1
|
Tariq R, Aziz HF, Paracha S, Ahmed N, Baqai MWS, Bakhshi SK, McAtee A, Ainger TJ, Mirza FA, Enam SA. Intraoperative mapping and preservation of executive functions in awake craniotomy: a systematic review. Neurol Sci 2024; 45:3723-3735. [PMID: 38520640 DOI: 10.1007/s10072-024-07475-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Awake craniotomy (AC) allows intraoperative brain mapping (ioBM) for maximum lesion resection while monitoring and preserving neurological function. Conventionally, language, visuospatial assessment, and motor functions are mapped, while the assessment of executive functions (EF) is uncommon. Impaired EF may lead to occupational, personal, and social limitations, thus, a compromised quality of life. A comprehensive literature search was conducted through Scopus, Medline, and Cochrane Library using a pre-defined search strategy. Articles were selected after duplicate removal, initial screening, and full-text assessment. The demographic details, ioBM techniques, intraoperative tasks, and their assessments, the extent of resection (EOR), post-op EF and neurocognitive status, and feasibility and potential adverse effects of the procedure were reviewed. The correlations of tumor locations with intraoperative EF deficits were also assessed. A total of 13 studies with intraoperative EF assessment of 351 patients were reviewed. Awake-asleep-awake protocol was most commonly used. Most studies performed ioBM using bipolar stimulation, with a frequency of 60 Hz, pulse durations ranging 1-2 ms, and intensity ranging 2-6 mA. Cognitive function was monitored with the Stroop task, spatial-2-back test, line-bisection test, trail-making-task, and digit-span tests. All studies reported similar or better EOR in patients with ioBM for EF. When comparing the neuropsychological outcomes of patients with ioBM of EF to those without it, all studies reported significantly better EF preservation in ioBM groups. Most authors reported EF mapping as a feasible tool to obtain satisfactory outcomes. Adverse effects included intraoperative seizures which were easily controlled. AC with ioBM of EF is a safe, effective, and feasible technique that allows satisfactory EOR and improved neurocognitive outcomes with minimal adverse effects.
Collapse
Affiliation(s)
- Rabeet Tariq
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Hafiza Fatima Aziz
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Shahier Paracha
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Noman Ahmed
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | | | - Saqib Kamran Bakhshi
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Annabel McAtee
- College of Medicine, University of Kentucky, Lexington, USA
| | - Timothy J Ainger
- Department of Neurology, University of Kentucky College of Medicine, Kentucky Neuroscience Institute, Lexington, KY, USA
| | - Farhan A Mirza
- Department of Neurosurgery, Kentucky Neuroscience Institute (KNI), University of Kentucky, Lexington, USA
| | - Syed Ather Enam
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan.
| |
Collapse
|
2
|
de Zwart B, Ruis C. An update on tests used for intraoperative monitoring of cognition during awake craniotomy. Acta Neurochir (Wien) 2024; 166:204. [PMID: 38713405 PMCID: PMC11076349 DOI: 10.1007/s00701-024-06062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/02/2024] [Indexed: 05/08/2024]
Abstract
PURPOSE Mapping higher-order cognitive functions during awake brain surgery is important for cognitive preservation which is related to postoperative quality of life. A systematic review from 2018 about neuropsychological tests used during awake craniotomy made clear that until 2017 language was most often monitored and that the other cognitive domains were underexposed (Ruis, J Clin Exp Neuropsychol 40(10):1081-1104, 218). The field of awake craniotomy and cognitive monitoring is however developing rapidly. The aim of the current review is therefore, to investigate whether there is a change in the field towards incorporation of new tests and more complete mapping of (higher-order) cognitive functions. METHODS We replicated the systematic search of the study from 2018 in PubMed and Embase from February 2017 to November 2023, yielding 5130 potentially relevant articles. We used the artificial machine learning tool ASReview for screening and included 272 papers that gave a detailed description of the neuropsychological tests used during awake craniotomy. RESULTS Comparable to the previous study of 2018, the majority of studies (90.4%) reported tests for assessing language functions (Ruis, J Clin Exp Neuropsychol 40(10):1081-1104, 218). Nevertheless, an increasing number of studies now also describe tests for monitoring visuospatial functions, social cognition, and executive functions. CONCLUSIONS Language remains the most extensively tested cognitive domain. However, a broader range of tests are now implemented during awake craniotomy and there are (new developed) tests which received more attention. The rapid development in the field is reflected in the included studies in this review. Nevertheless, for some cognitive domains (e.g., executive functions and memory), there is still a need for developing tests that can be used during awake surgery.
