1
|
Ricci A, Rubino E, Serra GP, Wallén-Mackenzie Å. Concerning neuromodulation as treatment of neurological and neuropsychiatric disorder: Insights gained from selective targeting of the subthalamic nucleus, para-subthalamic nucleus and zona incerta in rodents. Neuropharmacology 2024; 256:110003. [PMID: 38789078 DOI: 10.1016/j.neuropharm.2024.110003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/26/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Neuromodulation such as deep brain stimulation (DBS) is advancing as a clinical intervention in several neurological and neuropsychiatric disorders, including Parkinson's disease, dystonia, tremor, and obsessive-compulsive disorder (OCD) for which DBS is already applied to alleviate severely afflicted individuals of symptoms. Tourette syndrome and drug addiction are two additional disorders for which DBS is in trial or proposed as treatment. However, some major remaining obstacles prevent this intervention from reaching its full therapeutic potential. Side-effects have been reported, and not all DBS-treated individuals are relieved of their symptoms. One major target area for DBS electrodes is the subthalamic nucleus (STN) which plays important roles in motor, affective and associative functions, with impact on for example movement, motivation, impulsivity, compulsivity, as well as both reward and aversion. The multifunctionality of the STN is complex. Decoding the anatomical-functional organization of the STN could enhance strategic targeting in human patients. The STN is located in close proximity to zona incerta (ZI) and the para-subthalamic nucleus (pSTN). Together, the STN, pSTN and ZI form a highly heterogeneous and clinically important brain area. Rodent-based experimental studies, including opto- and chemogenetics as well as viral-genetic tract tracings, provide unique insight into complex neuronal circuitries and their impact on behavior with high spatial and temporal precision. This research field has advanced tremendously over the past few years. Here, we provide an inclusive review of current literature in the pre-clinical research fields centered around STN, pSTN and ZI in laboratory mice and rats; the three highly heterogeneous and enigmatic structures brought together in the context of relevance for treatment strategies. Specific emphasis is placed on methods of manipulation and behavioral impact.
Collapse
Affiliation(s)
- Alessia Ricci
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Eleonora Rubino
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Gian Pietro Serra
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Åsa Wallén-Mackenzie
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
2
|
Kondapavulur S, Silva AB, Wang DD. Ventral Intermediate Nucleus of the Thalamus versus Posterior Subthalamic Area: Network Meta-Analysis of DBS Target Site Efficacy for Essential Tremor. Stereotact Funct Neurosurg 2022; 100:224-235. [PMID: 35350022 DOI: 10.1159/000522573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/03/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Deep brain stimulation (DBS) targeting the ventral intermediate nucleus (Vim) of the thalamus or the posterior subthalamic area (PSA) are effective treatments for essential tremor (ET). However, their relative efficacy is unknown. OBJECTIVE Here, we present the first systematic review and network meta-analysis, examining the efficacy of Vim versus PSA DBS for treating medically refractory ET. METHODS We included all primary studies that reported validated Fahn-Tolosa-Marin Tremor Rating Scale (FTM-TRS) scores pre-/postimplantation or on-/off-stimulation postimplantation, for patients receiving either Vim or PSA DBS. The primary outcome was FTM-TRS score reduction; the secondary outcome was percent reduction in score. We categorized all outcomes as short-term (≤12 months) or long-term (>12 months). RESULTS For pre-/postimplantation comparisons, 19 and 11 studies met inclusion criteria for short- and long-term follow-ups, respectively. For on-/off-stimulation tremor score comparisons, 8 studies met inclusion criteria for short-term follow-up. Network meta-analysis of pre-/postimplantation tremor scores showed greater tremor reduction with PSA implantation short-term (absolute tremor reduction: PSA: -30.94 [95% confidence interval (CI): -34.93, -26.95]; Vim: -26.26 [95% CI: -33.39, -19.12]; relative tremor reduction: PSA: 63.3% [95% CI: 61.8%-64.8%]; Vim: 57.8% [95% CI: 56.5%-59.0%]). However, there was no difference in efficacy between PSA and Vim DBS when comparing tremor on-versus off-stimulation at short-term follow-up or pre- versus postimplantation tremor reduction long-term. CONCLUSION Our systematic review highlighted both heterogeneity in scoring systems used and lack of transparency in reporting total scores, limiting direct comparison across studies. We found a modestly superior efficacy with PSA stimulation in the short term, but no difference in tremor reduction long-term.
Collapse
Affiliation(s)
- Sravani Kondapavulur
- Department of Neurological Surgery, UCSF, San Francisco, California, USA.,Medical Scientist Training Program, UCSF, San Francisco, California, USA
| | - Alexander B Silva
- Department of Neurological Surgery, UCSF, San Francisco, California, USA.,Medical Scientist Training Program, UCSF, San Francisco, California, USA
| | - Doris D Wang
- Department of Neurological Surgery, UCSF, San Francisco, California, USA
| |
Collapse
|
3
|
Tuleasca C, Witjas T, Levivier M, Girard N, Cretol A, Levy N, Thiran JP, Guedj E, Van de Ville D, Régis J. The Brain Connectome after Gamma Knife Radiosurgery of the Ventro-Intermediate Nucleus for Tremor: Marseille-Lausanne Radiobiology Study Protocol. Stereotact Funct Neurosurg 2021; 99:387-392. [PMID: 33684913 DOI: 10.1159/000514066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 12/10/2020] [Indexed: 11/19/2022]
Abstract
Essential tremor (ET) is the most common movement disorder. Deep brain stimulation is the current gold standard for drug-resistant tremor, followed by radiofrequency lesioning. Stereotactic radiosurgery by Gamma Knife (GK) is considered as a minimally invasive alternative. The majority of procedures aim at the same target, thalamic ventro-intermediate nucleus (Vim). The primary aim is to assess the clinical response in relationship to neuroimaging changes, both at structural and functional level. All GK treatments are uniformly performed in our center using Guiot's targeting and a radiation dose of 130 Gy. MR neuroimaging protocol includes structural imaging (T1-weighted and diffusion-weighted imaging [DWI]), resting-state functional MRI, and 18F-fluorodeoxyglucose-positron emission tomography. Neuroimaging changes are studied both at the level of the cerebello-thalamo-cortical tract (using the prior hypothesis based upon Vim's circuitry: motor cortex, ipsilateral Vim, and contralateral cerebellar dentate nucleus) and also at global brain level (no prior hypothesis). This protocol aims at using modern neuroimaging techniques for studying Vim GK radiobiology for tremor, in relationship to clinical effects, particularly in ET patients. In perspective, using such an approach, patient selection could be based upon a specific brain connectome profile.
