1
|
Diehl CD, Rosenkranz E, Schwendner M, Mißlbeck M, Sollmann N, Ille S, Meyer B, Combs SE, Krieg SM. Dose Reduction to Motor Structures in Adjuvant Fractionated Stereotactic Radiotherapy of Brain Metastases: nTMS-Derived DTI-Based Motor Fiber Tracking in Treatment Planning. Cancers (Basel) 2022; 15:cancers15010282. [PMID: 36612277 PMCID: PMC9818359 DOI: 10.3390/cancers15010282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 01/03/2023] Open
Abstract
Background: Resection of brain metastases (BM) close to motor structures is challenging for treatment. Navigated transcranial magnetic stimulation (nTMS) motor mapping, combined with diffusion tensor imaging (DTI)-based fiber tracking (DTI-FTmot.TMS), is a valuable tool in neurosurgery to preserve motor function. This study aimed to assess the practicability of DTI-FTmot.TMS for local adjuvant radiotherapy (RT) planning of BM. Methods: Presurgically generated DTI-FTmot.TMS-based corticospinal tract (CST) reconstructions (FTmot.TMS) of 24 patients with 25 BM resected during later surgery were incorporated into the RT planning system. Completed fractionated stereotactic intensity-modulated RT (IMRT) plans were retrospectively analyzed and adapted to preserve FTmot.TMS. Results: In regular plans, mean dose (Dmean) of complete FTmot.TMS was 5.2 ± 2.4 Gy. Regarding planning risk volume (PRV-FTTMS) portions outside of the planning target volume (PTV) within the 17.5 Gy (50%) isodose line, the DTI-FTmot.TMS Dmean was significantly reduced by 33.0% (range, 5.9−57.6%) from 23.4 ± 3.3 Gy to 15.9 ± 4.7 Gy (p < 0.001). There was no significant decline in the effective treatment dose, with PTV Dmean 35.6 ± 0.9 Gy vs. 36.0 ± 1.2 Gy (p = 0.063) after adaption. Conclusions: The DTI-FTmot.TMS-based CST reconstructions could be implemented in adjuvant IMRT planning of BM. A significant dose reduction regarding motor structures within critical dose levels seems possible.
Collapse
Affiliation(s)
- Christian D. Diehl
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), DKTK Partner Site, 81675 Munich, Germany
- Correspondence:
| | - Enrike Rosenkranz
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Maximilian Schwendner
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Martin Mißlbeck
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, 89081 Ulm, Germany
| | - Sebastian Ille
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Stephanie E. Combs
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), DKTK Partner Site, 81675 Munich, Germany
| | - Sandro M. Krieg
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| |
Collapse
|
2
|
Saito T, Muragaki Y, Tamura M, Maruyama T, Nitta M, Tsuzuki S, Fukui A, Kawamata T. Correlation between localization of supratentorial glioma to the precentral gyrus and difficulty in identification of the motor area during awake craniotomy. J Neurosurg 2021; 134:1490-1499. [PMID: 32357342 DOI: 10.3171/2020.2.jns193471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 02/21/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Identification of the motor area during awake craniotomy is crucial for preservation of motor function when resecting gliomas located within or close to the motor area or the pyramidal tract. Nevertheless, sometimes the surgeon cannot identify the motor area during awake craniotomy. However, the factors that influence failure to identify the motor area have not been elucidated. The aim of this study was to assess whether tumor localization was correlated with a negative cortical response in motor mapping during awake craniotomy in patients with gliomas located within or close to the motor area or pyramidal tract. METHODS Between April 2000 and May 2019 at Tokyo Women's Medical University, awake craniotomy was performed to preserve motor function in 137 patients with supratentorial glioma. Ninety-one of these patients underwent intraoperative cortical motor mapping for a primary glioma located within or close to the motor area or pyramidal tract and were enrolled in the study. MRI was used to evaluate whether or not the tumors were localized to or involved the precentral gyrus. The authors performed motor functional mapping with electrical stimulation during awake craniotomy and evaluated the correlation between identification of the motor area and various clinical characteristics, including localization to the precentral gyrus. RESULTS Thirty-four of the 91 patients had tumors that were localized to the precentral gyrus. The mean extent of resection was 89.4%. Univariate analyses revealed that identification of the motor area correlated significantly with age and localization to the precentral gyrus. Multivariate analyses showed that older age (≥ 45 years), larger tumor volume (> 35.5 cm3), and localization to the precentral gyrus were significantly correlated with failure to identify the motor area (p = 0.0021, 0.0484, and 0.0015, respectively). Localization to the precentral gyrus showed the highest odds ratio (14.135) of all regressors. CONCLUSIONS Identification of the motor area can be difficult when a supratentorial glioma is localized to the precentral gyrus. The authors' findings are important when performing awake craniotomy for glioma located within or close to the motor area or the pyramidal tract. A combination of transcortical motor evoked potential monitoring and awake craniotomy including subcortical motor mapping may be needed for removal of gliomas showing negative responses in the motor area to preserve the motor-related subcortical fibers.
Collapse
Affiliation(s)
| | - Yoshihiro Muragaki
- 1Department of Neurosurgery and
- 2Faculty of Advanced Techno-Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Manabu Tamura
- 2Faculty of Advanced Techno-Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Takashi Maruyama
- 1Department of Neurosurgery and
- 2Faculty of Advanced Techno-Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
3
|
Ghazwani Y, Patay Z, Sadighi ZS, Sparrow J, Upadhyaya S, Boop F, Gajjar A, Qaddoumi I. Handedness switching as a presenting sign for pediatric low-grade gliomas: An insight into brain plasticity from a short case series. J Pediatr Rehabil Med 2021; 14:31-36. [PMID: 33386828 DOI: 10.3233/prm-190637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
PURPOSE To describe clinical data, rehabilitation services, and outcomes of children with handedness switching as their presenting symptom before low-grade glioma (LGG) diagnosis. METHODS A retrospective chart review was performed for five patients (four female and four white) with LGG and confirmed handedness switching before LGG diagnosis. RESULTS All children were less than 8 years at diagnosis, and two patients were less than 3 years. All children were initially right-handed and experienced loss of motor function, ranging from weakness to paresis, in their dominant hand. The median time from switching handedness to diagnosis was 1 month (range: 0.75-60 months). Rehabilitation was offered for three patients, and motor function deficits in the initial dominant hand were resolved in two of the total cohort. At long-term follow-up, hand dominance returned to the initial hand in three patients. CONCLUSIONS Handedness switching should be acknowledged as a potential sign of LGG in children, and early long-term rehabilitation services should be offered for these children.
