1
|
Reuvers TGA, Grandia V, Brandt RMC, Arab M, Maas SLN, Bos EM, Nonnekens J. Investigating the Radiobiological Response to Peptide Receptor Radionuclide Therapy Using Patient-Derived Meningioma Spheroids. Cancers (Basel) 2024; 16:2515. [PMID: 39061156 PMCID: PMC11275064 DOI: 10.3390/cancers16142515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Peptide receptor radionuclide therapy (PRRT) using 177Lu-DOTA-TATE has recently been evaluated for the treatment of meningioma patients. However, current knowledge of the underlying radiation biology is limited, in part due to the lack of appropriate in vitro models. Here, we demonstrate proof-of-concept of a meningioma patient-derived 3D culture model to assess the short-term response to radiation therapies such as PRRT and external beam radiotherapy (EBRT). We established short-term cultures (1 week) for 16 meningiomas with high efficiency and yield. In general, meningioma spheroids retained characteristics of the parental tumor during the initial days of culturing. For a subset of tumors, clear changes towards a more aggressive phenotype were visible over time, indicating that the culture method induced dedifferentiation of meningioma cells. To assess PRRT efficacy, we demonstrated specific uptake of 177Lu-DOTA-TATE via somatostatin receptor subtype 2 (SSTR2), which was highly overexpressed in the majority of tumor samples. PRRT induced DNA damage which was detectable for an extended timeframe as compared to EBRT. Interestingly, levels of DNA damage in spheroids after PRRT correlated with SSTR2-expression levels of parental tumors. Our patient-derived meningioma culture model can be used to assess the short-term response to PRRT and EBRT in radiobiological studies. Further improvement of this model should pave the way towards the development of a relevant culture model for assessment of the long-term response to radiation and, potentially, individual patient responses to PRRT and EBRT.
Collapse
Affiliation(s)
- Thom G A Reuvers
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Vivian Grandia
- Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Renata M C Brandt
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Majd Arab
- Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Sybren L N Maas
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Eelke M Bos
- Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Julie Nonnekens
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
2
|
Huang Y, Wu Z, Peng Z, Liu A, Yuan W, Han D, Peng J. Hsa_circ_0004872 alleviates meningioma progression by sponging miR-190a-3p/PTEN signaling. BMC Cancer 2024; 24:345. [PMID: 38500077 PMCID: PMC10949562 DOI: 10.1186/s12885-024-12084-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Meningioma, the most prevalent intracranial tumor, possesses a significant propensity for malignant transformation. Circular RNAs (circ-RNAs), a class of non-coding RNAs, have emerged as crucial players in tumorigenesis. This study explores the functional relevance of hsa_circ_0004872, a specific circ-RNA, in the context of meningioma. METHODS Molecular structure and stability of hsa_circ_0004872 were elucidated through PCR identification. Meningioma cell proliferation and apoptosis were assessed using the CCK-8 assay and flow cytometry, respectively. Gene and protein expression were analyzed via qRT-PCR and western blot. Molecular interactions were confirmed through dual-luciferase reporter gene and RIP assays. RESULTS Hsa_circ_0004872, derived from exons 2 to 4 of the host gene MAPK1, demonstrated enhanced stability compared to its host MAPK1. Clinical data described that hsa_circ_0004872 was reduced in meningioma tissues and cell lines, and negatively correlated to poor survival rate of meningioma patients. Overexpression of hsa_circ_0004872 exhibited inhibitory effects on cell proliferation and promotion of apoptosis in vitro. Subsequent investigations unveiled a direct interaction between hsa_circ_0004872 and miR-190a-3p, leading to the activation of the PI3K/AKT signaling pathway through targeting PTEN. Notably, miR-190a-3p silence accelerated the apoptosis and proliferation inhibition of meningioma cells by inactivating PTEN/PI3K/AKT signaling, while miR-190a-3p overexpression showed an opposite effect, which greatly reversed the anti-tumor effects of hsa_circ_0004872 overexpression. CONCLUSION In summary, our findings highlighted the intricate role of hsa_circ_0004872 in meningioma, shedding light on the regulatory mechanisms involving circ-RNAs in tumor progression. This positions hsa_circ_0004872 as a potential key regulatory factor in meningioma with implications for future therapeutic interventions.
