1
|
Zuo Z, Fan B, Zhang Z, Liang Y, Chi J, Li G. Interleukin-4 protects retinal ganglion cells and promotes axon regeneration. Cell Commun Signal 2024; 22:236. [PMID: 38650003 PMCID: PMC11034112 DOI: 10.1186/s12964-024-01604-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND The preservation of retinal ganglion cells (RGCs) and the facilitation of axon regeneration are crucial considerations in the management of various vision-threatening disorders. Therefore, we investigate the efficacy of interleukin-4 (IL-4), a potential therapeutic agent, in promoting neuroprotection and axon regeneration of retinal ganglion cells (RGCs) as identified through whole transcriptome sequencing in an in vitro axon growth model. METHODS A low concentration of staurosporine (STS) was employed to induce in vitro axon growth. Whole transcriptome sequencing was utilized to identify key target factors involved in the molecular mechanism underlying axon growth. The efficacy of recombinant IL-4 protein on promoting RGC axon growth was validated through in vitro experiments. The protective effect of recombinant IL-4 protein on somas of RGCs was assessed using RBPMS-specific immunofluorescent staining in mouse models with optic nerve crush (ONC) and N-methyl-D-aspartic acid (NMDA) injury. The protective effect on RGC axons was evaluated by anterograde labeling of cholera toxin subunit B (CTB), while the promotion of RGC axon regeneration was assessed through both anterograde labeling of CTB and immunofluorescent staining for growth associated protein-43 (GAP43). RESULTS Whole-transcriptome sequencing of staurosporine-treated 661 W cells revealed a significant upregulation in intracellular IL-4 transcription levels during the process of axon regeneration. In vitro experiments demonstrated that recombinant IL-4 protein effectively stimulated axon outgrowth. Subsequent immunostaining with RBPMS revealed a significantly higher survival rate of RGCs in the rIL-4 group compared to the vehicle group in both NMDA and ONC injury models. Axonal tracing with CTB confirmed that recombinant IL-4 protein preserved long-distance projection of RGC axons, and there was a notably higher number of surviving axons in the rIL-4 group compared to the vehicle group following NMDA-induced injury. Moreover, intravitreal delivery of recombinant IL-4 protein substantially facilitated RGC axon regeneration after ONC injury. CONCLUSION The recombinant IL-4 protein exhibits the potential to enhance the survival rate of RGCs, protect RGC axons against NMDA-induced injury, and facilitate axon regeneration following ONC. This study provides an experimental foundation for further investigation and development of therapeutic agents aimed at protecting the optic nerve and promoting axon regeneration.
Collapse
Affiliation(s)
- Zhaoyang Zuo
- Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, 130041, Changchun, China
| | - Bin Fan
- Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, 130041, Changchun, China
| | - Ziyuan Zhang
- Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, 130041, Changchun, China
| | - Yang Liang
- Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, 130041, Changchun, China
| | - Jing Chi
- Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, 130041, Changchun, China
| | - Guangyu Li
- Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, 130041, Changchun, China.
| |
Collapse
|
2
|
André-Lévigne D, Pignel R, Boet S, Jaquet V, Kalbermatten DF, Madduri S. Role of Oxygen and Its Radicals in Peripheral Nerve Regeneration: From Hypoxia to Physoxia to Hyperoxia. Int J Mol Sci 2024; 25:2030. [PMID: 38396709 PMCID: PMC10888612 DOI: 10.3390/ijms25042030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Oxygen is compulsory for mitochondrial function and energy supply, but it has numerous more nuanced roles. The different roles of oxygen in peripheral nerve regeneration range from energy supply, inflammation, phagocytosis, and oxidative cell destruction in the context of reperfusion injury to crucial redox signaling cascades that are necessary for effective axonal outgrowth. A fine balance between reactive oxygen species production and antioxidant activity draws the line between physiological and pathological nerve regeneration. There is compelling evidence that redox signaling mediated by the Nox family of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases plays an important role in peripheral nerve regeneration. Further research is needed to better characterize the role of Nox in physiological and pathological circumstances, but the available data suggest that the modulation of Nox activity fosters great therapeutic potential. One of the promising approaches to enhance nerve regeneration by modulating the redox environment is hyperbaric oxygen therapy. In this review, we highlight the influence of various oxygenation states, i.e., hypoxia, physoxia, and hyperoxia, on peripheral nerve repair and regeneration. We summarize the currently available data and knowledge on the effectiveness of using hyperbaric oxygen therapy to treat nerve injuries and discuss future directions.
Collapse
Affiliation(s)
- Dominik André-Lévigne
- Division of Plastic, Reconstructive and Aesthetic Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Rodrigue Pignel
- Subaquatic and Hyperbaric Medicine Unit, Division of Emergency Medicine, Department of Anesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals and Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Sylvain Boet
- Subaquatic and Hyperbaric Medicine Unit, Division of Emergency Medicine, Department of Anesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals and Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
- Department of Anesthesiology and Pain Medicine, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
- Ottawa Hospital Research Institute, Clinical Epidemiology Program, Department of Innovation in Medical Education, University of Ottawa, Ottawa, ON K1H 8L6, Canada
- Institut du Savoir Montfort, Ottawa, ON K1K 0T2, Canada
| | - Vincent Jaquet
- Department of Cell Physiology and Metabolism, University of Geneva, 1205 Geneva, Switzerland
- READS Unit, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Daniel F. Kalbermatten
- Division of Plastic, Reconstructive and Aesthetic Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
- Bioengineering and Neuroregeneration Laboratory, Department of Surgery, University of Geneva, 1205 Geneva, Switzerland
| | - Srinivas Madduri
- Division of Plastic, Reconstructive and Aesthetic Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
- Bioengineering and Neuroregeneration Laboratory, Department of Surgery, University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
3
|
Alam SMS, Watanabe Y, Steeno BL, Dutta S, Szilagyi HA, Wei A, Suter DM. Neuronal NADPH oxidase is required for neurite regeneration of Aplysia bag cell neurons. J Neurochem 2023; 167:505-519. [PMID: 37818836 PMCID: PMC10842957 DOI: 10.1111/jnc.15977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 01/22/2023] [Accepted: 09/16/2023] [Indexed: 10/13/2023]
Abstract
NADPH oxidase (Nox), a major source of reactive oxygen species (ROS), is involved in neurodegeneration after injury and disease. Nox is expressed in both neuronal and non-neuronal cells and contributes to an elevated ROS level after injury. Contrary to the well-known damaging effect of Nox-derived ROS in neurodegeneration, recently a physiological role of Nox in nervous system development including neurogenesis, neuronal polarity, and axonal growth has been revealed. Here, we tested a role for neuronal Nox in neurite regeneration following mechanical transection in cultured Aplysia bag cell neurons. Using a novel hydrogen peroxide (H2 O2 )-sensing dye, 5'-(p-borophenyl)-2'-pyridylthiazole pinacol ester (BPPT), we found that H2 O2 levels are elevated in regenerating growth cones following injury. Redistribution of Nox2 and p40phox in the growth cone central domain suggests Nox2 activation after injury. Inhibiting Nox with the pan-Nox inhibitor celastrol reduced neurite regeneration rate. Pharmacological inhibition of Nox is correlated with reduced activation of Src2 tyrosine kinase and F-actin content in the growth cone. Taken together, these findings suggest that Nox-derived ROS regulate neurite regeneration following injury through Src2-mediated regulation of actin organization in Aplysia growth cones.