Collapse
Affiliation(s)
- Yahya Ghazwani
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zoltan Patay
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zsila S Sadighi
- Department of Neurology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jessica Sparrow
- Department of Rehabilitation Services, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Santhosh Upadhyaya
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Frederick Boop
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Amar Gajjar
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ibrahim Qaddoumi
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
4
|
Direct Evidence of Plasticity within Human Primary Motor and Somatosensory Cortices of Patients with Glioblastoma. Neural Plast 2020; 2020:8893708. [PMID: 33029127 PMCID: PMC7527884 DOI: 10.1155/2020/8893708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/04/2020] [Accepted: 09/02/2020] [Indexed: 01/20/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a devastating disease without cure. It is also the most common primary brain tumor in adults. Although aggressive surgical resection is standard of care, these operations are limited by tumor infiltration of critical cortical and subcortical regions. A better understanding of how the brain can recover and reorganize function in response to GBM would provide valuable clinical data. This ability, termed neuroplasticity, is not well understood in the adult human brain. A better understanding of neuroplasticity in GBM could allow for improved extent of resection, even in areas classically thought to have critical, static function. The best evidence to date has demonstrated neuroplasticity only in slower growing tumors or through indirect measures such as functional MRI or transcranial magnetic stimulation. In this novel study, we utilize a unique experimental paradigm to show direct evidence of plasticity via serial direct electrocortical stimulation (DES) within primary motor (M1) and somatosensory (S1) cortices in GBM patients. Six patients with glioblastoma multiforme in or near the primary motor or somatosensory cortex were included in this retrospective observational study. These patients had two awake craniotomies with DES to map cortical motor and sensory sites in M1 and S1. Five of six patients exhibited at least one site of neuroplasticity within M1 or S1. Out of the 51 total sites stimulated, 32 (62.7%) demonstrated plasticity. Of these sites, 14 (43.7%) were in M1 and 18 (56.3%) were in S1. These data suggest that even in patients with GBM in or near primary brain regions, significant functional reorganization is possible. This is a new finding which may lead to a better understanding of the fundamental factors promoting or inhibiting plasticity. Further exploration may aid in treatment of patients with brain tumors and other neurologic disorders.
Collapse
|
5
|
Cargnelutti E, Ius T, Skrap M, Tomasino B. What do we know about pre- and postoperative plasticity in patients with glioma? A review of neuroimaging and intraoperative mapping studies. NEUROIMAGE-CLINICAL 2020; 28:102435. [PMID: 32980599 PMCID: PMC7522801 DOI: 10.1016/j.nicl.2020.102435] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023]
Abstract
Brain reorganization can take place before and after surgery of low- and high-grade gliomas. Plasticity is observed for low-grade but also for high-grade gliomas. The contralesional hemisphere can be vital for successful compensation. There is evidence of plasticity for both the language system and the sensorimotor system. Partial compensation can also occur at the white-matter level. Subcortical connectivity is crucial for brain reorganization.
Brain plasticity potential is a central theme in neuro-oncology and is currently receiving increased attention. Advances in treatment have prolonged life expectancy in neuro-oncological patients and the long-term preservation of their quality of life is, therefore, a new challenge. To this end, a better understanding of brain plasticity mechanisms is vital as it can help prevent permanent deficits following neurosurgery. Indeed, reorganization processes can be fundamental to prevent or recover neurological and cognitive deficits by reallocating brain functions outside the lesioned areas. According to more recent studies in the literature, brain reorganization taking place following neurosurgery is associated with good neurofunctioning at follow-up. Interestingly, in the last few years, the number of reports on plasticity has notably increased. Aim of the current review was to provide a comprehensive overview of pre- and postoperative neuroplasticity patterns. Within this framework, we aimed to shed light on some tricky issues, including i) involvement of the contralateral healthy hemisphere, ii) role and potential changes of white matter and connectivity patterns, and iii) reorganization in low- versus high-grade gliomas. We finally discussed the practical implications of these aspects and role of additional potentially relevant factors to be explored. Final purpose was to provide a guideline helpful in promoting increase in the extent of tumor resection while preserving the patients’ neurological and cognitive functioning.
Collapse
Affiliation(s)
- Elisa Cargnelutti
- Scientific Institute, IRCCS E. Medea, Dipartimento/Unità Operativa Pasian di Prato, Udine, Italy
| | - Tamara Ius
- SOC Neurochirurgia, Azienda Sanitaria Universitaria Friuli Centrale ASU FC, Italy
| | - Miran Skrap
- SOC Neurochirurgia, Azienda Sanitaria Universitaria Friuli Centrale ASU FC, Italy
| | - Barbara Tomasino
- Scientific Institute, IRCCS E. Medea, Dipartimento/Unità Operativa Pasian di Prato, Udine, Italy.
| |
Collapse
|
6
|
Islam M, Cooray G, Benmakhlouf H, Hatiboglu M, Sinclair G. Integrating navigated transcranial magnetic stimulation motor mapping in hypofractionated and single-dose gamma knife radiosurgery: A two-patient case series and a review of literature. Surg Neurol Int 2020; 11:29. [PMID: 32257555 PMCID: PMC7110065 DOI: 10.25259/sni_406_2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023] Open
Abstract
Background: The aim of the study was to demonstrate the feasibility of integrating navigated transcranial magnetic stimulation (nTMS) in preoperative gamma knife radiosurgery (GKRS) planning of motor eloquent brain tumors. Case Description: The first case was a 53-year-old female patient with metastatic breast cancer who developed focal epileptic seizures and weakness of the left hand. The magnetic resonance imaging (MRI) scan demonstrated a 30 mm metastasis neighboring the right precentral gyrus and central sulcus. The lesion was treated with adaptive hypofractionated GKRS following preoperative nTMS-based motor mapping. Subsequent follow-up imaging (up to 12 months) revealed next to complete tumor ablation without toxicity. The second case involved a previously healthy 73-year-old male who similarly developed new left-handed weakness. A subsequent MRI demonstrated a 26 mm metastatic lesion, located in the right postcentral gyrus and 5 mm from the hand motor area. The extracranial screening revealed a likely primary lung adenocarcinoma. The patient underwent preoperative nTMS motor mapping prior to treatment. Perilesional edema was noted 6 months postradiosurgery; nevertheless, long- term tumor control was demonstrated. Both patients experienced motor function normalization shortly after treatment, continuing to final follow-up. Conclusion: Integrating preoperative nTMS motor mapping in treatment planning allowed us to reduce dose distributions to perilesional motor fibers while achieving salvage of motor function, lasting seizure freedom, and tumor control. These initial data along with our review of the available literature suggest that nTMS can be of significant assistance in brain radiosurgery. Prospective studies including larger number of patients are still warranted.