Collapse
Affiliation(s)
- Constantin Tuleasca
- Centre Hospitalier Universitaire Vaudois (CHUV), Neurosurgery Service and Gamma Knife Center, Lausanne, Switzerland, .,University of Lausanne (Unil), Faculty of Biology and Medicine (FBM), Lausanne, Switzerland, .,Signal Processing Laboratory (LTS 5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland,
| | | | - Marc Levivier
- Centre Hospitalier Universitaire Vaudois (CHUV), Neurosurgery Service and Gamma Knife Center, Lausanne, Switzerland.,University of Lausanne (Unil), Faculty of Biology and Medicine (FBM), Lausanne, Switzerland
| | - Nadine Girard
- Department of Diagnostic and Interventional Neuroradiology, AMU, CRMBM UMR CNRS 7339, Faculté de Médecine et APHM, Hopital Timone, Marseille, France
| | - Axelle Cretol
- Stereotactic and Functional Neurosurgery Service and Gamma Knife Unit, CHU Timone, Marseille, France
| | - Nicolas Levy
- Département de Génétique Médicale, APHM, Hôpital la Timone, Marseille, France
| | - Jean-Philippe Thiran
- Signal Processing Laboratory (LTS 5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Eric Guedj
- Département de Médecine Nucléaire, APHM, Hôpital la Timone, Aix-Marseille Université, CNRS, Ecole Centrale Marseille, UMR 7249, Institut Fresnel, Marseille, France
| | - Dimitri Van de Ville
- Medical Image Processing Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,University of Geneva, Faculty of Medicine, Lausanne, Switzerland
| | - Jean Régis
- Stereotactic and Functional Neurosurgery Service and Gamma Knife Unit, CHU Timone, Marseille, France
| |
Collapse
|
4
|
Giordano M, Caccavella VM, Zaed I, Foglia Manzillo L, Montano N, Olivi A, Polli FM. Comparison between deep brain stimulation and magnetic resonance-guided focused ultrasound in the treatment of essential tremor: a systematic review and pooled analysis of functional outcomes. J Neurol Neurosurg Psychiatry 2020; 91:1270-1278. [PMID: 33055140 DOI: 10.1136/jnnp-2020-323216] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/22/2020] [Accepted: 09/09/2020] [Indexed: 01/01/2023]
Abstract
The current gold standard surgical treatment for medication-resistant essential tremor (ET) is deep brain stimulation (DBS). However, recent advances in technologies have led to the development of incisionless techniques, such as magnetic resonance-guided focused ultrasound (MRgFUS) thalamotomy. The authors perform a systematic review according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement to compare unilateral MRgFUS thalamotomy to unilateral and bilateral DBS in the treatment of ET in terms of tremor severity and quality of life improvement. PubMed, Cochrane Database of Systematic Reviews, Cochrane Central Register of Controlled Trials and SCOPUS databases were searched. 45 eligible articles, published between 1990 and 2019, were retrieved. 1202 patients were treated with DBS and 477 were treated with MRgFUS thalamotomy. Postoperative tremor improvement was greater following DBS than MRgFUS thalamotomy (p<0.001). A subgroup analysis was carried out stratifying by treatment laterality: bilateral DBS was significantly superior to both MRgFUS and unilateral DBS (p<0.001), but no significant difference was recorded between MRgFUS and unilateral DBS (p<0.198). Postoperative quality of life improvement was significantly greater following MRgFUS thalamotomy than DBS (p<0.001). Complications were differently distributed among the two groups (p<0.001). Persistent complications were significantly more common in the MRgFUS group (p=0.042). While bilateral DBS proves superior to unilateral MRgFUS thalamotomy in the treatment of ET, a subgroup analysis suggests that treatment laterality is the most significant determinant of tremor improvement, thus highlighting the importance of future investigations on bilateral staged MRgFUS thalamotomy.
Collapse
Affiliation(s)
- Martina Giordano
- Department of Neurosurgery, University Hospital Agostino Gemelli, Roma, Italy
| | | | - Ismail Zaed
- Department of Neurosurgery, Humanitas Clinical and Research Center, Rozzano, Italy
| | | | - Nicola Montano
- Department of Neurosurgery, University Hospital Agostino Gemelli, Roma, Italy
| | - Alessandro Olivi
- Department of Neurosurgery, University Hospital Agostino Gemelli, Roma, Italy
| | - Filippo Maria Polli
- Department of Neurosurgery, University Hospital Agostino Gemelli, Roma, Italy
| |
Collapse
|
5
|
Krüger MT, Avecillas-Chasin JM, Tamber MS, Heran MKS, Sandhu MK, Polyhronopoulos NE, Sarai N, Honey CR. Tremor and Quality of Life in Patients With Advanced Essential Tremor Before and After Replacing Their Standard Deep Brain Stimulation With a Directional System. Neuromodulation 2020; 24:353-360. [PMID: 33098185 DOI: 10.1111/ner.13301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/07/2020] [Accepted: 10/05/2020] [Indexed: 12/01/2022]
Abstract
OBJECTIVES Patients with essential tremor treated with thalamic deep brain stimulation may experience increased tremor with the progression of their disease. Initially, this can be counteracted with increased stimulation. Eventually, this may cause unwanted side-effects as the circumferential stimulation from a standard ring contact spreads into adjacent regions. Directional leads may offer a solution to this clinical problem. We aimed to compare the ability of a standard and a directional system to reduce tremor without side-effects and to improve the quality of life for patients with advanced essential tremor. MATERIALS AND METHODS Six advanced essential tremor patients with bilateral thalamic deep brain stimulation had their standard system replaced with a directional system. Tremor rating scale scores were prospectively evaluated before and after the replacement surgery. Secondary analyses of quality of life related to tremor, voice, and general health were assessed. RESULTS There was a significantly greater reduction in tremor without side-effects (p = 0.017) when using the directional system. There were improvements in tremor (p = 0.031) and voice (p = 0.037) related quality of life but not in general health for patients using optimized stimulation settings with the directional system compared to the standard system. CONCLUSIONS In this cohort of advanced essential tremor patients who no longer had ideal tremor reduction with a standard system, replacing their deep brain stimulation with a directional system significantly improved their tremor and quality of life. Up-front implantation of directional deep brain stimulation leads may provide better tremor control in those patients who progress at a later time point.