Collapse
Affiliation(s)
- Beleke de Zwart
- Experimental Psychology, Helmholtz Institution, Utrecht University, Utrecht, The Netherlands.
| | - Carla Ruis
- Experimental Psychology, Helmholtz Institution, Utrecht University, Utrecht, The Netherlands
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
3
|
Mandal AS, Wiener C, Assem M, Romero-Garcia R, Coelho P, McDonald A, Woodberry E, Morris RC, Price SJ, Duncan J, Santarius T, Suckling J, Hart MG, Erez Y. Tumour-infiltrated cortex participates in large-scale cognitive circuits. Cortex 2024; 173:1-15. [PMID: 38354669 PMCID: PMC10988771 DOI: 10.1016/j.cortex.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/16/2024]
Abstract
The extent to which tumour-infiltrated brain tissue contributes to cognitive function remains unclear. We tested the hypothesis that cortical tissue infiltrated by diffuse gliomas participates in large-scale cognitive circuits using a unique combination of intracranial electrocorticography (ECoG) and resting-state functional magnetic resonance (fMRI) imaging in four patients. We also assessed the relationship between functional connectivity with tumour-infiltrated tissue and long-term cognitive outcomes in a larger, overlapping cohort of 17 patients. We observed significant task-related high gamma (70-250 Hz) power modulations in tumour-infiltrated cortex in response to increased cognitive effort (i.e., switch counting compared to simple counting), implying preserved functionality of neoplastic tissue for complex tasks probing executive function. We found that tumour locations corresponding to task-responsive electrodes exhibited functional connectivity patterns that significantly co-localised with canonical brain networks implicated in executive function. Specifically, we discovered that tumour-infiltrated cortex with larger task-related high gamma power modulations tended to be more functionally connected to the dorsal attention network (DAN). Finally, we demonstrated that tumour-DAN connectivity is evident across a larger cohort of patients with gliomas and that it relates to long-term postsurgical outcomes in goal-directed attention. Overall, this study contributes convergent fMRI-ECoG evidence that tumour-infiltrated cortex participates in large-scale neurocognitive circuits that support executive function in health. These findings underscore the potential clinical utility of mapping large-scale connectivity of tumour-infiltrated tissue in the care of patients with diffuse gliomas.
Collapse
Affiliation(s)
- Ayan S Mandal
- Brain-Gene Development Lab, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, USA; Brain Mapping Unit, Department of Psychiatry, University of Cambridge, UK.
| | - Chemda Wiener
- Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel
| | - Moataz Assem
- Medical Research Council, Cognition and Brain Sciences Unit, University of Cambridge, UK
| | - Rafael Romero-Garcia
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, UK; Department of Medical Physiology and Biophysics, Instituto de Biomedicina de Sevilla (IBiS) HUVR/CSIC/Universidad de Sevilla/CIBERSAM, ISCIII, Sevilla, Spain
| | | | - Alexa McDonald
- Department of Neuropsychology, Cambridge University Hospitals NHS Foundation Trust, UK
| | - Emma Woodberry
- Department of Neuropsychology, Cambridge University Hospitals NHS Foundation Trust, UK
| | - Robert C Morris
- Department of Neuropsychology, Cambridge University Hospitals NHS Foundation Trust, UK
| | - Stephen J Price
- Department of Neurosurgery, Cambridge University Hospitals NHS Foundation Trust, UK
| | - John Duncan
- Medical Research Council, Cognition and Brain Sciences Unit, University of Cambridge, UK; Department of Experimental Psychology, University of Oxford, UK
| | - Thomas Santarius
- Department of Neurosurgery, Cambridge University Hospitals NHS Foundation Trust, UK; Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, UK
| | - John Suckling
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, UK; Behavioural and Clinical Neuroscience Institute, University of Cambridge, UK; Cambridge and Peterborough NHS Foundation Trust, UK
| | - Michael G Hart
- St George's, University of London & St George's University Hospitals NHS Foundation Trust, Institute of Molecular and Clinical Sciences, Neurosciences Research Centre, Cranmer Terrace, London, UK
| | - Yaara Erez
- Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel; Medical Research Council, Cognition and Brain Sciences Unit, University of Cambridge, UK; Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
4
|
Vooijs M, Robertson FC, Blitz SE, Jungk C, Krieg SM, Schucht P, De Vleeschouwer S, Vincent AJPE, Berger MS, Nahed BV, Broekman MLD, Gerritsen JKW. Level I and II deficits-A clinical survey on international practice of awake craniotomy and definitions of postoperative "major" and "minor" deficits. Neurooncol Adv 2024; 6:vdae206. [PMID: 39687790 PMCID: PMC11647522 DOI: 10.1093/noajnl/vdae206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
Background Awake craniotomy (AC) is a technique that balances maximum resection and minimal postoperative deficits in patients with intracranial tumors. To aid in the comparability of functional outcomes after awake surgery, this study investigated its international practice and aimed to define categories of postoperative deficits. Methods A survey was distributed via neurosurgical networks in Europe (European Association of Neurosurgical Societies, EANS), the Netherlands (Nederlandse Vereniging voor Neurochirurgie, NVVN), Belgium (Belgian Society of Neurosurgery, BSN), and the United States (Congress of Neurological Surgeons, CNS) between April 2022 and April 2023. Questions involved decision-making, including patient selection, anxiety assessment, and termination of resection. Interpretation of "major" and "minor" deficits, respectively labeled "level I" and "level II," was assessed. Results Three hundred and ninety-five neurosurgeons from 46 countries completed the survey. Significant heterogeneity was found in the domains of indications, anxiety assessment, seizure management, and termination of resection. Moreover, the interpretation of "major" deficits mainly included language and motor impairments. Analysis across deficit categories showed significant overlap in the domains of executive function, social cognition, and vision. Secondly, "minor" deficits and "minor cognitive" deficits showed vast overlap. Conclusions This survey demonstrates high variability between neurosurgeons in AC practice across multiple domains, inviting international efforts to reach a consensus regarding the standardization and grading of postoperative deficits. The proposed categories of "level I" and "level II" deficits may aid in this standardization. It allows for systematic assessment of the benefit of surgery in neuro-oncology patients and allows for comparison of surgical outcomes between institutions and surgeons. This may help to optimize international guidelines for surgical neuro-oncology, including AC.