Collapse
Affiliation(s)
- Mominul Islam
- Clinical Neuroscience, Karolinska Institute, İstanbul, Turkey
| | - Gerald Cooray
- Clinical Neuroscience, Karolinska Institute, İstanbul, Turkey
| | - Hamza Benmakhlouf
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, İstanbul, Turkey
| | - Mustafa Hatiboglu
- Department of Neurosurgery, Beykoz Institute of Life Science and Biotechnology, Bezmialem Vakif University, İstanbul, Turkey
| | - Georges Sinclair
- Department of Neurosurgery, Beykoz Institute of Life Science and Biotechnology, Bezmialem Vakif University, İstanbul, Turkey.,Department of Oncology, Royal Berkshire NHS Foundation Trust, Reading, Berkshire.,Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
Mirbagheri A, Schneider H, Zdunczyk A, Vajkoczy P, Picht T. NTMS mapping of non-primary motor areas in brain tumour patients and healthy volunteers. Acta Neurochir (Wien) 2020; 162:407-416. [PMID: 31768755 DOI: 10.1007/s00701-019-04086-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/20/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Navigated transcranial magnetic stimulation (nTMS) has been increasingly used for presurgical cortical mapping of the primary motor cortex (M1) but remains controversial for the evaluation of non-primary motor areas (NPMA). This study investigates clinical and neurophysiological parameters in brain tumour patients and healthy volunteers to decide whether single-pulse biphasic nTMS allows to reliably elicite MEP outside from M1 or not. MATERIALS AND METHODS Twelve brain tumour patients and six healthy volunteers underwent M1 nTMS mapping. NPMA nTMS mapping followed using 120% and 150% M1 resting motor threshold (RMT) stimulation intensity. Spearman's correlation analysis tested the association of clinical and neurophysiological parameters between M1 and NPMA mapping. RESULTS A total of 88.81% of nTMS stimulations in NPMA in patients/83.87% in healthy volunteers in patients/83.87% in healthy volunteers did not result in MEPs ≥ 50 μV. Positive nTMS mapping in NPMA correlated with higher stimulation intensity and larger M1 areas in patients (120% M1 RMT SI p = 0.005/150% M1 RMT SI p = 0.198). CONCLUSION Our findings indicate that in case of positive nTMS mapping in NPMA, MEPs originate mostly from M1. For future studies, MEP parameters and TMS coil rotation should be studied closely to assess the risk for postoperative motor deterioration.
Collapse
Affiliation(s)
- Andia Mirbagheri
- Department of Neurosurgery, Charité University Medicine, Charitéplatz 1, Berlin, Germany.
| | - Heike Schneider
- Department of Neurosurgery, Charité University Medicine, Charitéplatz 1, Berlin, Germany
| | - Anna Zdunczyk
- Department of Neurosurgery, Charité University Medicine, Charitéplatz 1, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité University Medicine, Charitéplatz 1, Berlin, Germany
| | - Thomas Picht
- Department of Neurosurgery, Charité University Medicine, Charitéplatz 1, Berlin, Germany
| |
Collapse
|
8
|
Freyschlag CF, Krieg SM, Kerschbaumer J, Pinggera D, Forster MT, Cordier D, Rossi M, Miceli G, Roux A, Reyes A, Sarubbo S, Smits A, Sierpowska J, Robe PA, Rutten GJ, Santarius T, Matys T, Zanello M, Almairac F, Mondot L, Jakola AS, Zetterling M, Rofes A, von Campe G, Guillevin R, Bagatto D, Lubrano V, Rapp M, Goodden J, De Witt Hamer PC, Pallud J, Bello L, Thomé C, Duffau H, Mandonnet E. Imaging practice in low-grade gliomas among European specialized centers and proposal for a minimum core of imaging. J Neurooncol 2018; 139:699-711. [PMID: 29992433 PMCID: PMC6132968 DOI: 10.1007/s11060-018-2916-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/29/2018] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Imaging studies in diffuse low-grade gliomas (DLGG) vary across centers. In order to establish a minimal core of imaging necessary for further investigations and clinical trials in the field of DLGG, we aimed to establish the status quo within specialized European centers. METHODS An online survey composed of 46 items was sent out to members of the European Low-Grade Glioma Network, the European Association of Neurosurgical Societies, the German Society of Neurosurgery and the Austrian Society of Neurosurgery. RESULTS A total of 128 fully completed surveys were received and analyzed. Most centers (n = 96, 75%) were academic and half of the centers (n = 64, 50%) adhered to a dedicated treatment program for DLGG. There were national differences regarding the sequences enclosed in MRI imaging and use of PET, however most included T1 (without and with contrast, 100%), T2 (100%) and TIRM or FLAIR (20, 98%). DWI is performed by 80% of centers and 61% of centers regularly performed PWI. CONCLUSION A minimal core of imaging composed of T1 (w/wo contrast), T2, TIRM/FLAIR, PWI and DWI could be identified. All morphologic images should be obtained in a slice thickness of ≤ 3 mm. No common standard could be obtained regarding advanced MRI protocols and PET. IMPORTANCE OF THE STUDY We believe that our study makes a significant contribution to the literature because we were able to determine similarities in numerous aspects of LGG imaging. Using the proposed "minimal core of imaging" in clinical routine will facilitate future cooperative studies.