Collapse
Affiliation(s)
- S. M. Sabbir Alam
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Yuichiro Watanabe
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Brooke L. Steeno
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Soumyajit Dutta
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Halie A. Szilagyi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Alexander Wei
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Daniel M. Suter
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
4
|
Zhang ZY, Zuo ZY, Liang Y, Zhang SM, Zhang CX, Chi J, Fan B, Li GY. Promotion of axon regeneration and protection on injured retinal ganglion cells by rCXCL2. Inflamm Regen 2023; 43:31. [PMID: 37340465 DOI: 10.1186/s41232-023-00283-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/31/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND In addition to rescuing injured retinal ganglion cells (RGCs) by stimulating the intrinsic growth ability of damaged RGCs in various retinal/optic neuropathies, increasing evidence has shown that the external microenvironmental factors also play a crucial role in restoring the survival of RGCs by promoting the regrowth of RGC axons, especially inflammatory factors. In this study, we aimed to screen out the underlying inflammatory factor involved in the signaling of staurosporine (STS)-induced axon regeneration and verify its role in the protection of RGCs and the promotion of axon regrowth. METHODS We performed transcriptome RNA sequencing for STS induction models in vitro and analyzed the differentially expressed genes. After targeting the key gene, we verified the role of the candidate factor in RGC protection and promotion of axon regeneration in vivo with two RGC-injured animal models (optic nerve crush, ONC; retinal N-methyl-D-aspartate, NMDA damage) by using cholera toxin subunit B anterograde axon tracing and specific immunostaining of RGCs. RESULTS We found that a series of inflammatory genes expressed upregulated in the signaling of STS-induced axon regrowth and we targeted the candidate CXCL2 gene since the level of the chemokine CXCL2 gene elevated significantly among the top upregulated genes. We further demonstrated that intravitreal injection of rCXCL2 robustly promoted axon regeneration and significantly improved RGC survival in ONC-injured mice in vivo. However, different from its role in ONC model, the intravitreal injection of rCXCL2 was able to simply protect RGCs against NMDA-induced excitotoxicity in mouse retina and maintain the long-distance projection of RGC axons, yet failed to promote significant axon regeneration. CONCLUSIONS We provide the first in vivo evidence that CXCL2, as an inflammatory factor, is a key regulator in the axon regeneration and neuroprotection of RGCs. Our comparative study may facilitate deciphering the exact molecular mechanisms of RGC axon regeneration and developing high-potency targeted drugs.
Collapse
Affiliation(s)
- Zi-Yuan Zhang
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China
| | - Zhao-Yang Zuo
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China
| | - Yang Liang
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China
| | - Si-Ming Zhang
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China
| | - Chun-Xia Zhang
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China
| | - Jing Chi
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China
| | - Bin Fan
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China.
| | - Guang-Yu Li
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China.
| |
Collapse
|
5
|
Urrutia PJ, González-Billault C. A Role for Second Messengers in Axodendritic Neuronal Polarity. J Neurosci 2023; 43:2037-2052. [PMID: 36948585 PMCID: PMC10039749 DOI: 10.1523/jneurosci.1065-19.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 03/24/2023] Open
Abstract
Neuronal polarization is a complex molecular process regulated by intrinsic and extrinsic mechanisms. Nerve cells integrate multiple extracellular cues to generate intracellular messengers that ultimately control cell morphology, metabolism, and gene expression. Therefore, second messengers' local concentration and temporal regulation are crucial elements for acquiring a polarized morphology in neurons. This review article summarizes the main findings and current understanding of how Ca2+, IP3, cAMP, cGMP, and hydrogen peroxide control different aspects of neuronal polarization, and highlights questions that still need to be resolved to fully understand the fascinating cellular processes involved in axodendritic polarization.
Collapse
Affiliation(s)
- Pamela J Urrutia
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile 7800003
- School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile 7510157
| | - Christian González-Billault
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile 7800003
- Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile 8380453
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile 7800003
- Buck Institute for Research on Aging, Novato, California 94945
| |
Collapse
|
6
|
Jackson MJ. On the mechanisms underlying attenuated redox responses to exercise in older individuals: A hypothesis. Free Radic Biol Med 2020; 161:326-338. [PMID: 33099002 PMCID: PMC7754707 DOI: 10.1016/j.freeradbiomed.2020.10.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/08/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022]
Abstract
Responding appropriately to exercise is essential to maintenance of skeletal muscle mass and function at all ages and particularly during aging. Here, a hypothesis is presented that a key component of the inability of skeletal muscle to respond effectively to exercise in aging is a denervation-induced failure of muscle redox signalling. This novel hypothesis proposes that an initial increase in oxidation in muscle mitochondria leads to a paradoxical increase in the reductive state of specific cysteines of signalling proteins in the muscle cytosol that suppresses their ability to respond to normal oxidising redox signals during exercise. The following are presented for consideration:Transient loss of integrity of peripheral motor neurons occurs repeatedly throughout life and is normally rapidly repaired by reinnervation, but this repair process becomes less efficient with aging. Each transient loss of neuromuscular integrity leads to a rapid, large increase in mitochondrial peroxide production in the denervated muscle fibers and in neighbouring muscle fibers. This peroxide may initially act to stimulate axonal sprouting and regeneration, but also stimulates retrograde mitonuclear communication to increase expression of a range of cytoprotective proteins in an attempt to protect the fiber and neighbouring tissues against oxidative damage. The increased peroxide within mitochondria does not lead to an increased cytosolic peroxide, but the increases in adaptive cytoprotective proteins include some located to the muscle cytosol which modify the local cytosol redox environment to induce a more reductive state in key cysteines of specific signalling proteins. Key adaptations of skeletal muscle to exercise involve transient peroxiredoxin oxidation as effectors of redox signalling in the cytosol. This requires sensitive oxidation of key cysteine residues. In aging, the chronic change to a more reductive cytosolic environment prevents the transient oxidation of peroxiredoxin 2 and hence prevents essential adaptations to exercise, thus contributing to loss of muscle mass and function. Experimental approaches suitable for testing the hypothesis are also outlined.