Collapse
Affiliation(s)
- Manuela Vooijs
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Faith C Robertson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sarah E Blitz
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Christine Jungk
- Department of Neurosurgery, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Philippe Schucht
- Department of Neurosurgery, Bern University Hospital, Bern, Switzerland
| | | | | | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Brian V Nahed
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Marike L D Broekman
- Department of Neurosurgery, Haaglanden Medical Center, The Hague, The Netherlands
| | - Jasper K W Gerritsen
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- Department of Neurosurgery, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
5
|
Iorga M, Schneider N, Cho J, Tate MC, Parrish TB. A Novel Intraoperative Mapping Device Detects the Thermodynamic Response Function. Brain Sci 2023; 13:1091. [PMID: 37509021 PMCID: PMC10377735 DOI: 10.3390/brainsci13071091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Functional activation leads to an increase in local brain temperature via an increase in local perfusion. In the intraoperative setting, these cortical surface temperature fluctuations may be imaged using infrared thermography such that the activated brain areas are inferred. While it is known that temperature increases as a result of activation, a quantitative spatiotemporal description has yet to be achieved. A novel intraoperative infrared thermography device with data collection software was developed to isolate the thermal impulse response function. Device performance was validated using data from six patients undergoing awake craniotomy who participated in motor and sensory mapping tasks during infrared imaging following standard mapping with direct electrical stimulation. Shared spatiotemporal patterns of cortical temperature changes across patients were identified using group principal component analysis. Analysis of component time series revealed a thermal activation peak present across all patients with an onset delay of five seconds and a peak duration of ten seconds. Spatial loadings were converted to a functional map which showed strong correspondence to positive stimulation results for similar tasks. This component demonstrates the presence of a previously unknown impulse response function for functional mapping with infrared thermography.
Collapse
Affiliation(s)
- Michael Iorga
- Department of Radiology, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nils Schneider
- Department of Radiology, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jaden Cho
- Department of Radiology, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Matthew C. Tate
- Department of Neurological Surgery, Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Neurology, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Todd B. Parrish
- Department of Radiology, Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
6
|
Al-Adli NN, Young JS, Sibih YE, Berger MS. Technical Aspects of Motor and Language Mapping in Glioma Patients. Cancers (Basel) 2023; 15:cancers15072173. [PMID: 37046834 PMCID: PMC10093517 DOI: 10.3390/cancers15072173] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Gliomas are infiltrative primary brain tumors that often invade functional cortical and subcortical regions, and they mandate individualized brain mapping strategies to avoid postoperative neurological deficits. It is well known that maximal safe resection significantly improves survival, while postoperative deficits minimize the benefits associated with aggressive resections and diminish patients’ quality of life. Although non-invasive imaging tools serve as useful adjuncts, intraoperative stimulation mapping (ISM) is the gold standard for identifying functional cortical and subcortical regions and minimizing morbidity during these challenging resections. Current mapping methods rely on the use of low-frequency and high-frequency stimulation, delivered with monopolar or bipolar probes either directly to the cortical surface or to the subcortical white matter structures. Stimulation effects can be monitored through patient responses during awake mapping procedures and/or with motor-evoked and somatosensory-evoked potentials in patients who are asleep. Depending on the patient’s preoperative status and tumor location and size, neurosurgeons may choose to employ these mapping methods during awake or asleep craniotomies, both of which have their own benefits and challenges. Regardless of which method is used, the goal of intraoperative stimulation is to identify areas of non-functional tissue that can be safely removed to facilitate an approach trajectory to the equator, or center, of the tumor. Recent technological advances have improved ISM’s utility in identifying subcortical structures and minimized the seizure risk associated with cortical stimulation. In this review, we summarize the salient technical aspects of which neurosurgeons should be aware in order to implement intraoperative stimulation mapping effectively and safely during glioma surgery.
Collapse
Affiliation(s)
- Nadeem N. Al-Adli
- Department of Neurological Surgery, University of California, San Francisco, CA 94131, USA
- School of Medicine, Texas Christian University, Fort Worth, TX 76109, USA
| | - Jacob S. Young
- Department of Neurological Surgery, University of California, San Francisco, CA 94131, USA
| | - Youssef E. Sibih
- School of Medicine, University of California, San Francisco, CA 94131, USA
| | - Mitchel S. Berger
- Department of Neurological Surgery, University of California, San Francisco, CA 94131, USA
| |
Collapse
|
7
|
Mandal AS, Brem S, Suckling J. Brain network mapping and glioma pathophysiology. Brain Commun 2023; 5:fcad040. [PMID: 36895956 PMCID: PMC9989143 DOI: 10.1093/braincomms/fcad040] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/23/2022] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
Adult diffuse gliomas are among the most difficult brain disorders to treat in part due to a lack of clarity regarding the anatomical origins and mechanisms of migration of the tumours. While the importance of studying networks of glioma spread has been recognized for at least 80 years, the ability to carry out such investigations in humans has emerged only recently. Here, we comprehensively review the fields of brain network mapping and glioma biology to provide a primer for investigators interested in merging these areas of inquiry for the purposes of translational research. Specifically, we trace the historical development of ideas in both brain network mapping and glioma biology, highlighting studies that explore clinical applications of network neuroscience, cells-of-origin of diffuse glioma and glioma-neuronal interactions. We discuss recent research that has merged neuro-oncology and network neuroscience, finding that the spatial distribution patterns of gliomas follow intrinsic functional and structural brain networks. Ultimately, we call for more contributions from network neuroimaging to realize the translational potential of cancer neuroscience.