Collapse
Affiliation(s)
- Marie T Krüger
- Division of Neurosurgery, University of British Columbia, Vancouver, BC, Canada.,Department of Neurosurgery, Cantonal Hospital St.Gallen, St.Gallen, Switzerland.,Department of Stereotactic and Functional Neurosurgery, University Medical Clinic Freiburg, Freiburg, Germany
| | - Josue M Avecillas-Chasin
- Division of Neurosurgery, University of British Columbia, Vancouver, BC, Canada.,Department of Neurosurgery, Cleveland Clinic, Neurological Institute, Cleveland, OH, USA
| | - Mandeep S Tamber
- Department of Surgery, Division of Pediatric Neurosurgery, University of British Columbia, Vancouver, BC, Canada
| | - Manraj K S Heran
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Mini K Sandhu
- Division of Neurosurgery, University of British Columbia, Vancouver, BC, Canada
| | | | - Natasha Sarai
- Division of Neurosurgery, University of British Columbia, Vancouver, BC, Canada
| | - Christopher R Honey
- Division of Neurosurgery, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Abstract
Essential tremor is one of the most common tremor syndromes. According to the recent tremor classification, tremor as a symptom is defined as an involuntary, rhythmic, oscillatory movement of a body part and is classified along two axes: axis 1-defining syndromes based on the clinical features such as historical features, tremor characteristics, associated signs, and laboratory tests; and axis 2-classifying the etiology (Bhatia et al., Mov Disord 33:75-87, 2018). The management of this condition has two major approaches. The first is to exclude treatable etiologies, as particularly during the onset of this condition the presentation of a variety of etiologies can be with monosymptomatic tremor. Once the few etiologies with causal treatments are excluded, all further treatment is symptomatic. Shared decision-making with enabling the patient to knowledgeably choose treatment options is needed to customize the management. Mild to moderate tremor severity can sometimes be controlled with occupational treatment, speech therapy of psychotherapy, or adaptation of coping strategy. First-line pharmacological treatments include symptomatic treatment with propranolol, primidone, and topiramate. Botulinum toxin is for selected cases. Invasive treatments for essential tremor should be considered for severe tremors. They are generally accepted as the most powerful interventions and provide not only improvement of tremor but also a significant improvement of life quality. The current standard is deep brain stimulation (DBS) of the thalamic and subthalamic region. Focused ultrasound thalamotomy is a new therapy attracting increasing interest. Radiofrequency lesioning is only rarely done if DBS or focused ultrasound is not possible. Radiosurgery is not well established. We present our treatment algorithm.
Collapse
Affiliation(s)
- Franziska Hopfner
- Department of Neurology, UKSH, Christian-Albrechts-University Kiel, Rosalind-Fraenklinstr. 10, 24105, Kiel, Germany
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Günther Deuschl
- Department of Neurology, UKSH, Christian-Albrechts-University Kiel, Rosalind-Fraenklinstr. 10, 24105, Kiel, Germany.
| |
Collapse
|
7
|
Slopsema JP, Canna A, Uchenik M, Lehto LJ, Krieg J, Wilmerding L, Koski DM, Kobayashi N, Dao J, Blumenfeld M, Filip P, Min HK, Mangia S, Johnson MD, Michaeli S. Orientation-selective and directional deep brain stimulation in swine assessed by functional MRI at 3T. Neuroimage 2020; 224:117357. [PMID: 32916285 PMCID: PMC7783780 DOI: 10.1016/j.neuroimage.2020.117357] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 12/16/2022] Open
Abstract
Functional MRI (fMRI) has become an important tool for probing network-level effects of deep brain stimulation (DBS). Previous DBS-fMRI studies have shown that electrical stimulation of the ventrolateral (VL) thalamus can modulate sensorimotor cortices in a frequency and amplitude dependent manner. Here, we investigated, using a swine animal model, how the direction and orientation of the electric field, induced by VL-thalamus DBS, affects activity in the sensorimotor cortex. Adult swine underwent implantation of a novel 16-electrode (4 rows × 4 columns) directional DBS lead in the VL thalamus. A within-subject design was used to compare fMRI responses for (1) directional stimulation consisting of monopolar stimulation in four radial directions around the DBS lead, and (2) orientation-selective stimulation where an electric field dipole was rotated 0°−360° around a quadrangle of electrodes. Functional responses were quantified in the premotor, primary motor, and somatosensory cortices. High frequency electrical stimulation through leads implanted in the VL thalamus induced directional tuning in cortical response patterns to varying degrees depending on DBS lead position. Orientation-selective stimulation showed maximal functional response when the electric field was oriented approximately parallel to the DBS lead, which is consistent with known axonal orientations of the cortico-thalamocortical pathway. These results demonstrate that directional and orientation-selective stimulation paradigms in the VL thalamus can tune network-level modulation patterns in the sensorimotor cortex, which may have translational utility in improving functional outcomes of DBS therapy.
Collapse
Affiliation(s)
| | - Antonietta Canna
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota
| | | | - Lauri J Lehto
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota
| | - Jordan Krieg
- Department of Biomedical Engineering, University of Minnesota
| | | | - Dee M Koski
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota
| | - Naoharu Kobayashi
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota
| | - Joan Dao
- Department of Biomedical Engineering, University of Minnesota
| | | | - Pavel Filip
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota; Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | | | - Silvia Mangia
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota
| | - Matthew D Johnson
- Department of Biomedical Engineering, University of Minnesota; Institute for Translational Neuroscience, University of Minnesota
| | - Shalom Michaeli
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota.
| |
Collapse
|
8
|
Bagheri Hosseinabadi M, Khanjani N, Mobarake MD, Shirkhanloo H. Neuropsychological effects of long-term occupational exposure to mercury among chloralkali workers. Work 2020; 66:491-498. [PMID: 32651342 DOI: 10.3233/wor-203194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Mercury is one of the most well-known toxic metals for humans. Chloralkali workers are exposed to mercury vapours extensively, which may be associated with neurotoxicity. OBJECTIVE The aim of this study was to determine the associations between mercury concentration in blood and air samples, and mercury's neuropsychological effects among chloralkali workers. METHODS This study was conducted on 50 chloralkali workers as the exposed group and 50 non-industrial office workers as the unexposed group. All subjects were assessed using the Hamilton Depression Rating Scale, Piper Chronic Fatigue Scale and Essential Tremor Rating Scale. Mercury concentration was measured in blood and air samples using cold vapour atomic absorption spectrometry. RESULTS There was significantly more severe fatigue, depression and tremor in the exposed group compared with the unexposed group. The mean concentration of blood mercury in the exposed group was 22.59±12.5μgL-1 which was significantly higher than the unexposed group (1.28±1.05μg L-1). Based on multiple linear regression, shift work, smoking, fatigue, depression and tremor were predictor variables for blood mercury concentration. CONCLUSIONS This study indicated that this sample of chloralkali workers suffered from neuropsychological problems such as fatigue, depression and tremor, which is probably related to mercury exposure.