Collapse
Affiliation(s)
- Yongkai Huang
- Neurosurgery Department, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, 412000, Zhuzhou, Hunan Province, China
| | - Zhihui Wu
- Surgery Department, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, 412000, Zhuzhou, Hunan Province, China
| | - Zewei Peng
- Neurosurgery Department, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, 412000, Zhuzhou, Hunan Province, China
| | - Anmin Liu
- Emergency Department, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, 412000, Zhuzhou, Hunan Province, China
| | - Wen Yuan
- Neurosurgery Department, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, 412000, Zhuzhou, Hunan Province, China
| | - Deqing Han
- Neurosurgery Department, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, 412000, Zhuzhou, Hunan Province, China
| | - Junmin Peng
- Department of Anesthesiology, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, 412000, Zhuzhou, Hunan Province, China.
| |
Collapse
|
3
|
Milosevic A, Styczen H, Haubold J, Kessler L, Grueneisen J, Li Y, Weber M, Fendler WP, Morawitz J, Damman P, Wrede K, Kebir S, Glas M, Guberina M, Blau T, Schaarschmidt BM, Deuschl C. Correlation of the apparent diffusion coefficient with the standardized uptake value in meningioma of the skull plane using [68]Ga-DOTATOC PET/MRI. Nucl Med Commun 2023; 44:1106-1113. [PMID: 37823259 DOI: 10.1097/mnm.0000000000001774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
PURPOSE To evaluate a correlation between an MRI-specific marker for cellular density [apparent diffusion coefficient (ADC)] and the expression of Somatostatin Receptors (SSTR) in patients with meningioma of the skull plane and orbital space. METHODS 68 Ga-DOTATOC PET/MR imaging was performed in 60 Patients with suspected or diagnosed meningiomas of the skull base and eye socket. Analysis of ADC values succeeded in 32 patients. ADC values (ADC mean and ADC min ) were analyzed using a polygonal region of interest. Tracer-uptake of target lesions was assessed according to corresponding maximal (SUV max ) and mean (SUV mean ) values. Correlations between assessed parameters were evaluated using the Pearson correlation coefficient. RESULTS One out of 32 patients (3%) was diagnosed with lymphoma by histopathological examination and therefore excluded from further analysis. Median ADC mean amounted to 822 × 10 -5 mm²/s -1 (95% CI: 570-1497) and median ADC min was 493 × 10 -5 mm 2 /s -1 (95% CI: 162-783). There were no significant correlations between SUV max and ADC min (r = 0.60; P = 0.76) or ADC mean (r = -0.52; P = 0.79), respectively. However, Pearson's test showed a weak, inverse but insignificant correlation between ADC mean and SUV mean (r = -0.33; P = 0.07). CONCLUSION The presented data displays no relevant correlations between increased SSTR expression and cellularity in patients with meningioma of the skull base. SSTR-PET and DWI thus may offer complementary information on tumor characteristics of meningioma.