Collapse
Affiliation(s)
- Ayan S Mandal
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Steven Brem
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, Philadelphia, PA 19104, USA
| | - John Suckling
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK
| |
Collapse
|
8
|
Tomasino B, Guarracino I, Ius T, Skrap M. Continuous Real-Time Neuropsychological Testing during Resection Phase in Left and Right Prefrontal Brain Tumors. Curr Oncol 2023; 30:2007-2020. [PMID: 36826117 PMCID: PMC9955514 DOI: 10.3390/curroncol30020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Executive functions are multi-component and are based on large-scale brain networks. For patients undergoing brain surgery in the prefrontal cortex, resection in the anterior prefrontal sites is assisted by continuous monitoring of their performance on several tasks measuring components of executive functions. In this study, we did not test patients during direct cortical stimulation, but during resection itself. We chose tests routinely used to assess executive functions and included them in a protocol for left (LH) and right (RH) hemisphere prefrontal resections. This protocol is meant to be used during real-time neuropsychological testing (RTNT)-an already established monitoring technique. METHODS We retrospectively reviewed a consecutive series of 29 adult patients with glioma in the superior and middle frontal areas who performed the RTNT sequence throughout the resection phase. The testing protocol comprised 10 tests for LH frontal resections and 9 tests for RH frontal resections. RESULTS RH patients showed a median performance on RTNT with significantly lower scores for visuo-spatial attention and emotion processing (95% Confidence Interval Lower bound of 66.55 and 82.57, respectively, χ2 (7) = 32.8, p < 0.001). LH patients showed a median performance on RTNT, with significantly lower scores for selective attention and working memory (95% Confidence Interval Lower bound of 51.12, χ2 (5) = 20.31 p < 0.001) and minimum scores for the same task and for the Stroop test (χ2 (5) = 17.86, p < 0.005). The delta for accuracy between the first and the last RTNT run was not statistically significant (RH patients: χ2 (7) = 10.49, p > 0.05, n.s.; LH patients: χ2 (5) = 3.35, p > 0.05, n.s.). Mean extent of resection was 95.33% ± 9.72 for the RH group and 94.64% ± 6.74 for the LH group. Patients showed good performance post- vs. pre-surgery. The greater difference in the number of LH patients scoring within the normal range was found for the symbol-digit modality test (83.3% to 62%), Stroop test (100% to 77%) and short-term memory (84.61% to 72.72%) and working memory (92.3% to 63.63%). For RH patients, the main changes were observed on the clock drawing test (100% to 77.7%) and cognitive estimation (100% to 72.7%). CONCLUSIONS Frontal RTNT offers continuous and reliable feedback on the patients' cognitive status during resection in frontal areas.
Collapse
Affiliation(s)
- Barbara Tomasino
- Scientific Institute IRCCS “Eugenio Medea”, Polo FVG, Pasian di Prato, 33037 Udine, Italy
| | - Ilaria Guarracino
- Scientific Institute IRCCS “Eugenio Medea”, Polo FVG, Pasian di Prato, 33037 Udine, Italy
| | - Tamara Ius
- Unità Operativa di Neurochirurgia, Azienda Sanitaria Universitaria del Friuli Centrale, 33100 Udine, Italy
| | - Miran Skrap
- Unità Operativa di Neurochirurgia, Azienda Sanitaria Universitaria del Friuli Centrale, 33100 Udine, Italy
| |
Collapse
|
9
|
Assem M, Hart MG, Coelho P, Romero-Garcia R, McDonald A, Woodberry E, Morris RC, Price SJ, Suckling J, Santarius T, Duncan J, Erez Y. High gamma activity distinguishes frontal cognitive control regions from adjacent cortical networks. Cortex 2023; 159:286-298. [PMID: 36645968 PMCID: PMC9946792 DOI: 10.1016/j.cortex.2022.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022]
Abstract
Though the lateral frontal cortex is broadly implicated in cognitive control, functional MRI (fMRI) studies suggest fine-grained distinctions within this region. To examine this question electrophysiologically, we placed electrodes on the lateral frontal cortex in patients undergoing awake craniotomy for tumor resection. Patients performed verbal tasks with a manipulation of attentional switching, a canonical control demand. Power in the high gamma range (70-250 Hz) distinguished electrodes based on their location within a high-resolution fMRI network parcellation of the frontal lobe. Electrodes within the canonical fronto-parietal control network showed increased power in the switching condition, a result absent in electrodes within default mode, language and somato-motor networks. High gamma results contrasted with spatially distributed power decreases in the beta range (12-30 Hz). These results confirm the importance of fine-scale functional distinctions within the human frontal lobe, and pave the way for increased precision of functional mapping in tumor surgeries.