Collapse
Affiliation(s)
| | - Narges Khanjani
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mostafa Dehghani Mobarake
- Energy Research Center, Renewable Energy Department, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
| | - Hamid Shirkhanloo
- Research Institute of Petroleum Industry (RIPI), West Entrance Blvd., Olympic Village, Tehran, Iran
| |
Collapse
|
9
|
Handforth A, Tse W, Elble RJ. A Pilot Double-Blind Randomized Trial of Perampanel for Essential Tremor. Mov Disord Clin Pract 2020; 7:399-404. [PMID: 32373656 DOI: 10.1002/mdc3.12927] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/25/2020] [Accepted: 02/10/2020] [Indexed: 11/10/2022] Open
Abstract
Background Perampanel is a noncompetitive antagonist of alpha-amino-3-hydroxy-5-methylisoxazole propionic acid glutamate receptors suggested to modulate tremor. Objectives To assess the efficacy and tolerability of perampanel for essential tremor. Methods This was a double-blind, placebo-controlled, randomized, cross-over trial involving 26 patients titrated to 8 mg/day or a lower maximally tolerated dose as monotherapy or adjunct to antitremor medication. Tremor was assessed at the beginning and end of each 14-week treatment arm. The primary endpoint was change in the videotaped performance subscale of The Essential Tremor Rating Assessment Scale, scored by a blinded rater. Secondary endpoints included change in The Essential Tremor Rating Assessment Scale Activity of Daily Living and Quality of Life in Essential Tremor and Subject Global Impression of Change subscales. Results Data are available for 15 and 11 participants who completed placebo and perampanel arms, respectively. Perampanel was superior to placebo on the primary endpoint (P = 0.028), Activity of Daily Living (P = 0.009), and Subject Global Impression of Change (P = 0.016), but not Quality of Life (p = 0.48). Video scores were rated >50% improved in 3/11 on perampanel and 0/15 on placebo. Adverse events were more likely on perampanel (especially at >4 mg/day) than on placebo, leading to withdrawal (36% vs. 10%) and dose reduction (41% vs. 15%). Adverse events more common with perampanel included imbalance/falls (50% vs. 10%), dizziness (36% vs. 10%), and irritability (27% vs. 5%). Conclusions These findings suggest that perampanel exerts efficacy for some persons with essential tremor, but this population appears prone to adverse events.
Collapse
Affiliation(s)
- Adrian Handforth
- Neurology Service, Veterans Affairs Greater Los Angeles Healthcare System Los Angeles California USA
| | - Winona Tse
- Department of Neurology, Movement Disorders Division Icahn School of Medicine at Mount Sinai New York New York USA
| | - Rodger J Elble
- Department of Neurology Southern Illinois University School of Medicine Springfield Illinois USA
| |
Collapse
|
10
|
Wu A, Halpern C. Essential Tremor: Deep Brain Stimulation. Stereotact Funct Neurosurg 2020. [DOI: 10.1007/978-3-030-34906-6_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Dallapiazza RF, Lee DJ, De Vloo P, Fomenko A, Hamani C, Hodaie M, Kalia SK, Fasano A, Lozano AM. Outcomes from stereotactic surgery for essential tremor. J Neurol Neurosurg Psychiatry 2019; 90:474-482. [PMID: 30337440 PMCID: PMC6581115 DOI: 10.1136/jnnp-2018-318240] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 07/17/2018] [Accepted: 09/25/2018] [Indexed: 11/03/2022]
Abstract
There are several different surgical procedures that are used to treat essential tremor (ET), including deep brain stimulation (DBS) and thalamotomy procedures with radiofrequency (RF), radiosurgery (RS) and most recently, focused ultrasound (FUS). Choosing a surgical treatment requires a careful presentation and discussion of the benefits and drawbacks of each. We conducted a literature review to compare the attributes and make an appraisal of these various procedures. DBS was the most commonly reported treatment for ET. One-year tremor reductions ranged from 53% to 63% with unilateral Vim DBS. Similar improvements were demonstrated with RF (range, 74%-90%), RS (range, 48%-63%) and FUS thalamotomy (range, 35%-75%). Overall, bilateral Vim DBS demonstrated more improvement in tremor reduction since both upper extremities were treated (range, 66%-78%). Several studies show continued beneficial effects from DBS up to five years. Long-term follow-up data also support RF and gamma knife radiosurgical thalamotomy treatments. Quality of life measures were similarly improved among patients who received all treatments. Paraesthesias, dysarthria and ataxia were commonly reported adverse effects in all treatment modalities and were more common with bilateral DBS surgery. Many of the neurological complications were transient and resolved after surgery. DBS surgery had the added benefit of programming adjustments to minimise stimulation-related complications. Permanent neurological complications were most commonly reported for RF thalamotomy. Thalamic DBS is an effective, safe treatment with a long history. For patients who are medically unfit or reluctant to undergo DBS, several thalamic lesioning methods have parallel benefits to unilateral DBS surgery. Each of these surgical modalities has its own nuance for treatment and patient selection. These factors should be carefully considered by both neurosurgeons and patients when selecting an appropriate treatment for ET.
Collapse
Affiliation(s)
| | - Darrin J Lee
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| | - Philippe De Vloo
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| | - Anton Fomenko
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| | - Clement Hamani
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| | - Mojgan Hodaie
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| | - Suneil K Kalia
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada.,Division of Neurology, University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, Toronto, Ontario, Canada
| | - Andres M Lozano
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Vaudano AE, Pizza F, Talami F, Plazzi G, Meletti S. The neuronal network of laughing in young patients with untreated narcolepsy. Neurology 2019; 92:e504-e515. [PMID: 30635496 DOI: 10.1212/wnl.0000000000006853] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/28/2018] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE To investigate the neuronal correlates of spontaneous laughter in drug-naive pediatric patients with narcolepsy type I (NT1) compared to healthy controls by means of blood oxygen level-dependent (BOLD) MRI. METHODS Twenty-one children/adolescents with recent onset of NT1 and 21 age- and sex-matched healthy controls were studied with fMRI while viewing funny videos using a naturalistic paradigm. Whole-brain hemodynamic correlates of spontaneous laughter were investigated in each group and compared by use of appropriate second-level general linear model analyses. If recorded, cataplexy events were treated as the effect of no interest at the single-participant level. Correlations analyses between these contrasts and behavioral findings were performed. RESULTS Emotion-induced laughter occurred in 16 patients (294 events) and 21 controls (357 events). In controls, laughter-related BOLD increases involved a widespread cortical and subcortical network including the bilateral motor and premotor areas, cingulated cortex, insula, and amygdala. In NT1, laughter induced BOLD signal increments in the motor cortex, right thalamus, and left subthalamic nucleus/zona incerta (STN/ZI). STN/ZI and thalamic changes were significantly higher during fMRI sessions with laughter without cataplexy compared to sessions in which laughter was associated with cataplexy. CONCLUSION Laughter expression in individuals with NT1 involves different brain circuits compared to controls by means of overactivation of cortical and subcortical regions belonging to the volitional control of laughter. The activation of the STN/ZI region observed predominantly in patients with NT1 during laugh episodes without cataplexy suggests that the ZI could act to prevent cataplexy.