Collapse
Affiliation(s)
- Malcolm J Jackson
- MRC-Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK.
| |
Collapse
|
7
|
Terzi A, Suter DM. The role of NADPH oxidases in neuronal development. Free Radic Biol Med 2020; 154:33-47. [PMID: 32370993 DOI: 10.1016/j.freeradbiomed.2020.04.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022]
Abstract
Reactive oxygen species (ROS) are critical for maintaining cellular homeostasis and function when produced in physiological ranges. Important sources of cellular ROS include NADPH oxidases (Nox), which are evolutionary conserved multi-subunit transmembrane proteins. Nox-mediated ROS regulate variety of biological processes including hormone synthesis, calcium signaling, cell migration, and immunity. ROS participate in intracellular signaling by introducing post-translational modifications to proteins and thereby altering their functions. The central nervous system (CNS) expresses different Nox isoforms during both development and adulthood. Here, we review the role of Nox-mediated ROS during CNS development. Specifically, we focus on how individual Nox isoforms contribute to signaling in neural stem cell maintenance and neuronal differentiation, as well as neurite outgrowth and guidance. We also discuss how ROS regulates the organization and dynamics of the actin cytoskeleton in the neuronal growth cone. Finally, we review recent evidence that Nox-derived ROS modulate axonal regeneration upon nervous system injury.
Collapse
Affiliation(s)
- Aslihan Terzi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Daniel M Suter
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA; Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
8
|
Jeon J, Kwon H, Cho E, Kim KS, Yun J, Lee YC, Kim DH. The effect of coniferaldehyde on neurite outgrowth in neuroblastoma Neuro2a cells. Neurochem Int 2019; 131:104579. [PMID: 31614166 DOI: 10.1016/j.neuint.2019.104579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 11/26/2022]
Abstract
Neurite outgrowth is the differentiation process by which neurons establish synapses. In the dentate gyrus of the hippocampus, new neurons are constantly produced and undergo neurite outgrowth to form synapses, and this process is involved in cognitive ability. Therefore, if an agent could modulate neurite outgrowth, it could potentially be developed as a compound for modulating cognitive ability. In this study, we examined whether coniferaldehyde, a natural compound, regulates neurite outgrowth in Neuro2a cells. We ascertained morphological changes and measured the percentage of neurite-bearing cells and neurite lengths. Coniferaldehyde significantly increased the percentage of neurite-bearing cells, and the length of neurites in a concentration-dependent manner, without inducing cell death. We then have identified that, coniferaldehyde activates the extracellular signals-regulated Kinase 1 and 2 (ERK1/2), and further noted that, U0126, an ERK1/2 inhibitor, blocks coniferaldehyde-facilitated neurite outgrowth. Moreover, Subchronic administration of CA enhanced learning and memory, and increased neurite length of newborn neurons in the hippocampus. These results suggest that coniferaldehyde induces neurite outgrowth by a process possibly mediated by ERK1/2 signaling and enhances learning and memory.
Collapse
Affiliation(s)
- Jieun Jeon
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, 49315, Republic of Korea
| | - Huiyoung Kwon
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, 49315, Republic of Korea
| | - Eunbi Cho
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, 49315, Republic of Korea
| | - Kyung Sook Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, 49315, Republic of Korea
| | - Jeanho Yun
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, 49201, Republic of Korea; Institute of Convergence Bio-Health, Dong-A University, Busan, 49315, Republic of Korea
| | - Young Choon Lee
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, 49315, Republic of Korea; Institute of Convergence Bio-Health, Dong-A University, Busan, 49315, Republic of Korea
| | - Dong Hyun Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, 49315, Republic of Korea; Institute of Convergence Bio-Health, Dong-A University, Busan, 49315, Republic of Korea.
| |
Collapse
|
9
|
de-Souza-Ferreira E, Rios-Neto IM, Martins EL, Galina A. Mitochondria-coupled glucose phosphorylation develops after birth to modulate H 2 O 2 release and calcium handling in rat brain. J Neurochem 2019; 149:624-640. [PMID: 31001830 DOI: 10.1111/jnc.14705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/20/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022]
Abstract
The adult brain is a high-glucose and oxygen-dependent organ, with an extremely organized network of cells and large energy-consuming synapses. To reach this level of organization, early stages in development must include an efficient control of cellular events and regulation of intracellular signaling molecules and ions such as hydrogen peroxide (H2 O2 ) and calcium (Ca2+ ), but in cerebral tissue, these mechanisms of regulation are still poorly understood. Hexokinase (HK) is the first enzyme in the metabolism of glucose and, when bound to mitochondria (mtHK), it has been proposed to have a role in modulation of mitochondrial H2 O2 generation and Ca2+ handling. Here, we have investigated how mtHK modulates these signals in the mitochondrial context during postnatal development of the mouse brain. Using high-resolution respirometry, western blot analysis, spectrometry and resorufin, and Calcium Green fluorescence assays with brain mitochondria purified postnatally from day 1 to day 60, we demonstrate that brain HK increases its coupling to mitochondria and to oxidative phosphorylation to induce a cycle of ADP entry/ATP exit of the mitochondrial matrix that leads to efficient control over H2 O2 generation and Ca2+ uptake during development until reaching plateau at day 21. This contrasts sharply with the antioxidant enzymes, which do not increase as mitochondrial H2 O2 generation escalates. These results suggest that, as its use of glucose increases, the brain couples HK to mitochondria to improve glucose metabolism, redox balance and Ca2+ signaling during development, positioning mitochondria-bound hexokinase as a hub for intracellular signaling control.