Collapse
Affiliation(s)
- Moataz Assem
- Medical Research Council, Cognition and Brain Sciences Unit, University of Cambridge UK.
| | - Michael G Hart
- Department of Neurosurgery, Cambridge University Hospitals NHS Foundation Trust UK; St George's, University of London & St George's University Hospitals NHS Foundation Trust, Institute of Molecular and Clinical Sciences UK
| | | | - Rafael Romero-Garcia
- Department of Psychiatry, University of Cambridge UK; Department of Medical Physiology and Biophysics, Instituto de Biomedicina de Sevilla (IBiS) HUVR/CSIC/Universidad de Sevilla/CIBERSAM, ISCIII, Sevilla, Spain
| | - Alexa McDonald
- Department of Neuropsychology, Cambridge University Hospitals NHS Foundation Trust UK
| | - Emma Woodberry
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge UK
| | - Robert C Morris
- Department of Neurosurgery, Cambridge University Hospitals NHS Foundation Trust UK
| | - Stephen J Price
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge UK
| | - John Suckling
- Department of Psychiatry, University of Cambridge UK; Behavioural and Clinical Neuroscience Institute, University of Cambridge UK; Cambridge and Peterborough NHS Foundation Trust UK
| | - Thomas Santarius
- Department of Neurosurgery, Cambridge University Hospitals NHS Foundation Trust UK; Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge UK; Department of Physiology, Development and Neuroscience, University of Cambridge UK
| | - John Duncan
- Medical Research Council, Cognition and Brain Sciences Unit, University of Cambridge UK; Department of Experimental Psychology, University of Oxford UK
| | - Yaara Erez
- Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel; Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel; Medical Research Council, Cognition and Brain Sciences Unit, University of Cambridge UK.
| |
Collapse
|
10
|
Gomez-Andres A, Cunillera T, Rico I, Naval-Baudin P, Camins A, Fernandez-Coello A, Gabarrós A, Rodriguez-Fornells A. The role of the anterior insular cortex in self-monitoring: A novel study protocol with electrical stimulation mapping and functional magnetic resonance imaging. Cortex 2022; 157:231-244. [PMID: 36347086 DOI: 10.1016/j.cortex.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 07/18/2022] [Accepted: 09/05/2022] [Indexed: 12/15/2022]
Abstract
Becoming aware of one's own states is a fundamental aspect for self-monitoring, allowing us to adjust our beliefs of the world to the changing context. Previous evidence points out to the key role of the anterior insular cortex (aIC) in evaluating the consequences of our own actions, especially whenever an error has occurred. In the present study, we propose a new multimodal protocol combining electrical stimulation mapping (ESM) and functional magnetic resonance imaging (fMRI) to explore the functional role of the aIC for self-monitoring in patients undergoing awake brain surgery. Our results using a modified version of the Stroop task tackling metacognitive abilities revealed new direct evidence of the involvement of the aIC in monitoring our performance, showing increased difficulties in detecting action-outcome mismatches when stimulating a cortical site located at the most posterior part of the aIC as well as significant BOLD activations at this region during outcome incongruences for self-made actions. Based on these preliminary results, we highlight the importance of assessing the aIC's functioning during tumor resection involving this region to evaluate metacognitive awareness of the self in patients undergoing awake brain surgery. In a similar vein, a better understanding of the aIC's role during self-monitoring may help shed light on action/outcome processing abnormalities reported in several neuropsychiatric disorders such as schizophrenia, anosognosia for hemiplegia or major depression.
Collapse
Affiliation(s)
- Alba Gomez-Andres
- Cognition and Brain Plasticity Group [Bellvitge Biomedical Research Institute-IDIBELL], L'Hospitalet de Llobregat, Barcelona, Spain; Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain
| | - Toni Cunillera
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain; Institute of Neurosciences (UBNeuro), University of Barcelona, Barcelona, Spain
| | - Imma Rico
- Hospital Universitari de Bellvitge (HUB), Neurology Section, Campus Bellvitge, University of Barcelona - IDIBELL, L'Hospitalet de Llobregat (Barcelona), Spain
| | - Pablo Naval-Baudin
- Institut de Diagnòstic per la Imatge, Centre Bellvitge, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat (Barcelona), Spain
| | - Angels Camins
- Institut de Diagnòstic per la Imatge, Centre Bellvitge, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat (Barcelona), Spain
| | - Alejandro Fernandez-Coello
- Hospital Universitari de Bellvitge (HUB), Neurosurgery Section, Campus Bellvitge, University of Barcelona - IDIBELL, L'Hospitalet de Llobregat (Barcelona), Spain
| | - Andreu Gabarrós
- Hospital Universitari de Bellvitge (HUB), Neurosurgery Section, Campus Bellvitge, University of Barcelona - IDIBELL, L'Hospitalet de Llobregat (Barcelona), Spain
| | - Antoni Rodriguez-Fornells
- Cognition and Brain Plasticity Group [Bellvitge Biomedical Research Institute-IDIBELL], L'Hospitalet de Llobregat, Barcelona, Spain; Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain; Institute of Neurosciences (UBNeuro), University of Barcelona, Barcelona, Spain; Catalan Institution for Research and Advanced Studies, ICREA, Barcelona, Spain.