Collapse
Affiliation(s)
- Anna Elisabetta Vaudano
- From the Department of Medicine and Surgery (A.E.V.), Sleep Medicine Center, University of Parma; Department of Biomedical, Metabolic, and Neural Science (A.E.V., S.M.) and Center for Neuroscience and Neurotechnology (A.E.V., S.M.), University of Modena and Reggio Emilia; Department of Biomedical and Neuromotor Sciences (F.P., G.P.), University of Bologna; IRCCS Istituto Delle Scienze Neurologiche di Bologna (F.P., G.P.); and Neurology Unit (F.T., S.M.), OCSAE Azienda Ospedaliero-Universitaria, Modena, Italy.
| | - Fabio Pizza
- From the Department of Medicine and Surgery (A.E.V.), Sleep Medicine Center, University of Parma; Department of Biomedical, Metabolic, and Neural Science (A.E.V., S.M.) and Center for Neuroscience and Neurotechnology (A.E.V., S.M.), University of Modena and Reggio Emilia; Department of Biomedical and Neuromotor Sciences (F.P., G.P.), University of Bologna; IRCCS Istituto Delle Scienze Neurologiche di Bologna (F.P., G.P.); and Neurology Unit (F.T., S.M.), OCSAE Azienda Ospedaliero-Universitaria, Modena, Italy
| | - Francesca Talami
- From the Department of Medicine and Surgery (A.E.V.), Sleep Medicine Center, University of Parma; Department of Biomedical, Metabolic, and Neural Science (A.E.V., S.M.) and Center for Neuroscience and Neurotechnology (A.E.V., S.M.), University of Modena and Reggio Emilia; Department of Biomedical and Neuromotor Sciences (F.P., G.P.), University of Bologna; IRCCS Istituto Delle Scienze Neurologiche di Bologna (F.P., G.P.); and Neurology Unit (F.T., S.M.), OCSAE Azienda Ospedaliero-Universitaria, Modena, Italy
| | - Giuseppe Plazzi
- From the Department of Medicine and Surgery (A.E.V.), Sleep Medicine Center, University of Parma; Department of Biomedical, Metabolic, and Neural Science (A.E.V., S.M.) and Center for Neuroscience and Neurotechnology (A.E.V., S.M.), University of Modena and Reggio Emilia; Department of Biomedical and Neuromotor Sciences (F.P., G.P.), University of Bologna; IRCCS Istituto Delle Scienze Neurologiche di Bologna (F.P., G.P.); and Neurology Unit (F.T., S.M.), OCSAE Azienda Ospedaliero-Universitaria, Modena, Italy
| | - Stefano Meletti
- From the Department of Medicine and Surgery (A.E.V.), Sleep Medicine Center, University of Parma; Department of Biomedical, Metabolic, and Neural Science (A.E.V., S.M.) and Center for Neuroscience and Neurotechnology (A.E.V., S.M.), University of Modena and Reggio Emilia; Department of Biomedical and Neuromotor Sciences (F.P., G.P.), University of Bologna; IRCCS Istituto Delle Scienze Neurologiche di Bologna (F.P., G.P.); and Neurology Unit (F.T., S.M.), OCSAE Azienda Ospedaliero-Universitaria, Modena, Italy
| |
Collapse
|
13
|
Nowacki A, Schlaier J, Debove I, Pollo C. Validation of diffusion tensor imaging tractography to visualize the dentatorubrothalamic tract for surgical planning. J Neurosurg 2019; 130:99-108. [PMID: 29570012 DOI: 10.3171/2017.9.jns171321] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/05/2017] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The dentatorubrothalamic tract (DRTT) has been suggested as the anatomical substrate for deep brain stimulation (DBS)-induced tremor alleviation. So far, little is known about how accurately and reliably tracking results correspond to the anatomical DRTT. The objective of this study was to systematically investigate and validate the results of different tractography approaches for surgical planning. METHODS The authors retrospectively analyzed 4 methodological approaches for diffusion tensor imaging (DTI)-based fiber tracking using different regions of interest in 6 patients with essential tremor. Tracking results were analyzed and validated with reference to MRI-based anatomical landmarks, were projected onto the stereotactic atlas of Morel at 3 predetermined levels (vertical levels -3.6, -1.8, and 0 mm below the anterior commissure-posterior commissure line), and were correlated to clinical outcome. RESULTS The 4 different methodologies for tracking the DRTT led to divergent results with respect to the MRI-based anatomical landmarks and when projected onto the stereotactic atlas of Morel. There was a statistically significant difference in the lateral and anteroposterior coordinates at the 3 vertical levels (p < 0.001, 2-way ANOVA). Different fractional anisotropy values ranging from 0.1 to 0.46 were required for anatomically plausible tracking results and led to varying degrees of success. Tracking results were not correlated to postoperative tremor reduction. CONCLUSIONS Different tracking methods can yield results with good anatomical approximation. The authors recommend using 3 regions of interest including the dentate nucleus of the cerebellum, the posterior subthalamic area, and the precentral gyrus to visualize the DRTT. Tracking results must be cautiously evaluated for anatomical plausibility and accuracy in each patient.
Collapse
Affiliation(s)
| | - Jürgen Schlaier
- 2Department of Neurosurgery, University of Regensburg Medical Center, Regensburg, Germany
| | - Ines Debove
- 3Neurology, University Hospital Inselspital Bern, University of Bern, Switzerland; and
| | | |
Collapse
|
14
|
Abstract
INTRODUCTION Essential tremor is the most common form of pathologic tremor. Surgical therapies disrupt tremorogenic oscillation in the cerebellothalamocortical pathway and are capable of abolishing severe tremor that is refractory to available pharmacotherapies. Surgical methods are raspidly improving and are the subject of this review. Areas covered: A PubMed search on 18 January 2018 using the query essential tremor AND surgery produced 839 abstracts. 379 papers were selected for review of the methods, efficacy, safety and expense of stereotactic deep brain stimulation (DBS), stereotactic radiosurgery (SRS), focused ultrasound (FUS) ablation, and radiofrequency ablation of the cerebellothalamocortical pathway. Expert commentary: DBS and SRS, FUS and radiofrequency ablations are capable of reducing upper extremity tremor by more than 80% and are far more effective than any available drug. The main research questions at this time are: 1) the relative safety, efficacy, and expense of DBS, SRS, and FUS performed unilaterally and bilaterally; 2) the relative safety and efficacy of thalamic versus subthalamic targeting; 3) the relative safety and efficacy of atlas-based versus direct imaging tractography-based anatomical targeting; and 4) the need for intraoperative microelectrode recordings and macroelectrode stimulation in awake patients to identify the optimum anatomical target. Randomized controlled trials are needed.