Collapse
Affiliation(s)
- Aleksandar Milosevic
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen,
| | - Hanna Styczen
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen,
| | - Johannes Haubold
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen,
| | - Lukas Kessler
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen,
| | - Johannes Grueneisen
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen,
| | - Yan Li
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen,
| | - Manuel Weber
- Department of Nuclear Medicine, University Hospital Essen,
| | | | | | - Philipp Damman
- Department of Neurosurgery and Spine Surgery, University Hospital Essen,
| | - Karsten Wrede
- Department of Neurosurgery and Spine Surgery, University Hospital Essen,
| | - Sied Kebir
- Department of Neurology and Neurooncology, University Hospital Essen,
| | - Martin Glas
- Department of Neurology and Neurooncology, University Hospital Essen,
| | - Maja Guberina
- Department of Radiotherapy, University Hospital Essen and
| | - Tobias Blau
- Department of Neuropathology, University Hospital Essen, Germany
| | - Benedikt M Schaarschmidt
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen,
| | - Cornelius Deuschl
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen,
| |
Collapse
|
4
|
Horowitz T, Salgues B, Padovani L, Farah K, Dufour H, Chinot O, Guedj E, Graillon T. Optic Nerve Sheath Meningiomas: Solving Diagnostic Challenges with 68Ga-DOTATOC PET/CT. Diagnostics (Basel) 2023; 13:2307. [PMID: 37443701 DOI: 10.3390/diagnostics13132307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/18/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
68Ga-DOTATOC PET could be a noninvasive, highly sensitive, and specific technique for the challenging diagnosis of optic nerve sheath meningioma (ONSM). Our objective was to report the use and results of 68Ga-DOTATOC PET in suspected ONSM. Twelve subjects who underwent 68Ga-DOTATOC PET for suspected ONSM in our department were retrospectively included. Standardised clinical and radiological data were collected. The PET examination results were classified as positive or negative, and lesion standardised uptake values (SUVmax) were recorded. 68Ga-DOTATOC PET confirmed positive uptake in six cases (SUVmax > 5), leading to ONSM diagnoses followed by radiation therapy in patients with vision loss. Six 68Ga-DOTATOC PET scans were considered negative (SUVmax < 5); these comprised one case of neurosarcoidosis, one cavernous malformation, and four uncertain diagnoses, leading to further investigation. 68Ga-DOTATOC PET was helpful in tumour volume delineation before radiation therapy, leading to a decrease in dose exposure. Noninvasive 68Ga-DOTATOC PET should be performed before treating nonhistologically proven meningiomas with radiotherapy or stereotactic radiosurgery, particularly in cases of uncertain diagnosis with MRI, which characterises most ONSM cases. PET SUVmax thresholds to distinguish meningioma from nonspecific uptake in other lesions need to be adapted to ONSM. 68Ga-DOTATOC PET improves the intraorbital lesion diagnostic approach and therefore impacts therapeutic management.
Collapse
Affiliation(s)
- Tatiana Horowitz
- Nuclear Medicine Department, APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, CERIMED, Aix Marseille University, 13005 Marseille, France
| | - Betty Salgues
- Nuclear Medicine Department, APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, CERIMED, Aix Marseille University, 13005 Marseille, France
| | - Laetitia Padovani
- Radiotherapy Department, APHM, Timone Hospital, 13005 Marseille, France
| | - Kaissar Farah
- Neurosurgery Department, INSERM, MMG, APHM, Timone Hospital, Aix-Marseille University, 13005 Marseille, France
| | - Henry Dufour
- Neurosurgery Department, INSERM, MMG, APHM, Timone Hospital, Aix-Marseille University, 13005 Marseille, France
| | - Olivier Chinot
- Neuro-Oncology Department, APHM, Timone Hospital, 13005 Marseille, France
| | - Eric Guedj
- Nuclear Medicine Department, APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, CERIMED, Aix Marseille University, 13005 Marseille, France
| | - Thomas Graillon
- Neurosurgery Department, INSERM, MMG, APHM, Timone Hospital, Aix-Marseille University, 13005 Marseille, France
| |
Collapse
|
5
|
Meißner AK, von Spreckelsen N, Al Shughri A, Brunn A, Fuertjes G, Schlamann M, Schmidt M, Dietlein M, Rueß D, Ruge MI, Galldiks N, Goldbrunner R. Case report: Use of 68Ga-DOTATATE-PET for treatment guidance in complex meningioma disease. Front Oncol 2022; 12:1017339. [PMID: 36313670 PMCID: PMC9596965 DOI: 10.3389/fonc.2022.1017339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/26/2022] [Indexed: 12/03/2022] Open
Abstract
Currently, contrast-enhanced MRI is the method of choice for treatment planning and follow-up in patients with meningioma. However, positron emission tomography (PET) imaging of somatostatin receptor subtype 2 (SSTR2) expression using 68Ga-DOTATATE may provide a higher sensitivity for meningioma detection, especially in cases with complex anatomy or in the recurrent setting. Here, we report on a patient with a multilocal recurrent atypical meningioma, in which 68Ga-DOTATATE PET was considerably helpful for treatment guidance and decision-making.