| |
Collapse
|
11
|
Cometa A, Falasconi A, Biasizzo M, Carpaneto J, Horn A, Mazzoni A, Micera S. Clinical neuroscience and neurotechnology: An amazing symbiosis. iScience 2022; 25:105124. [PMID: 36193050 PMCID: PMC9526189 DOI: 10.1016/j.isci.2022.105124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the last decades, clinical neuroscience found a novel ally in neurotechnologies, devices able to record and stimulate electrical activity in the nervous system. These technologies improved the ability to diagnose and treat neural disorders. Neurotechnologies are concurrently enabling a deeper understanding of healthy and pathological dynamics of the nervous system through stimulation and recordings during brain implants. On the other hand, clinical neurosciences are not only driving neuroengineering toward the most relevant clinical issues, but are also shaping the neurotechnologies thanks to clinical advancements. For instance, understanding the etiology of a disease informs the location of a therapeutic stimulation, but also the way stimulation patterns should be designed to be more effective/naturalistic. Here, we describe cases of fruitful integration such as Deep Brain Stimulation and cortical interfaces to highlight how this symbiosis between clinical neuroscience and neurotechnology is closer to a novel integrated framework than to a simple interdisciplinary interaction.
Collapse
Affiliation(s)
- Andrea Cometa
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Antonio Falasconi
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Marco Biasizzo
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Jacopo Carpaneto
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Andreas Horn
- Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- MGH Neurosurgery & Center for Neurotechnology and Neurorecovery (CNTR) at MGH Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Neurology, 10117 Berlin, Germany
| | - Alberto Mazzoni
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Silvestro Micera
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
- Translational Neural Engineering Lab, School of Engineering, École Polytechnique Fèdèrale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Romero-Garcia R, Owen M, McDonald A, Woodberry E, Assem M, Coelho P, Morris RC, Price SJ, Santarius T, Suckling J, Manly T, Erez Y, Hart MG. Assessment of neuropsychological function in brain tumor treatment: a comparison of traditional neuropsychological assessment with app-based cognitive screening. Acta Neurochir (Wien) 2022; 164:2021-2034. [PMID: 35230551 PMCID: PMC9338148 DOI: 10.1007/s00701-022-05162-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/16/2022] [Indexed: 12/18/2022]
Abstract
BACKGROUND Gliomas are typically considered to cause relatively few neurological impairments. However, cognitive difficulties can arise, for example during treatment, with potential detrimental effects on quality of life. Accurate, reproducible, and accessible cognitive assessment is therefore vital in understanding the effects of both tumor and treatments. Our aim is to compare traditional neuropsychological assessment with an app-based cognitive screening tool in patients with glioma before and after surgical resection. Our hypotheses were that cognitive impairments would be apparent, even in a young and high functioning cohort, and that app-based cognitive screening would complement traditional neuropsychological assessment. METHODS Seventeen patients with diffuse gliomas completed a traditional neuropsychological assessment and an app-based touchscreen tablet assessment pre- and post-operatively. The app assessment was also conducted at 3- and 12-month follow-up. Impairment rates, mean performance, and pre- and post-operative changes were compared using standardized Z-scores. RESULTS Approximately 2-3 h of traditional assessment indicated an average of 2.88 cognitive impairments per patient, while the 30-min screen indicated 1.18. As might be expected, traditional assessment using multiple items across the difficulty range proved more sensitive than brief screening measures in areas such as memory and attention. However, the capacity of the screening app to capture reaction times enhanced its sensitivity, relative to traditional assessment, in the area of non-verbal function. Where there was overlap between the two assessments, for example digit span tasks, the results were broadly equivalent. CONCLUSIONS Cognitive impairments were common in this sample and app-based screening complemented traditional neuropsychological assessment. Implications for clinical assessment and follow-up are discussed.
Collapse
Affiliation(s)
- Rafael Romero-Garcia
- Department of Psychiatry, University of Cambridge, Herchel Smith Building for Brain and Mind Sciences, Robinson Way, Cambridge, CB2 0SZ, UK.
- Dpto. de Fisiología Médica Y Biofísica, Instituto de Biomedicina de Sevilla (IBiS) HUVR/CSIC, Universidad de Sevilla, Seville, Spain.