Collapse
Affiliation(s)
- Rodger J Elble
- a Neuroscience Institute , Southern Illinois University School of Medicine , Springfield , Illinois , USA
| | - Ludy Shih
- b Department of Neurology , Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , Massachusetts USA
| | - Jeffrey W Cozzens
- a Neuroscience Institute , Southern Illinois University School of Medicine , Springfield , Illinois , USA
| |
Collapse
|
15
|
Eisinger RS, Wong J, Almeida L, Ramirez-Zamora A, Cagle JN, Giugni JC, Ahmed B, Bona AR, Monari E, Wagle Shukla A, Hess CW, Hilliard JD, Foote KD, Gunduz A, Okun MS, Martinez-Ramirez D. Ventral Intermediate Nucleus Versus Zona Incerta Region Deep Brain Stimulation in Essential Tremor. Mov Disord Clin Pract 2017; 5:75-82. [PMID: 30363386 DOI: 10.1002/mdc3.12565] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 09/22/2017] [Accepted: 09/28/2017] [Indexed: 11/12/2022] Open
Abstract
Background The ventral intermediate nucleus (VIM) is the target of choice for Essential Tremor (ET) deep brain stimulation (DBS). Renewed interest in caudal zona incerta (cZI) stimulation for tremor control has recently emerged and some groups believe this approach may address long-term reduction of benefit seen with VIM-DBS. Objectives To compare clinical outcomes and DBS programming in the long-term between VIM and cZI neurostimulation in ET-DBS patients. Materials and Methods A retrospective review of 53 DBS leads from 47 patients was performed. Patients were classified into VIM or cZI groups according to the location of the activated DBS contact. Demographics, DBS settings, and Tremor Rating Scale scores were compared between groups at baseline and yearly follow-up to 4 years after DBS. Student t-tests and analysis of variance (ANOVA) were used to compare variables between groups. Results Relative to baseline, an improvement in ON-DBS tremor scores was observed in both groups from 6 months to 4 years post-DBS (p < 0.05). Although improvement was still significant at 4 years, scores from month 6 to 2 years were comparable between groups but at 3 and 4 years post-DBS the outcome was better in the VIM group (p < 0.01). Stimulation settings were similar across groups, although we found a lower voltage in the VIM group at 3 years post-DBS. Conclusions More ventral DBS contacts in the cZI region do improve tremor, however, VIM-DBS provided better long-term outcomes. Randomized controlled trials comparing cZI vs VIM targets should confirm these results.
Collapse
Affiliation(s)
- Robert S Eisinger
- Department of Neuroscience Center for Movement Disorders and Neurorestoration University of Florida College of Medicine Gainesville FL USA
| | - Joshua Wong
- Department of Neurology Center for Movement Disorders and Neurorestoration University of Florida College of Medicine Gainesville FL USA
| | - Leonardo Almeida
- Department of Neurology Center for Movement Disorders and Neurorestoration University of Florida College of Medicine Gainesville FL USA
| | - Adolfo Ramirez-Zamora
- Department of Neurology Center for Movement Disorders and Neurorestoration University of Florida College of Medicine Gainesville FL USA
| | - Jackson N Cagle
- J. Crayton Pruitt Family Department of Biomedical Engineering University of Florida College of Medicine Gainesville FL USA
| | - Juan C Giugni
- Department of Neurology Center for Movement Disorders and Neurorestoration University of Florida College of Medicine Gainesville FL USA
| | - Bilal Ahmed
- Department of Neurology Center for Movement Disorders and Neurorestoration University of Florida College of Medicine Gainesville FL USA
| | - Alberto R Bona
- Department of Neurosurgery University of Florida College of Medicine Gainesville FL USA
| | - Erin Monari
- Department of Neurology Center for Movement Disorders and Neurorestoration University of Florida College of Medicine Gainesville FL USA
| | - Aparna Wagle Shukla
- Department of Neurology Center for Movement Disorders and Neurorestoration University of Florida College of Medicine Gainesville FL USA
| | - Christopher W Hess
- Department of Neurology Center for Movement Disorders and Neurorestoration University of Florida College of Medicine Gainesville FL USA
| | - Justin D Hilliard
- Department of Neurosurgery University of Florida College of Medicine Gainesville FL USA
| | - Kelly D Foote
- Department of Neurology Center for Movement Disorders and Neurorestoration University of Florida College of Medicine Gainesville FL USA.,Department of Neurosurgery University of Florida College of Medicine Gainesville FL USA
| | - Aysegul Gunduz
- Department of Neurology Center for Movement Disorders and Neurorestoration University of Florida College of Medicine Gainesville FL USA.,J. Crayton Pruitt Family Department of Biomedical Engineering University of Florida College of Medicine Gainesville FL USA
| | - Michael S Okun
- Department of Neurology Center for Movement Disorders and Neurorestoration University of Florida College of Medicine Gainesville FL USA.,Department of Neurosurgery University of Florida College of Medicine Gainesville FL USA
| | - Daniel Martinez-Ramirez
- Department of Neurology Center for Movement Disorders and Neurorestoration University of Florida College of Medicine Gainesville FL USA
| |
Collapse
|
16
|
Langone A, Steinberg SM, Gedaly R, Chan LK, Shah T, Sethi KD, Nigro V, Morgan JC. Switching STudy of Kidney TRansplant PAtients with Tremor to LCP-TacrO (STRATO): an open-label, multicenter, prospective phase 3b study. Clin Transplant 2015; 29:796-805. [PMID: 26113208 PMCID: PMC4755036 DOI: 10.1111/ctr.12581] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2015] [Indexed: 12/24/2022]
Abstract
Tremor is a common side effect of tacrolimus correlated with peak-dose drug concentration. LCPT, a novel, once-daily, extended-release formulation of tacrolimus, has a reduced Cmax with comparable AUC exposure, requiring a ~30% dose reduction vs. immediate-release tacrolimus. In this phase 3b study, kidney transplant recipients (KTR) on a stable dose of tacrolimus and with a reported clinically significant tremor were offered a switch to LCPT. Tremor pre- and seven d post-conversion was evaluated by independent, blinded movement disorder neurologists using the Fahn-Tolosa-Marin (FTM) scale and by an accelerometry device; patients completed the QUEST (quality of life in essential tremor) and the Patient Global Impression of Change. There were 38 patients in the mITT population. A statistically and clinically significant improvement in tremor (FTM score, amplitude as measured by the accelerometry device and QOL [p-values < 0.05]) resulted post-conversion. Change in QUEST was significantly (p = 0.006) correlated (R = 0.44) with change in FTM; 78.9% of patients reported an improvement after switching to LCPT (p < 0.0005). To our knowledge this is the first trial in KTR that utilizes a sophisticated and reproducible measurement of tremor. Results suggest LCPT is associated with clinically meaningful improvement of hand tremor and may be an alternative management approach in lieu of further dose reduction of immediate-release tacrolimus for patients experiencing tremor.