Collapse
Affiliation(s)
- Christian F Freyschlag
- Department of Neurosurgery, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| | - Sandro M Krieg
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Johannes Kerschbaumer
- Department of Neurosurgery, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Daniel Pinggera
- Department of Neurosurgery, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | | | - Dominik Cordier
- Department of Neurosurgery, Universitätsspital Basel, Basel, Switzerland
| | - Marco Rossi
- Neurosurgical Oncology Unit, Humanitas Research Hospital, IRCCS, Milan, Italy
| | - Gabriele Miceli
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Alexandre Roux
- Department of Neurosurgery, Sainte-Anne Hospital, Paris Descartes University, Sorbonne Paris Cité, Paris, France
- Inserm U894, IMA-Brain, Centre de Psychiatrie et Neurosciences, Paris, France
| | - Andrés Reyes
- European Master's in Clinical Linguistics (EMCL), University of Groningen, Groningen, The Netherlands
- EMCL University of Potsdam, Potsdam, Germany
- Neuroscience Institute, and Laboratory of Experimental Psychology, Faculty of Psychology, El Bosque University, Bogotá, Colombia
| | - Silvio Sarubbo
- Division of Neurosurgery, Structural and Functional Connectivity Lab Project, "S. Chiara" Hospital, APSS, Trento, Italy
| | - Anja Smits
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neuroscience, Neurology, Uppsala University, Uppsala, Sweden
| | - Joanna Sierpowska
- Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, Barcelona, Spain
- Department of Cognition, Development and Education Psychology, Barcelona, Spain
| | - Pierre A Robe
- Department of Neurology and Neurosurgery, Rudolf Magnus Brain Institute, University Medical Center of Utrecht, Utrecht, The Netherlands
| | - Geert-Jan Rutten
- Department of Neurosurgery, Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands
| | - Thomas Santarius
- Department of Neurosurgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Tomasz Matys
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Marc Zanello
- Department of Neurosurgery, Sainte-Anne Hospital, Paris Descartes University, Sorbonne Paris Cité, Paris, France
- Inserm U894, IMA-Brain, Centre de Psychiatrie et Neurosciences, Paris, France
| | - Fabien Almairac
- Neurosurgery Department, Hôpital Pasteur 2, University Hospital of Nice, Nice, France
| | - Lydiane Mondot
- Radiology Department, Hôpital Pasteur 2, University Hospital of Nice, Nice, France
| | - Asgeir S Jakola
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg, Sweden
| | - Maria Zetterling
- Department of Neurosurgery, Institution of Neuroscience, Uppsala University Hospital, Uppsala, Sweden
| | - Adrià Rofes
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
- Department of Cognitive Science, Johns Hopkins University, Baltimore, USA
| | - Gord von Campe
- Department of Neurosurgery, Medical University Graz, Graz, Austria
| | - Remy Guillevin
- DACTIM, UMR CNRS 7348, Université de Poitiers et CHU de Poitiers, Poitiers, France
| | - Daniele Bagatto
- Neuroradiology Department, University Hospital Santa Maria della Misericordia, Udine, Italy
| | - Vincent Lubrano
- Department of Neurosurgery, CHU Toulouse, Toulouse, France
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Marion Rapp
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - John Goodden
- Department of Neurosurgery, The General Infirmary at Leeds, Leeds, West Yorkshire, UK
| | | | - Johan Pallud
- Department of Neurosurgery, Sainte-Anne Hospital, Paris Descartes University, Sorbonne Paris Cité, Paris, France
- Inserm U894, IMA-Brain, Centre de Psychiatrie et Neurosciences, Paris, France
| | - Lorenzo Bello
- Neurosurgical Oncology Unit, Humanitas Research Hospital, IRCCS, Milan, Italy
| | - Claudius Thomé
- Department of Neurosurgery, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Hugues Duffau
- Department of Neurosurgery, Hôpital Gui de Chauliac, Montpellier Medical University Center, Montpellier, France
- Institute of Neuroscience of Montpellier, INSERM U1051, University of Montpellier, Montpellier, France
| | - Emmanuel Mandonnet
- Department of Neurosurgery, Lariboisière Hospital, APHP, Paris, France
- University Paris 7, Paris, France
- IMNC, UMR 8165, Orsay, France
| |
Collapse
|
9
|
Barz A, Noack A, Baumgarten P, Seifert V, Forster MT. Motor Cortex Reorganization in Patients with Glioma Assessed by Repeated Navigated Transcranial Magnetic Stimulation-A Longitudinal Study. World Neurosurg 2018; 112:e442-e453. [PMID: 29360588 DOI: 10.1016/j.wneu.2018.01.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/06/2018] [Accepted: 01/11/2018] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Evidence for cerebral reorganization after resection of low-grade glioma has mainly been obtained by serial intraoperative cerebral mapping. Noninvasively collected data on cortical plasticity in tumor patients over a surgery-free period are still scarce. The present study therefore aimed at evaluating motor cortex reorganization by navigated transcranial magnetic stimulation (nTMS) in patients after perirolandic glioma surgery. METHODS nTMS was performed preoperatively and postoperatively in 20 patients, separated by 26.1 ± 24.8 months. Further nTMS mapping was conducted in 14 patients, resulting in a total follow-up period of 46.3 ± 25.4 months. Centers of gravity (CoGs) were calculated for every muscle representation area, and Euclidian distances between CoGs over time were defined. Results were compared with data from 12 healthy individuals, who underwent motor cortex mapping by nTMS in 2 sessions. RESULTS Preoperatively and postoperatively pooled CoGs from the area of the dominant abductor pollicis brevis muscle and of the nondominant leg area differed significantly compared with healthy individuals (P < 0.05). Most remarkably, during the ensuing follow-up period, a reorganization of all representation areas was observed in 3 patients, and a significant shift of hand representation areas was identified in further 3 patients. Complete functional recovery of postoperative motor deficits was exclusively associated with cortical reorganization. CONCLUSIONS Despite the low potential of remodeling within the somatosensory region, long-term reorganization of cortical motor function can be observed. nTMS is best suited for a noninvasive evaluation of this reorganization.