| | - Mallory Owen
- Department of Psychiatry, University of Cambridge, Herchel Smith Building for Brain and Mind Sciences, Robinson Way, Cambridge, CB2 0SZ, UK
| | - Alexa McDonald
- Department of Neuropsychology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Emma Woodberry
- Department of Neuropsychology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Moataz Assem
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | | | - Rob C Morris
- Department of Neurosurgery, Addenbrooke's Hospital, Cambridge, UK
| | - Stephen J Price
- Department of Neurosurgery, Addenbrooke's Hospital, Cambridge, UK
| | - Tom Santarius
- Department of Neurosurgery, Addenbrooke's Hospital, Cambridge, UK
- Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - John Suckling
- Department of Psychiatry, University of Cambridge, Herchel Smith Building for Brain and Mind Sciences, Robinson Way, Cambridge, CB2 0SZ, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Cambridge and Peterborough NHS Foundation Trust, Cambridgeshire, UK
| | - Tom Manly
- Cambridge and Peterborough NHS Foundation Trust, Cambridgeshire, UK
| | - Yaara Erez
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel
| | - Michael G Hart
- Department of Psychiatry, University of Cambridge, Herchel Smith Building for Brain and Mind Sciences, Robinson Way, Cambridge, CB2 0SZ, UK
| |
Collapse
|
13
|
Current Status of Neuromodulation-Induced Cortical Prehabilitation and Considerations for Treatment Pathways in Lower-Grade Glioma Surgery. LIFE (BASEL, SWITZERLAND) 2022; 12:life12040466. [PMID: 35454957 PMCID: PMC9024440 DOI: 10.3390/life12040466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/19/2022] [Accepted: 03/19/2022] [Indexed: 12/15/2022]
Abstract
The infiltrative character of supratentorial lower grade glioma makes it possible for eloquent neural pathways to remain within tumoural tissue, which renders complete surgical resection challenging. Neuromodulation-Induced Cortical Prehabilitation (NICP) is intended to reduce the likelihood of premeditated neurologic sequelae that otherwise would have resulted in extensive rehabilitation or permanent injury following surgery. This review aims to conceptualise current approaches involving Repetitive Transcranial Magnetic Stimulation (rTMS-NICP) and extraoperative Direct Cortical Stimulation (eDCS-NICP) for the purposes of inducing cortical reorganisation prior to surgery, with considerations derived from psychiatric, rehabilitative and electrophysiologic findings related to previous reports of prehabilitation. Despite the promise of reduced risk and incidence of neurologic injury in glioma surgery, the current data indicates a broad but compelling possibility of effective cortical prehabilitation relating to perisylvian cortex, though it remains an under-explored investigational tool. Preliminary findings may prove sufficient for the continued investigation of prehabilitation in small-volume lower-grade tumour or epilepsy patients. However, considering the very low number of peer-reviewed case reports, optimal stimulation parameters and duration of therapy necessary to catalyse functional reorganisation remain equivocal. The non-invasive nature and low risk profile of rTMS-NICP may permit larger sample sizes and control groups until such time that eDCS-NICP protocols can be further elucidated.
Collapse
|
14
|
Romero-Garcia R, Hart MG, Bethlehem RAI, Mandal A, Assem M, Crespo-Facorro B, Gorriz JM, Burke GAA, Price SJ, Santarius T, Erez Y, Suckling J. BOLD Coupling between Lesioned and Healthy Brain Is Associated with Glioma Patients' Recovery. Cancers (Basel) 2021; 13:5008. [PMID: 34638493 PMCID: PMC8508466 DOI: 10.3390/cancers13195008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022] Open
Abstract
Predicting functional outcomes after surgery and early adjuvant treatment is difficult due to the complex, extended, interlocking brain networks that underpin cognition. The aim of this study was to test glioma functional interactions with the rest of the brain, thereby identifying the risk factors of cognitive recovery or deterioration. Seventeen patients with diffuse non-enhancing glioma (aged 22-56 years) were longitudinally MRI scanned and cognitively assessed before and after surgery and during a 12-month recovery period (55 MRI scans in total after exclusions). We initially found, and then replicated in an independent dataset, that the spatial correlation pattern between regional and global BOLD signals (also known as global signal topography) was associated with tumour occurrence. We then estimated the coupling between the BOLD signal from within the tumour and the signal extracted from different brain tissues. We observed that the normative global signal topography is reorganised in glioma patients during the recovery period. Moreover, we found that the BOLD signal within the tumour and lesioned brain was coupled with the global signal and that this coupling was associated with cognitive recovery. Nevertheless, patients did not show any apparent disruption of functional connectivity within canonical functional networks. Understanding how tumour infiltration and coupling are related to patients' recovery represents a major step forward in prognostic development.
