical characteristics, which include a variety of enzyme-like activities, affordability, exceptional stability, and the ability to easily modify their surfaces. Consequently, nanoceria have found extensive use in various biosensing applications. However, the impact of its redox activity on the enzymatic catalytic mechanism remains a subject of debate, as conflicting findings in the literature have presented both pro-oxidant and antioxidant effects. Herein, we creatively propose a seesaw model to clarify the regulatory mechanism on redox balance and survey possible mechanisms of multienzyme mimetic properties of nanoceria. In addition, this review aims to showcase the latest advancements in this field by systematically discussing over 180 research articles elucidating the significance of ceria-based nanozymes in enhancing, downsizing, and enhancing the efficacy of point-of-care (POC) diagnostics. These advancements align with the ASSURED criteria established by the World Health Organization (WHO). Furthermore, this review also examines potential constraints in order to offer readers a concise overview of the emerging role of nanoceria in the advancement of POC diagnostic systems for future biosensing applications.
Collapse
Affiliation(s)
- Ruixue Wang
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, P. R. China
| | - Yuanyuan Du
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, P. R. China
| | - Ying Fu
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, P. R. China
| | - Yingxin Guo
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, P. R. China
| | - Xing Gao
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, P. R. China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, P. R. China
| | - Jingjing Wei
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250200, P. R. China
| | - Yanzhao Yang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250200, P. R. China
| |
Collapse
|