Collapse
Affiliation(s)
- Eduardo de-Souza-Ferreira
- Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry Leopoldo de Meis, Center for Health Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Izac Miranda Rios-Neto
- Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry Leopoldo de Meis, Center for Health Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eduarda Lopes Martins
- Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry Leopoldo de Meis, Center for Health Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antonio Galina
- Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry Leopoldo de Meis, Center for Health Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Reactive oxygen species regulate axonal regeneration through the release of exosomal NADPH oxidase 2 complexes into injured axons. Nat Cell Biol 2018; 20:307-319. [PMID: 29434374 DOI: 10.1038/s41556-018-0039-x] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/10/2018] [Indexed: 12/17/2022]
Abstract
Reactive oxygen species (ROS) contribute to tissue damage and remodelling mediated by the inflammatory response after injury. Here we show that ROS, which promote axonal dieback and degeneration after injury, are also required for axonal regeneration and functional recovery after spinal injury. We find that ROS production in the injured sciatic nerve and dorsal root ganglia requires CX3CR1-dependent recruitment of inflammatory cells. Next, exosomes containing functional NADPH oxidase 2 complexes are released from macrophages and incorporated into injured axons via endocytosis. Once in axonal endosomes, active NOX2 is retrogradely transported to the cell body through an importin-β1-dynein-dependent mechanism. Endosomal NOX2 oxidizes PTEN, which leads to its inactivation, thus stimulating PI3K-phosporylated (p-)Akt signalling and regenerative outgrowth. Challenging the view that ROS are exclusively involved in nerve degeneration, we propose a previously unrecognized role of ROS in mammalian axonal regeneration through a NOX2-PI3K-p-Akt signalling pathway.
Collapse
|
11
|
Pollock N, Staunton CA, Vasilaki A, McArdle A, Jackson MJ. Denervated muscle fibers induce mitochondrial peroxide generation in neighboring innervated fibers: Role in muscle aging. Free Radic Biol Med 2017; 112:84-92. [PMID: 28739532 PMCID: PMC5636617 DOI: 10.1016/j.freeradbiomed.2017.07.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 01/21/2023]
Abstract
Disruption of neuromuscular junctions and denervation of some muscle fibers occurs in ageing skeletal muscle and contribute to loss of muscle mass and function. Aging is associated with mitochondrial dysfunction and loss of redox homeostasis potentially occurs through increased mitochondrial generation of reactive oxygen species (ROS). No specific link between increased mitochondrial ROS generation and denervation has been defined in muscle ageing. To address this, we have examined the effect of experimental denervation of all fibers, or only a proportion of the fibers, in the mouse tibialis anterior (TA) muscle on muscle mitochondrial peroxide generation. Transection of the peroneal nerve of mice caused loss of pre-synaptic axons within 1-3 days with no significant morphological changes in post-synaptic structures up to 10 days post-surgery when decreased TA mass and fiber size were apparent. Mitochondria in the denervated muscle showed increased peroxide generation by 3 days post-transection. Use of electron transport chain (ETC) substrates and inhibitors of specific pathways indicated that the ETC was unlikely to contribute to increased ROS generation, but monoamine oxidase B, NADPH oxidase and phospholipase enzymes were implicated. Transection of one of the 3 branches of the peroneal nerve caused denervation of some TA muscle fibers while others retained innervation, but increased mitochondrial peroxide generation occurred in both denervated and innervated fibers. Thus the presence of recently denervated fibers leads to increased ROS generation by mitochondria in neighboring innervated fibers providing a novel explanation for the increased mitochondrial oxidative stress and damage seen with aging in skeletal muscles.
Collapse
Affiliation(s)
- Natalie Pollock
- MRC - Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8XL, UK
| | - Caroline A Staunton
- MRC - Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8XL, UK
| | - Aphrodite Vasilaki
- MRC - Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8XL, UK
| | - Anne McArdle
- MRC - Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8XL, UK
| | - Malcolm J Jackson
- MRC - Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8XL, UK.
| |
Collapse
|
12
|
Meda F, Rampon C, Dupont E, Gauron C, Mourton A, Queguiner I, Thauvin M, Volovitch M, Joliot A, Vriz S. Nerves, H 2O 2 and Shh: Three players in the game of regeneration. Semin Cell Dev Biol 2017; 80:65-73. [PMID: 28797840 DOI: 10.1016/j.semcdb.2017.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 08/04/2017] [Indexed: 12/12/2022]
Abstract
The tight control of reactive oxygen species (ROS) levels is required during regeneration. H2O2 in particular assumes clear signalling functions at different steps in this process. Injured nerves induce high levels of H2O2 through the activation of the Hedgehog (Shh) pathway, providing an environment that promotes cell plasticity, progenitor recruitment and blastema formation. In turn, high H2O2 levels contribute to growing axon attraction. Once re-innervation is completed, nerves subsequently downregulate H2O2 levels to their original state. A similar regulatory loop between H2O2 levels and nerves also exists during development. This suggests that redox signalling is a major actor in cell plasticity.
Collapse
Affiliation(s)
- Francesca Meda
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France; PSL Research University, Paris, France.
| | - Christine Rampon
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France; PSL Research University, Paris, France
| | - Edmond Dupont
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France; PSL Research University, Paris, France
| | - Carole Gauron
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France; PSL Research University, Paris, France
| | - Aurélien Mourton
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France; PSL Research University, Paris, France; UPMC, Paris, France
| | - Isabelle Queguiner
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France; PSL Research University, Paris, France
| | - Marion Thauvin
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France; PSL Research University, Paris, France
| | - Michel Volovitch
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France; École Normale Supérieure, Institute of Biology at the Ecole Normale Supérieure (IBENS), CNRS UMR8197, INSERM U1024, Paris, France; PSL Research University, Paris, France
| | - Alain Joliot
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France; PSL Research University, Paris, France
| | - Sophie Vriz
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France; PSL Research University, Paris, France.
| |
Collapse
|
13
|
Jackson MJ. Reactive oxygen species in sarcopenia: Should we focus on excess oxidative damage or defective redox signalling? Mol Aspects Med 2016; 50:33-40. [PMID: 27161871 DOI: 10.1016/j.mam.2016.05.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/03/2016] [Indexed: 12/17/2022]
Abstract
Physical frailty in the elderly is driven by loss of muscle mass and function and hence preventing this is the key to reduction in age-related physical frailty. Our current understanding of the key areas in which ROS contribute to age-related deficits in muscle is through increased oxidative damage to cell constituents and/or through induction of defective redox signalling. Recent data have argued against a primary role for ROS as a regulator of longevity, but studies have persistently indicated that aspects of the aging phenotype and age-related disorders may be mediated by ROS. There is increasing interest in the effects of defective redox signalling in aging and some studies now indicate that this process may be important in reducing the integrity of the aging neuromuscular system. Understanding how redox-signalling pathways are altered by aging and the causes of the defective redox homeostasis seen in aging muscle provides opportunities to identify targeted interventions with the potential to slow or prevent age-related neuromuscular decline with a consequent improvement in quality of life for older people.