Collapse
Affiliation(s)
- Anne Barz
- Department of Neurosurgery, Goethe University Hospital, Frankfurt, Germany
| | - Anika Noack
- Department of Neurosurgery, Goethe University Hospital, Frankfurt, Germany
| | - Peter Baumgarten
- Department of Neurosurgery, Goethe University Hospital, Frankfurt, Germany
| | - Volker Seifert
- Department of Neurosurgery, Goethe University Hospital, Frankfurt, Germany; University Cancer Center Frankfurt (UCT), Goethe University Hospital, Frankfurt, Germany
| | - Marie-Therese Forster
- Department of Neurosurgery, Goethe University Hospital, Frankfurt, Germany; University Cancer Center Frankfurt (UCT), Goethe University Hospital, Frankfurt, Germany.
| |
Collapse
|
10
|
Conway N, Wildschuetz N, Moser T, Bulubas L, Sollmann N, Tanigawa N, Meyer B, Krieg SM. Cortical plasticity of motor-eloquent areas measured by navigated transcranial magnetic stimulation in patients with glioma. J Neurosurg 2017; 127:981-991. [PMID: 28106500 DOI: 10.3171/2016.9.jns161595] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The goal of this study was to obtain a better understanding of the mechanisms underlying cerebral plasticity. Coupled with noninvasive detection of its occurrence, such an understanding has huge potential to improve glioma therapy. The authors aimed to demonstrate the frequency of plastic reshaping, find clues to the patterns behind it, and prove that it can be recognized noninvasively using navigated transcranial magnetic stimulation (nTMS). METHODS The authors used nTMS to map cortical motor representation in 22 patients with gliomas affecting the precentral gyrus, preoperatively and 3-42 months postoperatively. Location changes of the primary motor area, defined as hotspots and map centers of gravity, were measured. RESULTS Spatial normalization and analysis of hotspots showed an average shift of 5.1 ± 0.9 mm (mean ± SEM) on the mediolateral axis, and 10.7 ± 1.6 mm on the anteroposterior axis. Map centers of gravity were found to have shifted by 4.6 ± 0.8 mm on the mediolateral, and 8.7 ± 1.5 mm on the anteroposterior axis. Motor-eloquent points tended to shift toward the tumor by 4.5 ± 3.6 mm if the lesion was anterior to the rolandic region and by 2.6 ± 3.3 mm if it was located posterior to the rolandic region. Overall, 9 of 16 (56%) patients with high-grade glioma and 3 of 6 (50%) patients with low-grade glioma showed a functional shift > 10 mm at the cortical level. CONCLUSIONS Despite the small size of this series, analysis of these data showed that cortical functional reorganization occurs quite frequently. Moreover, nTMS was shown to detect such plastic reorganization noninvasively.
Collapse
Affiliation(s)
- Neal Conway
- Department of Neurosurgery and.,Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Germany; and
| | - Noémie Wildschuetz
- Department of Neurosurgery and.,Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Germany; and
| | - Tobias Moser
- Department of Neurosurgery and.,Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Germany; and
| | - Lucia Bulubas
- Department of Neurosurgery and.,Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Germany; and
| | - Nico Sollmann
- Department of Neurosurgery and.,Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Germany; and
| | - Noriko Tanigawa
- Faculty of Linguistics, Philology, & Phonetics, University of Oxford, United Kingdom
| | - Bernhard Meyer
- Department of Neurosurgery and.,Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Germany; and
| | - Sandro M Krieg
- Department of Neurosurgery and.,Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Germany; and
| |
Collapse
|
11
|
Sollmann N, Bulubas L, Tanigawa N, Zimmer C, Meyer B, Krieg SM. The variability of motor evoked potential latencies in neurosurgical motor mapping by preoperative navigated transcranial magnetic stimulation. BMC Neurosci 2017; 18:5. [PMID: 28049425 PMCID: PMC5209850 DOI: 10.1186/s12868-016-0321-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 12/09/2016] [Indexed: 12/19/2022] Open
Abstract
Background Recording of motor evoked potentials (MEPs) is used during navigated transcranial magnetic stimulation (nTMS) motor mapping to locate motor function in the human brain. However, factors potentially underlying MEP latency variability in neurosurgical motor mapping are vastly unknown. In the context of this study, one hundred brain tumor patients underwent preoperative nTMS-based motor mapping of the tumor hemisphere between 2010 and 2013. Fourteen predefined predictor variables were recorded, and MEP latencies of abductor pollicis brevis muscle (APB), abductor digiti minimi muscle (ADM), and flexor carpi radialis muscle (FCR) were analyzed using linear mixed-effect multiple regression analysis with the forward step-wise model comparison approach. Results Common factors (relevant to APB, ADM, and FCR) for MEP latency variability were gender, most likely due to body height, and antiepileptic drug (AED) intake. Muscle-specific factors (relevant to APB, ADM, or FCR) for MEP latency variability were resting motor threshold (rMT), tumor side, and tumor location. Conclusions Based on a large cohort of neurosurgical patients, this study provides data on a wide range of clinical factors that may underlie MEP latency variability. The factors that significantly contributed to MEP latency variability should be standardly recorded and taken into consideration during neurosurgical motor mapping.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Lucia Bulubas
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Noriko Tanigawa
- Faculty of Linguistics, Philology, and Phonetics, University of Oxford, Walton Street, Oxford, OX1 2HG, UK
| | - Claus Zimmer
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Section of Neuroradiology, Department of Radiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany. .,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
| |
Collapse
|
12
|
Clinical Factors Underlying the Inter-individual Variability of the Resting Motor Threshold in Navigated Transcranial Magnetic Stimulation Motor Mapping. Brain Topogr 2016; 30:98-121. [PMID: 27815647 DOI: 10.1007/s10548-016-0536-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 10/26/2016] [Indexed: 10/20/2022]
Abstract
Correctly determining individual's resting motor threshold (rMT) is crucial for accurate and reliable mapping by navigated transcranial magnetic stimulation (nTMS), which is especially true for preoperative motor mapping in brain tumor patients. However, systematic data analysis on clinical factors underlying inter-individual rMT variability in neurosurgical motor mapping is sparse. The present study examined 14 preselected clinical factors that may underlie inter-individual rMT variability by performing multiple regression analysis (backward, followed by forward model comparisons) on the nTMS motor mapping data of 100 brain tumor patients. Data were collected from preoperative motor mapping of abductor pollicis brevis (APB), abductor digiti minimi (ADM), and flexor carpi radialis (FCR) muscle representations among these patients. While edema and age at exam in the ADM model only jointly reduced the unexplained variance significantly, the other factors kept in the ADM model (gender, antiepileptic drug intake, and motor deficit) and each of the factors kept in the APB and FCR models independently significantly reduced the unexplained variance. Hence, several clinical parameters contribute to inter-individual rMT variability and should be taken into account during initial and follow-up motor mappings. Thus, the present study adds basic evidence on inter-individual rMT variability, whereby some of the parameters are specific to brain tumor patients.