Collapse
Affiliation(s)
- Anna-Katharina Meißner
- Department of General Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- *Correspondence: Anna-Katharina Meißner,
| | - Niklas von Spreckelsen
- Department of General Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Abdulkader Al Shughri
- Department of Neuropathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anna Brunn
- Department of Neuropathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gina Fuertjes
- Department of General Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Marc Schlamann
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and, Duesseldorf, Germany
| | - Matthias Schmidt
- Center for Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and, Duesseldorf, Germany
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Markus Dietlein
- Center for Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and, Duesseldorf, Germany
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Daniel Rueß
- Center for Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and, Duesseldorf, Germany
- Department of Stereotaxy and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Maximilian I. Ruge
- Center for Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and, Duesseldorf, Germany
- Department of Stereotaxy and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Norbert Galldiks
- Center for Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and, Duesseldorf, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, Juelich, Germany
| | - Roland Goldbrunner
- Department of General Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and, Duesseldorf, Germany
| |
Collapse
|
6
|
Dijkstra *BM, Nonnekens J, Nagengast W, Kruijff S, Meersma GJ, den Dunnen WFA, Kruyt FAE, Groen RJM. Feasibility of bevacizumab-IRDye800CW as a tracer for fluorescence-guided meningioma surgery. J Neurosurg 2022; 138:1263-1272. [PMID: 36308486 DOI: 10.3171/2022.9.jns221036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/09/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE
Meningiomas are frequently occurring, often benign intracranial tumors. Molecular fluorescence can be used to intraoperatively identify residual meningioma tissue and optimize safe resection; however, currently no clinically approved agent is available for this specific tumor type. In meningiomas, vascular endothelial growth factor α (VEGFα) is upregulated, and this biomarker could be targeted with bevacizumab-IRDye800CW, a fluorescent agent that is already clinically applied for the resection of other tumors and neoplasms. Here, the authors investigated the feasibility of using bevacizumab-IRDye800CW to target VEGFα in a CH-157MN xenografted mouse model.
METHODS
Five mice with CH-157MN xenografts with volumes of 500 mm3 were administered intravenous bevacizumab-IRDye800CW. Mice were imaged in vivo at 24 hours, 48 hours, and 72 hours after injection with the FMT2500 fluorescence imaging system. Biodistribution was determined ex vivo using the Pearl fluorescent imager at 72 hours after injection. To mimic a clinical scenario, 2 animals underwent postmortem xenograft resection using both white-light and fluorescence guidance. Lastly, fresh and frozen human meningioma specimens were incubated ex vivo with bevacizumab-IRDye800CW, stained with anti-VEGFα, and microscopically examined.
RESULTS
In vivo, tumors fluoresced at all time points after tracer administration and background fluorescence decreased with time. Ex vivo analyses of tracer biodistribution showed the highest fluorescence in resected tumor tissue. Brain, skull, and muscle tissue showed very low fluorescence. Microscopically, fluorescence was observed in the cytoplasm and was correlated with VEGFα expression patterns. During postmortem surgery, both the tumor bulk and a small tumor remnant were detected. Bevacizumab-IRDye800CW bound specifically to all tested human meningioma samples, as indicated by a high fluorescent signal in the tumor bulk compared with the surrounding healthy dura mater.
CONCLUSIONS
Bevacizumab-IRDye800CW showed meningioma specificity, as illustrated by high VEGFα-mediated uptake in the meningioma xenograft mouse model. Small tumor lesions were detected using fluorescence guidance. Thus, the next step will be to assess the feasibility of using already available clinical grade bevacizumab-IRDye800CW to optimize meningioma resection in a human trial.