Collapse
Affiliation(s)
- Malcolm J Jackson
- MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L69 3GA, UK.
| |
Collapse
|
14
|
Bórquez DA, Urrutia PJ, Wilson C, van Zundert B, Núñez MT, González-Billault C. Dissecting the role of redox signaling in neuronal development. J Neurochem 2016; 137:506-17. [DOI: 10.1111/jnc.13581] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/13/2016] [Accepted: 02/08/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Daniel A. Bórquez
- Facultad de Ciencias; Universidad de Chile; Santiago Chile
- Facultad de Medicina; Centro de Investigación Biomédica; Universidad Diego Portales; Santiago Chile
| | | | - Carlos Wilson
- Facultad de Ciencias; Universidad de Chile; Santiago Chile
| | | | | | - Christian González-Billault
- Facultad de Ciencias; Universidad de Chile; Santiago Chile
- Geroscience Center for Brain Health and Metabolism; Santiago Chile
| |
Collapse
|
15
|
Pirotte N, Leynen N, Artois T, Smeets K. Do you have the nerves to regenerate? The importance of neural signalling in the regeneration process. Dev Biol 2015; 409:4-15. [PMID: 26586202 DOI: 10.1016/j.ydbio.2015.09.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/26/2015] [Accepted: 09/07/2015] [Indexed: 02/06/2023]
Abstract
The importance of nerve-derived signalling for correct regeneration has been the topic of research for more than a hundred years, but we are just beginning to identify the underlying molecular pathways of this process. Within the current review, we attempt to provide an extensive overview of the neural influences during early and late phases of both vertebrate and invertebrate regeneration. In general, denervation impairs limb regeneration, but the presence of nerves is not essential for the regeneration of aneurogenic extremities. This observation led to the "neurotrophic factor(s) hypothesis", which states that certain trophic factors produced by the nerves are necessary for proper regeneration. Possible neuron-derived factors which regulate regeneration as well as the denervation-affected processes are discussed.
Collapse
Affiliation(s)
- Nicky Pirotte
- Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Agoralaan, Building D, BE 3590 Diepenbeek, Belgium
| | - Nathalie Leynen
- Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Agoralaan, Building D, BE 3590 Diepenbeek, Belgium
| | - Tom Artois
- Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Agoralaan, Building D, BE 3590 Diepenbeek, Belgium
| | - Karen Smeets
- Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Agoralaan, Building D, BE 3590 Diepenbeek, Belgium.
| |
Collapse
|
16
|
Reactive Oxygen Species in Planarian Regeneration: An Upstream Necessity for Correct Patterning and Brain Formation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:392476. [PMID: 26180588 PMCID: PMC4477255 DOI: 10.1155/2015/392476] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 04/30/2015] [Accepted: 05/04/2015] [Indexed: 12/12/2022]
Abstract
Recent research highlighted the impact of ROS as upstream regulators of tissue regeneration. We investigated their role and targeted processes during the regeneration of different body structures using the planarian Schmidtea mediterranea, an organism capable of regenerating its entire body, including its brain. The amputation of head and tail compartments induces a ROS burst at the wound site independently of the orientation. Inhibition of ROS production by diphenyleneiodonium (DPI) or apocynin (APO) causes regeneration defaults at both the anterior and posterior wound sites, resulting in reduced regeneration sites (blastemas) and improper tissue homeostasis. ROS signaling is necessary for early differentiation and inhibition of the ROS burst results in defects on the regeneration of the nervous system and on the patterning process. Stem cell proliferation was not affected, as indicated by histone H3-P immunostaining, fluorescence-activated cell sorting (FACS), in situ hybridization of smedwi-1, and transcript levels of proliferation-related genes. We showed for the first time that ROS modulate both anterior and posterior regeneration in a context where regeneration is not limited to certain body structures. Our results indicate that ROS are key players in neuroregeneration through interference with the differentiation and patterning processes.
Collapse
|
17
|
Eom HS, Park HR, Jo SK, Kim YS, Moon C, Jung U. Ionizing radiation induces neuronal differentiation of Neuro-2a cells via PI3-kinase and p53-dependent pathways. Int J Radiat Biol 2015; 91:585-95. [PMID: 25912236 DOI: 10.3109/09553002.2015.1029595] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE The influence of ionizing radiation (IR) on neuronal differentiation is not well defined. In this study, we investigated the effects of IR on the differentiation of Neuro-2a mouse neuroblastoma cells and the involvement of tumor protein 53 (p53) and mitogen-activated protein kinases (MAPK) during this process. MATERIALS AND METHODS The mouse neuroblastoma Neuro-2a cells were exposed to (137)Cs γ-rays at 4, 8 or 16 Gy. After incubation for 72 h with or without inhibitors of p53, phosphatidylinositol-4, 5-bisphosphate 3-kinase (PI3K) and other kinases, the neuronal differentiation of irradiated Neuro-2a cells was examined through analyzing neurite outgrowth and neuronal maker expression and the activation of related signaling proteins by western blotting and immunocytochemistry. Mouse primary neural stem cells (NSC) were exposed to IR at 1 Gy. The change of neuronal marker was examined using immunocytochemistry. RESULTS The irradiation of Neuro-2a cells significantly increased the neurite outgrowth and the expression of neuronal markers (neuronal nuclei [NeuN], microtubule-associated protein 2 [Map2], growth associated protein-43 [GAP-43], and Ras-related protein 13 [Rab13]). Immunocytochemistry revealed that neuronal class III beta-tubulin (Tuj-1) positive cells were increased and nestin positive cells were decreased by IR in Neuro-2a cells, which supported the IR-induced neuronal differentiation. However, the IR-induced neuronal differentiation was significantly attenuated when p53 was inhibited by pifithrin-α (PFT-α) or p53-small interfering RNA (siRNA). The PI3K inhibitor, LY294002, also suppressed the IR-induced neurite outgrowth, the activation of p53, the expression of GAP-43 and Rab13, and the increase of Tuj-1 positive cells. The increase of neurite outgrowth and Tuj-1 positive cells by IR and its suppression by LY294002 were also observed in mouse primary NSC. CONCLUSION These results suggest that IR is able to trigger the neuronal differentiation of Neuro-2a cells and the activation of p53 via PI3K is an important step for the IR-induced differentiation of Neuro-2a cells.