Collapse
Affiliation(s)
- Rafael Romero-Garcia
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK
- Department of Medical Physiology and Biophysics, Instituto de Biomedicina de Sevilla (IBiS), HUVR/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Michael G Hart
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK
| | | | - Ayan Mandal
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Moataz Assem
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| | - Benedicto Crespo-Facorro
- Department of Psychiatry, Instituto de Investigación Sanitaria de Sevilla, IBiS, Hospital Universitario Virgen del Rocio, CIBERSAM, 41013 Sevilla, Spain
| | - Juan Manuel Gorriz
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK
- Department of Signal Theory, Networking and Communications, Universidad de Granada, 18071 Granada, Spain
| | - G A Amos Burke
- Department of Paediatric Haematology, Oncology and Palliative Care, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Stephen J Price
- Academic Neurosurgery Division, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Thomas Santarius
- Academic Neurosurgery Division, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Yaara Erez
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
- Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - John Suckling
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 0SZ, UK
- Cambridge and Peterborough NHS Foundation Trust, Cambridge CB21 5EF, UK
| |
Collapse
|
15
|
Romero-Garcia R, Suckling J, Owen M, Assem M, Sinha R, Coelho P, Woodberry E, Price SJ, Burke A, Santarius T, Erez Y, Hart MG. Memory recovery in relation to default mode network impairment and neurite density during brain tumor treatment. J Neurosurg 2021; 136:358-368. [PMID: 34359041 DOI: 10.3171/2021.1.jns203959] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/25/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The aim of this study was to test brain tumor interactions with brain networks, thereby identifying protective features and risk factors for memory recovery after resection. METHODS Seventeen patients with diffuse nonenhancing glioma (ages 22-56 years) underwent longitudinal MRI before and after surgery, and during a 12-month recovery period (47 MRI scans in total after exclusion). After each scanning session, a battery of memory tests was performed using a tablet-based screening tool, including free verbal memory, overall verbal memory, episodic memory, orientation, forward digit span, and backward digit span. Using structural MRI and neurite orientation dispersion and density imaging (NODDI) derived from diffusion-weighted images, the authors estimated lesion overlap and neurite density, respectively, with brain networks derived from normative data in healthy participants (somatomotor, dorsal attention, ventral attention, frontoparietal, and default mode network [DMN]). Linear mixed-effect models (LMMs) that regressed out the effect of age, gender, tumor grade, type of treatment, total lesion volume, and total neurite density were used to test the potential longitudinal associations between imaging markers and memory recovery. RESULTS Memory recovery was not significantly associated with either the tumor location based on traditional lobe classification or the type of treatment received by patients (i.e., surgery alone or surgery with adjuvant chemoradiotherapy). Nonlocal effects of tumors were evident on neurite density, which was reduced not only within the tumor but also beyond the tumor boundary. In contrast, high preoperative neurite density outside the tumor but within the DMN was associated with better memory recovery (LMM, p value after false discovery rate correction [Pfdr] < 10-3). Furthermore, postoperative and follow-up neurite density within the DMN and frontoparietal network were also associated with memory recovery (LMM, Pfdr = 0.014 and Pfdr = 0.001, respectively). Preoperative tumor and postoperative lesion overlap with the DMN showed a significant negative association with memory recovery (LMM, Pfdr = 0.002 and Pfdr < 10-4, respectively). CONCLUSIONS Imaging biomarkers of cognitive recovery and decline can be identified using NODDI and resting-state networks. Brain tumors and their corresponding treatment affecting brain networks that are fundamental for memory functioning such as the DMN can have a major impact on patients' memory recovery.
Collapse
Affiliation(s)
| | - John Suckling
- 1Department of Psychiatry, University of Cambridge.,2Behavioural and Clinical Neuroscience Institute, University of Cambridge.,3Cambridge and Peterborough NHS Foundation Trust, Cambridge
| | - Mallory Owen
- 1Department of Psychiatry, University of Cambridge
| | - Moataz Assem
- 4MRC Cognition and Brain Sciences Unit, University of Cambridge
| | | | | | - Emma Woodberry
- 7Department of Neuropsychology, Cambridge University Hospitals NHS Foundation Trust, Cambridge
| | - Stephen J Price
- 5Department of Neurosurgery, Addenbrooke's Hospital, Cambridge
| | - Amos Burke
- 8Department of Paediatric Haematology, Oncology, and Palliative Care, Addenbrooke's Hospital, Cambridge; and
| | - Thomas Santarius
- 5Department of Neurosurgery, Addenbrooke's Hospital, Cambridge.,9Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridgeshire, United Kingdom
| | - Yaara Erez
- 4MRC Cognition and Brain Sciences Unit, University of Cambridge
| | - Michael G Hart
- 5Department of Neurosurgery, Addenbrooke's Hospital, Cambridge
| |
Collapse
|
16
|
Shashidhara S, Mitchell DJ, Erez Y, Duncan J. Progressive Recruitment of the Frontoparietal Multiple-demand System with Increased Task Complexity, Time Pressure, and Reward. J Cogn Neurosci 2019; 31:1617-1630. [PMID: 31274390 DOI: 10.1162/jocn_a_01440] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A distributed, frontoparietal "multiple-demand" (MD) network is involved in tasks of many different kinds. Integrated activity across this network may be needed to bind together the multiple features of a mental control program (Duncan, 2013). Previous data suggest that, especially with low cognitive load, there may be some differentiation between MD regions (e.g., anterior vs. posterior regions of lateral frontal cortex), but with increasing load, there is progressive recruitment of the entire network. Differentiation may reflect preferential access to different task features, whereas co-recruitment may reflect information exchange and integration. To examine these patterns, we used manipulations of complexity, time pressure, and reward while participants solved a spatial maze. Complexity was manipulated by combining two simple tasks. Time pressure was added by fading away the maze during route planning, and on some of these trials, there was the further possibility of a substantial reward. Simple tasks evoked activity only in posterior MD regions, including posterior lateral frontal cortex, pre-supplementary motor area/anterior cingulate, and intraparietal sulcus. With increasing complexity, time pressure, and reward, increases in activity were broadly distributed across the MD network, though with quantitative variations. Across the MD network, the results show a degree of functional differentiation, especially at low load, but strong co-recruitment with increased challenge or incentive.
Collapse
Affiliation(s)
| | | | - Yaara Erez
- MRC Cognition and Brain Sciences Unit, Cambridge, UK
| | - John Duncan
- MRC Cognition and Brain Sciences Unit, Cambridge, UK.,University of Oxford
| |
Collapse
|