Collapse
Affiliation(s)
| | - Julie Nonnekens
- Department of Radiology and Nuclear Medicine, Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | | | - Wilfred F. A. den Dunnen
- Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, The Netherlands; and
| | | | | |
Collapse
|
7
|
Dijkstra BM, de Jong M, Stroet MCM, Andreae F, Dulfer SE, Everts M, Kruijff S, Nonnekens J, den Dunnen WFA, Kruyt FAE, Groen RJM. Evaluation of Ac-Lys 0(IRDye800CW)Tyr 3-octreotate as a novel tracer for SSTR 2-targeted molecular fluorescence guided surgery in meningioma. J Neurooncol 2021; 153:211-222. [PMID: 33768405 PMCID: PMC8211583 DOI: 10.1007/s11060-021-03739-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/12/2021] [Indexed: 01/03/2023]
Abstract
Purpose Meningioma recurrence rates can be reduced by optimizing surgical resection with the use of intraoperative molecular fluorescence guided surgery (MFGS). We evaluated the potential of the fluorescent tracer 800CW-TATE for MFGS using in vitro and in vivo models. It targets somatostatin receptor subtype 2 (SSTR2), which is overexpressed in all meningiomas. Methods Binding affinity of 800CW-TATE was evaluated using [177Lu] Lu-DOTA-Tyr3-octreotate displacement assays. Tumor uptake was determined by injecting 800CW-TATE in (SSTR2-positive) NCI-H69 or (SSTR2-negative) CH-157MN xenograft bearing mice and FMT2500 imaging. SSTR2-specific binding was measured by comparing tumor uptake in NCI-H69 and CH-157MN xenografts, blocking experiments and non-targeted IRDye800CW-carboxylate binding. Tracer distribution was analyzed ex vivo, and the tumor-to-background ratio (TBR) was calculated. SSTR2 expression was determined by immunohistochemistry (IHC). Lastly, 800CW-TATE was incubated on frozen and fresh meningioma specimens and analyzed by microscopy. Results 800CW-TATE binding affinity assays showed an IC50 value of 72 nM. NCI-H69 xenografted mice showed a TBR of 21.1. 800CW-TATE detection was reduced after co-administration of non-fluorescent DOTA-Tyr3-octreotate or administration of IRDye800CW. CH-157MN had no tumor specific tracer staining due to absence of SSTR2 expression, thereby serving as a negative control. The tracer bound specifically to SSTR2-positive meningioma tissues representing all WHO grades. Conclusion 800CW-TATE demonstrated sufficient binding affinity, specific SSTR2-mediated tumor uptake, a favorable biodistribution, and high TBR. These features make this tracer very promising for use in MFGS and could potentially aid in safer and a more complete meningioma resection, especially in high-grade meningiomas or those at complex anatomical localizations. Supplementary Information The online version contains supplementary material available at 10.1007/s11060-021-03739-1.
Collapse
Affiliation(s)
- Bianca M Dijkstra
- Department of Neurosurgery, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 VB, Groningen, The Netherlands
| | - Marion de Jong
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Marcus C M Stroet
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.,Department of Molecular Genetics, Oncode Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Fritz Andreae
- piCHEM Forschungs und EntwicklungsGmbH, Raaba-Grambach, Graz, Austria
| | - Sebastiaan E Dulfer
- Department of Neurosurgery, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 VB, Groningen, The Netherlands
| | - Marieke Everts
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Schelto Kruijff
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Julie Nonnekens
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.,Department of Molecular Genetics, Oncode Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Wilfred F A den Dunnen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Frank A E Kruyt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rob J M Groen
- Department of Neurosurgery, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 VB, Groningen, The Netherlands.