Collapse
Affiliation(s)
| | | | - Roberto Gedaly
- University of Kentucky Medical Center, Lexington, KY, USA
| | | | - Tariq Shah
- Transplant Research Institute, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
17
|
Louis ED, Machado DG. Tremor-related quality of life: A comparison of essential tremor vs. Parkinson's disease patients. Parkinsonism Relat Disord 2015; 21:729-35. [PMID: 25952960 DOI: 10.1016/j.parkreldis.2015.04.019] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/15/2015] [Accepted: 04/18/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Tremor-related quality of life is a multi-dimensional concept that reflects the physical, emotional and other health effects of tremor. Curiously, tremor-related quality of life has never been directly compared in patients with the two major tremor disorders, essential tremor (ET) and Parkinson's disease (PD). We performed a head-to-head comparison of ET with PD patients. METHODS The Quality of Life in Essential Tremor (QUEST) questionnaire was administered to 103 ET and 103 matched PD patients enrolled in a clinical-epidemiological study in New York. RESULTS The QUEST total score and QUEST physical subscore were higher in ET than PD patients (both p < 0.05). In relative terms, ET patients reported significantly more impairment than PD patients in multiple areas; PD patients reported more impairment than ET patients in one area (all p ≤ 0.02). In absolute terms, tremor impacted on many aspects of quality of life in both diseases, including physical and psychosocial, and in one-third or more of PD patients, tremor sometimes, frequently or always interfered with numerous physical activities, including writing, using a typewriter/computer, fixing small things, dressing, eating, and holding reading material. CONCLUSIONS Tremor is a clinical entity that can have numerous effects on patients. While there were relative differences between the two major tremor disorders, ET and PD, in absolute terms, tremor impacted on several domains of quality of life, from physical to psychosocial, in a large proportion of ET and PD patients. Attempts to judge the efficacy of treatments for tremor, whether pharmacological or surgical, should consider its broad impact.
Collapse
Affiliation(s)
- Elan D Louis
- Division of Movement Disorders, Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA; Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, USA.
| | - Duarte G Machado
- Division of Movement Disorders, Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
18
|
Cullinane PW, Browne PJ, Leahy TK, McGovern EM, Counihan TJ. Tremor severity is a poor predictor of social disability in patients with essential tremor. Parkinsonism Relat Disord 2014; 20:1311-2. [DOI: 10.1016/j.parkreldis.2014.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/22/2014] [Accepted: 09/03/2014] [Indexed: 10/24/2022]
|
19
|
Bendersky D, Ajler P, Yampolsky C. [The use of neuromodulation for the treatment of tremor]. Surg Neurol Int 2014; 5:S232-46. [PMID: 25165613 PMCID: PMC4138824 DOI: 10.4103/2152-7806.137944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 11/29/2012] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Tremor may be a disabling disorder and pharmacologic treatment is the first-line therapy for these patients. Nevertheless, this treatment may lead to a satisfactory tremor reduction in only 50% of patients with essential tremor. Thalamotomy was the treatment of choice for tremor refractory to medical therapy until deep brain stimulation (DBS) of the ventral intermedius nucleus (Vim) of the thalamus has started being used. Nowadays, thalamotomy is rarely performed. METHODS This article is a non-systematic review of the indications, results, programming parameters and surgical technique of DBS of the Vim for the treatment of tremor. RESULTS In spite of the fact that it is possible to achieve similar clinical results using thalamotomy or DBS of the Vim, the former causes more adverse effects than the latter. Furthermore, DBS can be used bilaterally, whereas thalamotomy has a high risk of causing disartria when it is performed in both sides. DBS of the Vim achieved an adequate tremor improvement in several series of patients with tremor caused by essential tremor, Parkinson's disease or multiple sclerosis. Besides the Vim, there are other targets, which are being used by some authors, such as the zona incerta and the prelemniscal radiations. CONCLUSION DBS of the Vim is a useful treatment for disabling tremor refractory to medical therapy. It is essential to carry out an accurate patient selection as well as to use a proper surgical technique. The best stereotactic target for tremor is still unknown, although the Vim is the most used one.
Collapse
Affiliation(s)
- Damián Bendersky
- Department of Neurosurgery, Hospital Italiano de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Pablo Ajler
- Department of Neurosurgery, Hospital Italiano de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Claudio Yampolsky
- Department of Neurosurgery, Hospital Italiano de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
20
|
Elble R, Bain P, João Forjaz M, Haubenberger D, Testa C, Goetz CG, Leentjens AFG, Martinez-Martin P, Pavy-Le Traon A, Post B, Sampaio C, Stebbins GT, Weintraub D, Schrag A. Task force report: Scales for screening and evaluating tremor: Critique and recommendations. Mov Disord 2013; 28:1793-800. [DOI: 10.1002/mds.25648] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/25/2013] [Accepted: 07/17/2013] [Indexed: 01/05/2023] Open
Affiliation(s)
- Rodger Elble
- Department of Neurology; Southern Illinois University School of Medicine; Springfield Illinois USA
| | - Peter Bain
- Department of Neurology; Imperial College London, Charing Cross Hospital; London United Kingdom
| | - Maria João Forjaz
- National School of Public Health and Red de Investigación en Servicios Sanitarios y Enfermedades Crónicas (REDISSEC); Carlos III Institute of Health; Madrid Spain
| | | | - Claudia Testa
- Department of Neurology; Virginia Commonwealth University; Richmond Virginia USA
| | - Christopher G. Goetz
- Department of Neurological Sciences; Rush University Medical Center; Chicago Illinois USA
| | - Albert F. G. Leentjens
- Department of Psychiatry; Maastricht University Medical Center; Maastricht the Netherlands
| | - Pablo Martinez-Martin
- Alzheimer Center Reina Sofia Foundation and Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegeneratives (CIBERNED); Carlos III Institute of Health; Madrid Spain
| | - Anne Pavy-Le Traon
- Department of Neurology, Hôpital Purpan; University Hospital of Toulouse; Toulouse France
| | - Bart Post
- Department of Neurology; Radboud University Nijmegen Medical Center; Nijmegen The Netherlands
| | - Cristina Sampaio
- CHDI Foundation; Princeton New Jersey USA
- Instituto de Medicina Molecular; University of Lisbon; Portugal
| | - Glenn T. Stebbins
- Department of Neurological Sciences; Rush University Medical Center; Chicago Illinois USA
| | - Daniel Weintraub
- Department of Psychiatry; Perelman School of Medicine at the University of Pennsylvania; Philadelphia Pennsylvania USA
| | - Anette Schrag
- University College London Institute of Neurology; London United Kingdom
| |
Collapse
|
21
|
Kerl HU, Gerigk L, Brockmann MA, Huck S, Al-Zghloul M, Groden C, Hauser T, Nagel AM, Nölte IS. Imaging for deep brain stimulation: The zona incerta at 7 Tesla. World J Radiol 2013; 5:5-16. [PMID: 23494089 PMCID: PMC3596566 DOI: 10.4329/wjr.v5.i1.5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 10/24/2012] [Accepted: 01/21/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate different promising magnetic resonance imaging (MRI) methods at 7.0 Tesla (T) for the pre-stereotactic visualization of the zona incerta (ZI).