Collapse
Affiliation(s)
- Hyeon Soo Eom
- Radiation Biotechnology Research Division, Korea Atomic Energy Research Institute , Korea
| | | | | | | | | | | |
Collapse
|
18
|
Milewska M, Byrne PC. Different expression levels of spartin cause broad spectrum of cellular consequences in human neuroblastoma cells. Cell Biol Int 2015; 39:1007-15. [PMID: 25821002 DOI: 10.1002/cbin.10472] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/19/2015] [Indexed: 11/11/2022]
Abstract
Hereditary spastic paraplegia describes a diverse group of neurodegenerative conditions characterised by progressive spasticity and weakness of the lower limbs. Mutations in the SPG20 gene encoding spartin cause an autosomal recessive hereditary spastic paraplegia known as Troyer syndrome. To evaluate the cellular consequences of sustained spartin depletion in neuronal cells, we established several clonal SH-SY5Y cell lines with different level of spartin knockdown. Here, we report that cells with modest spartin downregulation show signs of neuronal differentiation such as increased neuritogenesis and cytoskeleton rearrangement. Interestingly, we also indicate that permanent high level spartin depletion results in impaired cell growth and multiple mitochondrial aberrations, which we speculate, arise as a result of chronic oxidative stress. Our studies demonstrate that the scale of spartin downregulation is the major factor that determines the severity of cellular consequences observed and suggest that there is a critical level of spartin expression which must be maintained for proper cellular functions.
Collapse
Affiliation(s)
- Malgorzata Milewska
- School of Medicine and Medical Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Paula Catherine Byrne
- School of Medicine and Medical Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
19
|
Wakita S, Izumi Y, Nakai T, Adachi K, Takada-Takatori Y, Kume T, Akaike A. Staurosporine induces dopaminergic neurite outgrowth through AMP-activated protein kinase/mammalian target of rapamycin signaling pathway. Neuropharmacology 2013; 77:39-48. [PMID: 24067927 DOI: 10.1016/j.neuropharm.2013.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 08/12/2013] [Accepted: 09/09/2013] [Indexed: 10/26/2022]
Abstract
Axonal degeneration of dopaminergic neurons is one of the pathological features in the early stages of Parkinson disease. Promotion of axonal outgrowth of the remaining dopaminergic neurons leads to the recovery of the nigrostriatal pathway. Staurosporine (STS), a wide-spectrum kinase inhibitor, induces neurite outgrowth in various cell types, although its mechanism of action remains elusive. In this study, we analyzed which protein kinase is involved in STS-induced neurite outgrowth. We have previously established the method to measure the length of dopaminergic neurites that extend from a mesencephalic cell region, which is formed on a coverslip by an isolation wall. By means of this method, we clarified that STS treatment causes dopaminergic axonal outgrowth in mesencephalic primary cultures. Among the specific protein kinase inhibitors we tested, compound C (C.C), an AMP-activated protein kinase (AMPK) inhibitor, promoted dopaminergic neurite outgrowth. STS as well as C.C elevated the phosphorylation level of 70-kDa ribosomal protein S6 kinase, a downstream target of mammalian target of rapamycin (mTOR) signaling pathway. The STS- and C.C-induced dopaminergic neurite outgrowth was suppressed by rapamycin, an mTOR inhibitor. Furthermore, the application of C.C rescued 1-methyl-4-phenylpyridinium ion (MPP(+))-induced dopaminergic neurite degeneration. These results suggest that STS induces dopaminergic axonal outgrowth through mTOR signaling pathway activation as a consequence of AMPK inhibition.
Collapse
Affiliation(s)
- Seiko Wakita
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Yasuhiko Izumi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Toshie Nakai
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Kanami Adachi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Yuki Takada-Takatori
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College, 97-1 Minamihokodate, Kodo, Kyotanabe, Kyoto 610-0395, Japan.
| | - Toshiaki Kume
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Akinori Akaike
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan; Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
20
|
Suzuki N, Mittler R. Reactive oxygen species-dependent wound responses in animals and plants. Free Radic Biol Med 2012; 53:2269-76. [PMID: 23085520 DOI: 10.1016/j.freeradbiomed.2012.10.538] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 01/20/2023]
Abstract
Animals and plants evolved sophisticated mechanisms that regulate their responses to mechanical injury. Wound response in animals mainly promotes wound healing processes, nerve cell regeneration, and immune system responses at the vicinity of the wound site. In contrast, wound response in plants is primarily directed at sealing the wound site via deposition of various compounds and generating systemic signals that activate multiple defense mechanisms in remote tissues. Despite these differences between animals and plants, recent studies have shown that reactive oxygen species (ROS) play very common signaling and coordination roles in the wound responses of both systems. This review provides an update on recent findings related to ROS-regulated coordination of intercellular communications and signal transduction during wound response in plants and animals. In particular, differences and similarities in H2O2-dependent long-distance signaling between zebrafish and Arabidopsis thaliana are discussed.
Collapse
Affiliation(s)
- Nobuhiro Suzuki
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, Denton, TX 76203-5017, USA
| | - Ron Mittler
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, Denton, TX 76203-5017, USA.
| |
Collapse
|
21
|
Kim DS, An JM, Lee HG, Seo SR, Kim SS, Kim JY, Kang JW, Bae YS, Seo JT. Activation of Rac1-dependent redox signaling is critically involved in staurosporine-induced neurite outgrowth in PC12 cells. Free Radic Res 2012; 47:95-103. [PMID: 23153365 DOI: 10.3109/10715762.2012.748193] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Staurosporine, a non-specific protein kinase inhibitor, has been shown to induce neurite outgrowth in PC12 cells, but the mechanism by which staurosporine induces neurite outgrowth is still obscure. In the present study, we investigated whether the activation of Rac1 was responsible for the neurite outgrowth triggered by staurosporine. Staurosporine caused rapid neurite outgrowth independent of the ERK signaling pathways. In contrast, neurite outgrowth in response to staurosporine was accompanied by activation of Rac1, and the Rac1 inhibitor NSC23766 attenuated the staurosporine-induced neurite outgrowth in a concentration-dependent manner. In addition, suppression of Rac1 activity by expression of the dominant negative mutant Rac1N17 also blocked the staurosporine-induced morphological differentiation of PC12 cells. Staurosporine caused an activation of NADPH oxidase and increased the production of reactive oxygen species (ROS), which was prevented by NSC23766 and diphenyleneiodonium (DPI), an NADPH oxidase inhibitor. Staurosporine-induced neurite outgrowth was attenuated by pretreatment with DPI and exogenous addition of sublethal concentration of H2O2 accelerated neurite outgrowth triggered by staurosporine. These results indicate that activation of Rac1, which leads to ROS generation, is required for neurite outgrowth induced by staurosporine in PC12 cells.