| |
Collapse
|
8
|
Wu W, Zhou Y, Wang Y, Liu L, Lou J, Deng Y, Zhao P, Shao A. Clinical Significance of Somatostatin Receptor (SSTR) 2 in Meningioma. Front Oncol 2020; 10:1633. [PMID: 33014821 PMCID: PMC7494964 DOI: 10.3389/fonc.2020.01633] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/27/2020] [Indexed: 12/30/2022] Open
Abstract
Somatostatin receptor (SSTR) 2, widely expressed in meningioma, is a G-protein-coupled receptor and can be activated by somatostatin or its synthetic analogs. SSTR2 is therefore extensively studied as a marker and target for the diagnosis and treatment of meningioma. Accumulating studies have revealed the crucial clinical significance of SSTR2 in meningioma. Summarizing the progress of these studies is urgently needed as it may not only provide novel and better management for patients with meningioma but also indicate the direction of future research. Pertinent literature is reviewed to summarize the recent collective knowledge and understanding of SSTR2’s clinical significance in meningioma in this review. SSTR2 offers novel ideas and approaches in the diagnosis, treatment, and prognostic prediction for meningioma, but more and further studies are required.
Collapse
Affiliation(s)
- Wei Wu
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yali Wang
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lihong Liu
- Department of Radiation Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianyao Lou
- Department of General Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Peng Zhao
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Evaluation of Diagnostic Accuracy Following the Coadministration of Delta-Aminolevulinic Acid and Second Window Indocyanine Green in Rodent and Human Glioblastomas. Mol Imaging Biol 2020; 22:1266-1279. [PMID: 32514886 DOI: 10.1007/s11307-020-01504-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE Fluorescence-guided-surgery offers intraoperative visualization of neoplastic tissue. Delta-aminolevulinic acid (5-ALA), which targets enzymatic abnormality in neoplastic cells, is the only approved agent for fluorescence-guided neurosurgery. More recently, we described Second Window Indocyanine Green (SWIG) which targets neoplastic tissue through enhanced vascular permeability. We hypothesized that SWIG would demonstrate similar clinical utility in identification of high-grade gliomas compared with 5-ALA. PROCEDURES Female C57/BL6 and nude/athymic mice underwent intracranial implantation of 300,000 GL261 and U87 cells, respectively. Tumor-bearing mice were euthanized after administration of 5-ALA (200 mg/kg intraperitoneal) and SWIG (5 mg/kg intravenous). Brain sections were imaged for protoporphyrin-IX and ICG fluorescence. Fluorescence and H&E images were registered using semi-automatic scripts for analysis. Human subjects with HGG were administered SWIG (2.5 mg/kg intravenous) and 5-ALA (20 mg/kg oral). Intraoperatively, tumors were imaged for ICG and protoporphyrin-IX fluorescence. RESULTS In non-necrotic tumors, 5-ALA and SWIG demonstrated 90.2 % and 89.2 % tumor accuracy (p value = 0.52) in U87 tumors and 88.1 % and 87.7 % accuracy (p value = 0.83) in GL261 tumors. The most distinct difference between 5-ALA and SWIG distribution was seen in areas of tumor-associated necrosis, which often showed weak/no protoporphyrin-IX fluorescence, but strong SWIG fluorescence. In twenty biopsy specimens from four subjects with HGG, SWIG demonstrated 100 % accuracy, while 5-ALA demonstrated 75-85 % accuracy; there was 90 % concordance between SWIG and 5-ALA fluorescence. CONCLUSION Our results provide the first direct comparison of the diagnostic utility of SWIG vs 5-ALA in both rodent and human HGG. Given the broader clinical utility of SWIG compared with 5-ALA, our data supports the use of SWIG in tumor surgery to improve the extent of safe resections. CLINICAL TRIAL NCT02710240 (US National Library of Medicine Registry; https://www.clinicaltrials.gov/ct2/show/NCT02710240?id=NCT02710240&draw=2&rank=1 ).
Collapse
|
10
|
Li T, Ren J, Ma J, Wu J, Zhang R, Yuan H, Han X. LINC00702/miR-4652-3p/ZEB1 axis promotes the progression of malignant meningioma through activating Wnt/β-catenin pathway. Biomed Pharmacother 2019; 113:108718. [DOI: 10.1016/j.biopha.2019.108718] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 01/17/2023] Open
|