METHODS: Two neuroradiologists qualitatively and quantitatively examined T2-turbo spin-echo (T2-TSE), T1-weighted gradient-echo, as well as FLASH2D-T2Star and susceptibility-weighted imaging (SWI) for the visualization of the ZI at 7.0 T MRI. Delineation and image quality for the ZI were independently examined using a 6-scale grading system. Inter-rater reliability using Cohen’s kappa coefficient (κ) were assessed. Contrast-to-noise ratios (CNR), and signal-to-noise ratios (SNR) for the ZI were calculated for all sequences. Differences in delineation, SNR, and CNR between the sequences were statistically assessed using a paired t-test. For the anatomic validation the coronal FLASH2D-T2Star images were co-registered with a stereotactic atlas (Schaltenbrand-Wahren).
RESULTS: The rostral part of the ZI (rZI) could easily be identified and was best and reliably visualized in the coronal FLASH2D-T2Star images. The caudal part was not definable in any of the sequences. No major artifacts in the rZI were observed in any of the scans. FLASH2D-T2Star and SWI imaging offered significant higher CNR values for the rZI compared to T2-TSE images (P > 0.05). The co-registration of the coronal FLASH2D-T2Star images with the stereotactic atlas schema (Schaltenbrand-Wahren) confirmed the correct localization of the ZI in all cases.
CONCLUSION: FLASH2D-T2Star imaging (particularly coronal view) provides the reliable and currently optimal visualization of the rZI at 7.0 T. These results can facilitate a better and more precise targeting of the caudal part of the ZI than ever before.
Collapse
|
22
|
Chopra A, Klassen BT, Stead M. Current clinical application of deep-brain stimulation for essential tremor. Neuropsychiatr Dis Treat 2013; 9:1859-65. [PMID: 24324335 PMCID: PMC3855101 DOI: 10.2147/ndt.s32342] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Deep-brain stimulation (DBS) is an established treatment for medically refractory essential tremor (ET). This article reviews the current evidence supporting the efficacy and safety of DBS targets, including the ventral intermediate (VIM) nucleus and posterior subthalamic area (PSA) in treatment of ET. METHODS A structured PubMed search was performed through December 2012 with keywords "deep brain stimulation (DBS)," "essential tremor (ET)," "ventral intermediate (VIM) nucleus," "posterior subthalamic area (PSA)," "safety," and "efficacy." RESULTS Based on level IV evidence, both VIM and PSA DBS targets appear to be safe and efficacious in ET patients in tremor reduction and improving activities of daily living, though the literature on PSA DBS is limited in terms of bilateral stimulation and long-term follow-up. DBS-related adverse effects are typically mild and stimulation-related. Hardware-related complications after DBS may not be uncommon, and often require additional surgical procedures. Few studies assessed quality-of-life and cognition outcomes in ET patients undergoing DBS stimulation. CONCLUSION DBS appears to be a safe and effective treatment for medically refractory ET. More systematic studies comparing VIM and PSA targets are needed to ascertain the most safe and effective DBS treatment for medically refractory ET. More research is warranted to assess quality-of-life and cognition outcomes in ET patients undergoing DBS.
Collapse
Affiliation(s)
- Amit Chopra
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
23
|
Visualisation of the zona incerta for deep brain stimulation at 3.0 Tesla. Clin Neuroradiol 2012; 22:55-68. [PMID: 22349435 DOI: 10.1007/s00062-012-0136-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 01/27/2012] [Indexed: 12/23/2022]
Abstract
PURPOSE Deep-brain stimulation (DBS) of the zona incerta (ZI) has shown promising results for medication-refractory neurological disorders including Parkinson's disease (PD) and essential tremor (ET). The success of the intervention is indispensably dependent on the reliable visualisation of the ZI. The aim of the study was to evaluate different promising new magnetic resonance imaging (MRI) methods at 3.0 Tesla for pre-stereotactic visualisation of the ZI using a standard installation the protocol. METHODS MRI of nine healthy volunteers was acquired (T1-MPRAGE, T2-FLAIR, T2*-FLASH2D, T2-SPACE and susceptibility-weighted imaging (SWI). Image quality and visualisation of the ZI for each sequence were analysed independently by two neuroradiologists using a 6-point scale. For T2*-FLASH2D the axial, coronal and sagittal planes were compared. The delineation of the ZI versus the internal capsule, the subthalamic nucleus and the pallidofugal fibres was evaluated in all sequences and compared to T2-FLAIR using a paired t-test. Inter-rater reliability, contrast-to-noise ratios (CNR), and signal-to-noise ratios (SNR) for the ZI were computed. For illustration, coronal T2*-FLASH2D images were co-registered with the corresponding section schema of the Schaltenbrand-Wahren stereotactic atlas. RESULTS Only the rostral part of the ZI (rZI) could be identified. The rZI was best and reliably visualised in T2*-FLASH2D (particularly coronal orientation; p < 0.05). No major artifacts in the rZI were observed in any of the sequences. SWI, T2-SPACE, and T2*-FLASH imaging offered significant higher CNR values for the rZI compared to T2-FLAIR imaging using standard parameters. The co-registration of the coronal T2*-FLASH2D images projected the ZI clearly into the boundaries of the anatomical sections. CONCLUSIONS The delineation of the rZI is best possible in T2*-FLASH2D (particularly coronal view) using a standard installation protocol at 3.0 T. The caudal ZI could not be discerned in any of the sequences.
Collapse
|