Collapse
Affiliation(s)
- Du Sik Kim
- Department of Oral Biology, BK 21 Project for Yonsei Dental Sciences, Yonsei University College of Dentistry, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Su C, Rybalchenko N, Schreihofer DA, Singh M, Abbassi B, Cunningham RL. Cell Models for the Study of Sex Steroid Hormone Neurobiology. ACTA ACUST UNITED AC 2012; S2. [PMID: 22860237 DOI: 10.4172/2157-7536.s2-003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
To date many aspects of neurons and glia biology remain elusive, due in part to the cellular and molecular complexity of the brain. In recent decades, cell models from different brain areas have been established and proven invaluable toward understanding this complexity. In the field of steroid hormone neurobiology, an important question is: what is the profile of steroid hormone receptor expression in these specific cell lines? Currently, a clear summary of such receptor profiling is lacking. For this reason, we summarized in this review the expression of estrogen, progesterone, and androgen receptors in several widely used cell lines (glial and neuronal) derived from the forebrain and midbrain, based on our own data and that from the literature. Such information will aid in the selection of specific cell lines used to test hypotheses related to the biology of estrogens, progestins, and/or androgens.
Collapse
Affiliation(s)
- Chang Su
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107 USA
| | | | | | | | | | | |
Collapse
|
23
|
Zhou L, Too HP. Mitochondrial localized STAT3 is involved in NGF induced neurite outgrowth. PLoS One 2011; 6:e21680. [PMID: 21738764 PMCID: PMC3124549 DOI: 10.1371/journal.pone.0021680] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 06/05/2011] [Indexed: 12/28/2022] Open
Abstract
Background Signal transducer and activator of transcription 3 (STAT3) plays critical roles in neural development and is increasingly recognized as a major mediator of injury response in the nervous system. Cytokines and growth factors are known to phosphorylate STAT3 at tyrosine705 with or without the concomitant phosphorylation at serine727, resulting in the nuclear localization of STAT3 and subsequent transcriptional activation of genes. Recent evidence suggests that STAT3 may control cell function via alternative mechanisms independent of its transcriptional activity. Currently, the involvement of STAT3 mono-phosphorylated at residue serine727 (P-Ser-STAT3) in neurite outgrowth and the underlying mechanism is largely unknown. Principal Findings In this study, we investigated the role of nerve growth factor (NGF) induced P-Ser-STAT3 in mediating neurite outgrowth. NGF induced the phosphorylation of residue serine727 but not tyrosine705 of STAT3 in PC12 and primary cortical neuronal cells. In PC12 cells, serine but not tyrosine dominant negative mutant of STAT3 was found to impair NGF induced neurite outgrowth. Unexpectedly, NGF induced P-Ser-STAT3 was localized to the mitochondria but not in the nucleus. Mitochondrial STAT3 was further found to be intimately involved in NGF induced neurite outgrowth and the production of reactive oxygen species (ROS). Conclusion Taken together, the findings herein demonstrated a hitherto unrecognized novel transcription independent mechanism whereby the mitochondria localized P-Ser-STAT3 is involved in NGF induced neurite outgrowth.
Collapse
Affiliation(s)
- Lihan Zhou
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
- Chemical Pharmaceutical Engineering, Singapore–Massachusetts Institute of Technology Alliance, Singapore, Singapore
| | - Heng-Phon Too
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
- Chemical Pharmaceutical Engineering, Singapore–Massachusetts Institute of Technology Alliance, Singapore, Singapore
- * E-mail:
| |
Collapse
|
24
|
Rieger S, Sagasti A. Hydrogen peroxide promotes injury-induced peripheral sensory axon regeneration in the zebrafish skin. PLoS Biol 2011; 9:e1000621. [PMID: 21629674 PMCID: PMC3101194 DOI: 10.1371/journal.pbio.1000621] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 04/14/2011] [Indexed: 02/01/2023] Open
Abstract
Production of H2O2 by injured zebrafish skin cells promotes the regeneration of nearby somatosensory axon terminals, thus coordinating wound healing of the skin with sensory reinnervation. Functional recovery from cutaneous injury requires not only the healing and regeneration of skin cells but also reinnervation of the skin by somatosensory peripheral axon endings. To investigate how sensory axon regeneration and wound healing are coordinated, we amputated the caudal fins of zebrafish larvae and imaged somatosensory axon behavior. Fin amputation strongly promoted the regeneration of nearby sensory axons, an effect that could be mimicked by ablating a few keratinocytes anywhere in the body. Since injury produces the reactive oxygen species hydrogen peroxide (H2O2) near wounds, we tested whether H2O2 influences cutaneous axon regeneration. Exposure of zebrafish larvae to sublethal levels of exogenous H2O2 promoted growth of severed axons in the absence of keratinocyte injury, and inhibiting H2O2 production blocked the axon growth-promoting effects of fin amputation and keratinocyte ablation. Thus, H2O2 signaling helps coordinate wound healing with peripheral sensory axon reinnervation of the skin. Touch-sensing neurons project axonal processes that branch extensively within the outer layers of skin to detect touch stimuli. Recovering from skin injuries thus requires not only repair of damaged skin tissue but also regeneration of the sensory axons innervating it. To study whether skin wound healing is coordinated with sensory innervation, we compared the regeneration of severed sensory axons innervating larval zebrafish tail fins with and without concomitant injury to surrounding skin cells. Severed axons regenerated more robustly when nearby skin cells were also damaged, suggesting that wounded skin releases a short-range factor that promotes axon growth. The reactive oxygen species hydrogen peroxide (H2O2) is known to be produced by injured cells, making it a candidate for mediating this signal. We found that adding exogenous H2O2 improved the regeneration of severed axons. Conversely, blocking H2O2 production prevented the axon growth-promoting effect of skin injury. Thus, H2O2 promotes axon growth after skin damage, helping to ensure that healing skin is properly innervated.