Collapse
|
13
|
The value of preoperative functional cortical mapping using navigated TMS. Neurophysiol Clin 2016; 46:125-33. [PMID: 27229765 DOI: 10.1016/j.neucli.2016.05.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 05/02/2016] [Indexed: 01/29/2023] Open
Abstract
The surgical removal of brain tumours in so-called eloquent regions is frequently associated with a high risk of causing disabling postoperative deficits. Among the preoperative techniques proposed to help neurosurgical planning and procedure, navigated transcranial magnetic stimulation (nTMS) is increasingly performed. A high level of evidence is now available in the literature regarding the anatomical and functional accuracy of this mapping technique. This article presents the principles and facts demonstrating the value of using nTMS in clinical practice to preserve motor or language functions from deleterious lesions secondary to brain tumour resection or epilepsy surgery.
Collapse
|
14
|
Arnautovic A, Billups C, Broniscer A, Gajjar A, Boop F, Qaddoumi I. Delayed diagnosis of childhood low-grade glioma: causes, consequences, and potential solutions. Childs Nerv Syst 2015; 31:1067-77. [PMID: 25742877 PMCID: PMC4496265 DOI: 10.1007/s00381-015-2670-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 02/23/2015] [Indexed: 12/31/2022]
Abstract
PURPOSE Diagnosis of childhood brain tumors is delayed more than diagnosis of other pediatric cancers. However, the contribution of the most common pediatric brain tumors, lowgrade gliomas (LGG), to this delay has never been investigated. METHODS We retrospectively reviewed cases of childhood LGG diagnosed from January 1995 through December 2005 at our institution. The pre-diagnosis symptom interval (PSI) was conservatively calculated, and its association with race, sex, age, tumor site, tumor grade, and outcome measures (survival, disease progression, shunt use, seizures, extent of resection) was analyzed. Cases of neurofibromatosis type 1 were reported separately. RESULTS The 258 children had a median follow-up of 11.1 years, and 226 (88 %) remained alive. Greater pre-diagnosis symptom interval (PSI) was significantly associated with grade I (vs. grade II) tumors (p = 0.03) and age >10 years at diagnosis (p = 0.03). Half of the 16 spinal tumors had a PSI > 6 months. PSI was significantly associated with progression (p = 0.02) in grade I tumors (n = 195) and in grade I tumors outside the posterior fossa (n = 134, p = 0.03). Among children with grade I tumors, median PSI was longer in those who had seizures (10.3 months) than in those who did not (2.5 months) (p = 0.09). CONCLUSIONS Delayed diagnosis of childhood LGG allows tumor progression. To reduce time to diagnosis, medical curricula should emphasize inclusion of LGG in the differential diagnosis of CNS neoplasm.
Collapse
Affiliation(s)
- Aska Arnautovic
- Pediatric Oncology Education Program, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Catherine Billups
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Alberto Broniscer
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105
- Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis, TN 38105
| | - Amar Gajjar
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105
- Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis, TN 38105
| | - Frederick Boop
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Ibrahim Qaddoumi
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105
- Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis, TN 38105
| |
Collapse
|
15
|
Picht T. Current and potential utility of transcranial magnetic stimulation in the diagnostics before brain tumor surgery. CNS Oncol 2015; 3:299-310. [PMID: 25286041 DOI: 10.2217/cns.14.25] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This article describes the evolution and state-of-the-art of navigated transcranial magnetic stimulation for evaluation of patients with brain tumors in presumed eloquent location. Alternative noninvasive technologies for functional brain mapping are described and assessed in the context of their usability and clinical needs. In addition to the description of the current validation level and clinical application of navigated transcranial magnetic stimulation for motor and language mapping, the manuscript highlights ongoing research efforts and provides an outlook on upcoming developments in the field of noninvasive brain mapping. Finally, the clinical rationale for presurgical noninvasive brain mapping is discussed in the light of current developments in neurosurgery.
Collapse
|
16
|
Cordier D, Gozé C, Schädelin S, Rigau V, Mariani L, Duffau H. A better surgical resectability of WHO grade II gliomas is independent of favorable molecular markers. J Neurooncol 2014; 121:185-93. [PMID: 25261925 DOI: 10.1007/s11060-014-1623-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/21/2014] [Indexed: 12/23/2022]
Abstract
A higher extent of resection (EOR) in WHO grade II gliomas (GIIG) is correlated with longer survival. However, the molecular markers also feature prognostic relevance. Here, we examined whether maximal EOR was related to the genetic profile. We retrospectively investigated the predictive value of 1p19q, IDH1, 53 expression and Ki67 index for the EOR in 200 consecutive GIIGs (2007-2013). Data were modeled in a linear model. The analysis was performed with two statistical methods (arcsin-sqrt and Beta-regression model with logit link). There was no deletion 1p19q in 118 cases, codeletion 1p19q (57 cases), single deletion 1p (4 cases) or19q (16 cases). 155 patients had a mutation of IDH1. p53 was graded in 4 degrees (0:92 cases, 1:52 cases, 2:31 cases, 3:8 cases). Mean Ki67 index was 5.2 % (range 1-20 %). Mean preoperative tumor volume was 60.8 cm(3) (range 3.3-250 cm(3)) and mean EOR was 0.917 (range 0.574-1). The statistical analysis was significant for a lower EOR in patients with codeletion 1p19q (OR 0.738, p = 0.0463) and with a single deletion 19q (OR 0.641, p = 0.0168). There was no significant correlation between IDH1 or p53 and the EOR. Higher Ki67 was marginally associated with higher EOR (p = 0.0603). The study demonstrates in a large cohort of GIIG that a higher EOR is not attributable to favorable genetic markers. This original result supports maximal surgical resection as an important therapeutic factor per se to optimize prognosis, independently of the molecular pattern.
Collapse
Affiliation(s)
- Dominik Cordier
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Av Augustin Fliche, 34295, Montpellier, France
| | | | | | | | | | | |
Collapse
|
17
|
Conti A, Raffa G, Granata F, Rizzo V, Germanò A, Tomasello F. Navigated Transcranial Magnetic Stimulation for “Somatotopic” Tractography of the Corticospinal Tract. Oper Neurosurg (Hagerstown) 2014; 10 Suppl 4:542-54; discussion 554. [DOI: 10.1227/neu.0000000000000502] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
BACKGROUND:
Diffusion tensor imaging tractography provides 3-dimensional reconstruction of principal white matter tracts, but its spatial accuracy has been questioned. Navigated transcranial magnetic stimulation (nTMS) enables somatotopic mapping of the motor cortex.
OBJECTIVE:
We used motor maps to reconstruct the corticospinal tract (CST) by integrating elements of its somatotopic organization. We analyzed the accuracy of this method compared with a standard technique and verified its reliability with intraoperative subcortical stimulation.
METHODS:
We prospectively collected data from patients who underwent surgery between January 2012 and October 2013 for lesions involving the CST. nTMS-based diffusion tensor imaging tractography was compared with a standard technique. The reliability and accuracy between the 2 techniques were analyzed by comparing the number of fibers, the concordance in size, and the location of the cortical end of the CST and the motor area. The accuracy of the technique was assessed by using direct subcortical stimulation.
RESULTS:
Twenty patients were enrolled in the study. nTMS-based tractography provided a detailed somatotopic reconstruction of the CST. This nTMS-based reconstruction resulted in a decreased number of fibers (305.1 ± 231.7 vs 1024 ± 193, P < .001) and a significantly greater overlap between the motor cortex and the cortical end-region of the CST compared with the standard technique (90.5 ± 8.8% vs 58.3 ± 16.6%, P < .001). Direct subcortical stimulation confirmed the CST location and the somatotopic reconstruction in all cases.
CONCLUSION:
These results suggest that nTMS-based tractography of the CST is more accurate and less operator dependent than the standard technique and provides a reliable anatomic and functional characterization of the motor pathway.
Collapse
Affiliation(s)
- Alfredo Conti
- Neurosurgical Clinic, Department of Neuroscience, and
| | | | - Francesca Granata
- Department of Radiological Sciences and Anatomy, University of Messina, Messina, Italy
| | | | | | | |
Collapse
|
18
|
Frey D, Schilt S, Strack V, Zdunczyk A, Rösler J, Niraula B, Vajkoczy P, Picht T. Navigated transcranial magnetic stimulation improves the treatment outcome in patients with brain tumors in motor eloquent locations. Neuro Oncol 2014; 16:1365-72. [PMID: 24923875 DOI: 10.1093/neuonc/nou110] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Neurological and oncological outcomes of motor eloquent brain-tumor patients depend upon the ability to localize functional areas and the respective proposed therapy. We set out to determine whether the use of navigated transcranial magnetic stimulation (nTMS) had an impact on treatment and outcome in patients with brain tumors in motor eloquent locations. METHODS We enrolled 250 consecutive patients and compared their functional and oncological outcomes to a matched pre-nTMS control group (n = 115). RESULTS nTMS mapping results disproved suspected involvement of primary motor cortex in 25.1% of cases, expanded surgical indication in 14.8%, and led to planning of more extensive resection in 35.2% of cases and more restrictive resection in 3.5%. In comparison with the control group, the rate of gross total resections increased significantly from 42% to 59% (P < .05). Progression-free-survival for low grade glioma was significantly better in the nTMS group at 22.4 months than in control group at 15.4 months (P < .05). Integration of nTMS led to a nonsignificant change of postoperative deficits from 8.5% in the control group to 6.1% in the nTMS group. CONCLUSIONS nTMS provides crucial data for preoperative planning and surgical resection of tumors involving essential motor areas. Expanding surgical indications and extent of resection based on nTMS enables more patients to undergo surgery and might lead to better neurological outcomes and higher survival rates in brain tumor patients. The impact of this study should go far beyond the neurosurgical community because it could fundamentally improve treatment and outcome, and its results will likely change clinical practice.
Collapse
Affiliation(s)
- Dietmar Frey
- Department of Neurosurgery, Charité University Medicine, Berlin, Germany
| | - Sarah Schilt
- Department of Neurosurgery, Charité University Medicine, Berlin, Germany
| | - Valérie Strack
- Department of Neurosurgery, Charité University Medicine, Berlin, Germany
| | - Anna Zdunczyk
- Department of Neurosurgery, Charité University Medicine, Berlin, Germany
| | - Judith Rösler
- Department of Neurosurgery, Charité University Medicine, Berlin, Germany
| | - Birat Niraula
- Department of Neurosurgery, Charité University Medicine, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité University Medicine, Berlin, Germany
| | - Thomas Picht
- Department of Neurosurgery, Charité University Medicine, Berlin, Germany
| |
Collapse
|
19
|
Picht T, Schilt S, Frey D, Vajkoczy P, Kufeld M. Integration of navigated brain stimulation data into radiosurgical planning: potential benefits and dangers. Acta Neurochir (Wien) 2014; 156:1125-33. [PMID: 24744010 DOI: 10.1007/s00701-014-2079-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 03/25/2014] [Indexed: 02/03/2023]
Abstract
BACKGROUND Radiosurgical treatment of brain lesions near motor or language eloquent areas requires careful planning to achieve the optimal balance between effective dose prescription and preservation of function. Navigated brain stimulation (NBS) is the only non-invasive modality that allows the identification of functionally essential areas by electrical stimulation or inhibition of cortical neurons analogous to the gold-standard of intraoperative electrical mapping. OBJECTIVE To evaluate the feasibility of NBS data integration into the radiosurgical environment, and to analyze the influence of NBS data on the radiosurgical treatment planning for lesions near or within motor or language eloquent areas of the brain. METHODS Eleven consecutive patients with brain lesions in presumed motor or language eloquent locations eligible for radiosurgical treatment were mapped with NBS. The radiosurgical team prospectively analyzed the data transfer and classified the influence of the functional NBS information on the radiosurgical treatment planning using a standardized questionnaire. RESULTS The semi-automatized data transfer to the radiosurgical planning workstation was flawless in all cases. The NBS data influenced the radiosurgical treatment planning procedure as follows: improved risk-benefit balancing in all cases, target contouring in 0 %, dose plan modification in 81.9 %, reduction of radiation dosage in 72.7 % and treatment indication in 63.7 % of the cases. CONCLUSIONS NBS data integration into radiosurgical treatment planning is feasible. By mapping the spatial relationship between the lesion and functionally essential areas, NBS has the potential to improve radiosurgical planning safety for eloquently located lesions.
Collapse
Affiliation(s)
- Thomas Picht
- Department of Neurosurgery, Charité University Hospital, Augustenburger Platz 1, 13353, Berlin, Germany,
| | | | | | | | | |
Collapse
|
20
|
Functional brain mapping of patients with arteriovenous malformations using navigated transcranial magnetic stimulation: first experience in ten patients. Acta Neurochir (Wien) 2014; 156:885-95. [PMID: 24639144 DOI: 10.1007/s00701-014-2043-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 02/16/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Intracranial arteriovenous malformations (AVM) are known to be potent inductors of functional plasticity, and their vasculature makes standard functional imaging difficult. Here we conducted functional mapping of both primary motor cortex and speech related areas in patients with AVM using navigated transcranial magnetic stimulation (nTMS), which has been recently proven as a reliable noninvasive modality of preoperative functional brain mapping. METHOD nTMS mapping was performed in ten patients with unruptured intracranial AVMs located in or near eloquent areas. Motor mapping was conducted for six patients with AVMs near the rolandic region, and speech mapping was performed for four patients with left perisylvian AVMs. After the examination, all patients were treated with surgery, radiosurgery or observed with best medical treatment on case-by-case basis. RESULTS Motor mapping allowed for delineation of the primary motor cortex, even if the anatomy was severely obscured by the AVM in all cases with rolandic AVMs. No plastic relocation of the primary motor cortex was observed. Repetitive stimulation of the left ventral precentral gyrus led to speech impairments in all four cases that underwent speech mapping. Right hemispheric involvement was observed in one out of four cases and potentially indicated plastic changes. No side effects were observed. CONCLUSION nTMS allowed for detailed delineation of eloquent areas even within hypervascularized cortical areas. Our observations indicate that nTMS functional mapping is feasible not only in tumorous brain lesions, but also in AVMs.
Collapse
|
21
|
Takahashi S, Vajkoczy P, Picht T. Navigated transcranial magnetic stimulation for mapping the motor cortex in patients with rolandic brain tumors. Neurosurg Focus 2013; 34:E3. [PMID: 23544409 DOI: 10.3171/2013.1.focus133] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Navigated transcranial magnetic stimulation (nTMS) is a novel technology in the field of neurosurgery for noninvasive delineation of cortical functional topography. This study addresses the spatial accuracy and clinical usefulness of nTMS in brain tumor surgery in or near the motor cortex based on a systematic review of observational studies.
Methods
A systematic search retrieved 11 reports published up to October 2012 in which adult patients were examined with nTMS prior to surgery. Quality criteria consisted of documentation of the influence of nTMS brain mapping on clinical decision making in a standardized prospective manner and/or performance of intraoperative direct electrical stimulation (DES) and comparison with nTMS results. Cross-observational assessment of nTMS accuracy was established by calculating a weighted mean distance between nTMS and DES.
Results
All studies reviewed in this article concluded that nTMS correlated well with the “gold standard” of DES. The mean distance between motor cortex identified on nTMS and DES by using the mean distance in 81 patients described in 6 quantitatively evaluated studies was 6.18 mm. The nTMS results changed the surgical strategy based on anatomical imaging alone in 25.3% of all patients, based on the data obtained in 87 patients in 2 studies.
Conclusions
The nTMS technique spatially correlates well with the gold standard of DES. Its functional information benefits surgical decision making and changes the treatment strategy in one-fourth of cases.
Collapse
|
22
|
Krieg SM, Schnurbus L, Shiban E, Droese D, Obermueller T, Buchmann N, Gempt J, Meyer B, Ringel F. Surgery of highly eloquent gliomas primarily assessed as non-resectable: risks and benefits in a cohort study. BMC Cancer 2013; 13:51. [PMID: 23374675 PMCID: PMC3583679 DOI: 10.1186/1471-2407-13-51] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 01/30/2013] [Indexed: 01/17/2023] Open
Abstract
Background Today, the treatment of choice for high- and low-grade gliomas requires primarily surgical resection to achieve the best survival and quality of life. Nevertheless, many gliomas within highly eloquent cortical regions, e.g., insula, rolandic, and left perisylvian cortex, still do not undergo surgery because of the impending risk of surgery-related deficits at some centers. However, pre and intraoperative brain mapping, intraoperative neuromonitoring (IOM), and awake surgery increase safety, which allows resection of most of these tumors with a considerably low rate of postoperatively new deficits. Methods Between 2006 and 2012, we resected 47 out of 51 supratentorial gliomas (92%), which were primarily evaluated to be non-resectable during previous presentation at another neurosurgical department. Out of these, 25 were glioblastomas WHO grade IV (53%), 14 were anaplastic astrocytomas WHO grade III (30%), 7 were diffuse astrocytomas WHO grade II (15%), and one was a pilocytic astrocytoma WHO grade I (2%). All data, including pre and intraoperative brain mapping and monitoring (IOM) by motor evoked potentials (MEPs) were reviewed and related to the postoperative outcome. Results Awake surgery was performed in 8 cases (17%). IOM was required in 38 cases (81%) and was stable in 18 cases (47%), whereas MEPs changed the surgical strategy in 10 cases (26%). Thereby, gross total resection was achieved in 35 cases (74%). Postoperatively, 17 of 47 patients (36%) had a new motor or language deficit, which remained permanent in 8.5% (4 patients). Progression-free follow-up was 11.3 months (range: 2 weeks – 64.5 months) and median survival was 14.8 months (range: 4 weeks – 20.5 months). Median Karnofsky Performance Scale was 85 before and 80 after surgery). Conclusions In specialized centers, most highly eloquent gliomas are eligible for surgical resection with an acceptable rate of surgery-related deficits; therefore, they should be referred to specialized centers.
Collapse
Affiliation(s)
- Sandro M Krieg
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str, 22, 81675, Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|