Collapse
Affiliation(s)
- Sandra Rieger
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (AS); (SR)
| | - Alvaro Sagasti
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (AS); (SR)
| |
Collapse
|
25
|
Wang X, Wang Z, Yao Y, Li J, Zhang X, Li C, Cheng Y, Ding G, Liu L, Ding Z. Essential role of ERK activation in neurite outgrowth induced by α-lipoic acid. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:827-38. [DOI: 10.1016/j.bbamcr.2011.01.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 01/19/2011] [Accepted: 01/24/2011] [Indexed: 01/29/2023]
|
26
|
Choi HJ, Kang KS, Fukui M, Zhu BT. Critical role of the JNK-p53-GADD45α apoptotic cascade in mediating oxidative cytotoxicity in hippocampal neurons. Br J Pharmacol 2011; 162:175-92. [PMID: 20955365 DOI: 10.1111/j.1476-5381.2010.01041.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Glutamate-induced oxidative stress plays a critical role in the induction of neuronal cell death in a number of disease states. We sought to determine the role of the c-Jun NH(2) -terminal kinase (JNK)-p53-growth arrest and DNA damage-inducible gene (GADD) 45α apoptotic cascade in mediating glutamate-induced oxidative cytotoxicity in hippocampal neuronal cells. EXPERIMENTAL APPROACH HT22 cells, a mouse hippocampal neuronal cell line, were treated with glutamate to induce oxidative stress in vitro. Kainic acid-induced oxidative damage to the hippocampus in rats was used as an in vivo model. The signalling molecules along the JNK-p53-GADD45α cascade were probed with various means to determine their contributions to oxidative neurotoxicity. KEY RESULTS Treatment of HT22 cells with glutamate increased the mRNA and protein levels of GADD45α, and these increases were suppressed by p53 knock-down. Knock-down of either p53 or GADD45α also prevented glutamate-induced cell death. Glutamate-induced p53 activation was preceded by accumulation of reactive oxygen species, and co-treatment with N-acetyl-cysteine prevented glutamate-induced p53 activation and GADD45α expression. Knock-down of MKK4 or JNK, or the presence of SP600125 (a JNK inhibitor), each inhibited glutamate-induced p53 activation and GADD45α expression. In addition, we also confirmed the involvement of GADD45α in mediating kainic acid-induced hippocampal oxidative neurotoxicity in vivo. CONCLUSIONS AND IMPLICATIONS Activation of the JNK-p53-GADD45α cascade played a critical role in mediating oxidative cytotoxicity in hippocampal neurons. Pharmacological inhibition of this signalling cascade may provide an effective strategy for neuroprotection.
Collapse
Affiliation(s)
- Hye Joung Choi
- Department of Pharmacology, Toxicology and Therapeutics, School of Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
27
|
MEK/ERKs signaling is essential for lithium-induced neurite outgrowth in N2a cells. Int J Dev Neurosci 2011; 29:415-22. [PMID: 21397003 DOI: 10.1016/j.ijdevneu.2011.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 01/25/2011] [Accepted: 03/03/2011] [Indexed: 11/21/2022] Open
Abstract
Lithium, a drug used for the treatment of bipolar disorder, has been shown to affect different aspects of neuronal development such as neuritogenesis, neurogenesis and survival. The underlying mechanism responsible for lithium's influence on neuronal development, however, still remains to be elucidated. In the present study, we demonstrate that lithium increases the phosphorylation of extracellular-signal regulated kinases (ERKs) and protein kinase B (Akt) and promotes neurite outgrowth in mouse N2a neuroblastoma cells (N2a). The inactivation of mitogen-activated protein kinase kinase (MEK)/ERKs signaling with a MEK inhibitor inhibits neurite outgrowth, but it enhances Akt activation in lithium-treated N2a cells. Furthermore, the inactivation of phosphoinositide-3-kinase (PI3K)/Akt signaling with a PI3K inhibitor increases both lithium-induced ERKs activation and lithium-induced neurite outgrowth. Taken together, our study suggests that lithium-induced neurite outgrowth in N2a cells is regulated by cross-talk between the MEK/ERKs and PI3K/Akt pathways and requires the activation of the MEK/ERKs signaling.
Collapse
|
28
|
Dächsel JC, Behrouz B, Yue M, Beevers JE, Melrose HL, Farrer MJ. A comparative study of Lrrk2 function in primary neuronal cultures. Parkinsonism Relat Disord 2010; 16:650-5. [PMID: 20850369 DOI: 10.1016/j.parkreldis.2010.08.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Revised: 07/29/2010] [Accepted: 08/24/2010] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To assess the contribution of wild-type, mutant and loss of leucine-rich repeat kinase-2 (LRRK2; Lrrk2) on dendritic neuronal arborization. BACKGROUND LRRK2 mutations are recognized as the major genetic determinant of susceptibility to Parkinson's disease for which a cellular assay of Lrrk2 mutant function would facilitate the development of targeted molecular therapeutics. METHODS Dendritic neuronal arborization (neurite length, branching and the number of processes per cell) was quantified in primary hippocampal and midbrain cultures derived from five lines of recombinant LRRK2 mice, including human BAC wild-type and mutant overexpressors (Y1699C and G2019S), murine knock-out and G2019S knock-in animals. RESULTS Neuronal arborization in cultures from BAC Lrrk2 wild-type animals is comparable to non-transgenic littermate controls, despite high levels of human transgene expression. In contrast, primary neurons from both BAC mutant overexpressors presented with significantly reduced neuritic outgrowth and branching, although the total number of processes per cell remained comparable. The mutant-specific toxic gain-of-function observed in cultures from BAC mutant mice may be partially rescued by staurosporine treatment, a non-specific kinase inhibitor. In contrast, neuronal arborization is far more extensive in neuronal cultures derived from murine knock-out mice that lack endogenous Lrrk2 expression. In Lrrk2 G2019S knock-in mice, arguably the most physiologically relevant system, neuritic arborization is not impaired. CONCLUSIONS Impairment of neuritic arborization is an exaggerated, albeit mutant specific, consequence of Lrrk2 over-expression in primary cultures. The phenotype and assay described provides a means to develop therapeutic agents that modulate the toxic gain-of-function conferred by mutant Lrrk2.
Collapse
Affiliation(s)
- Justus C Dächsel
- Division of Neurogenetics, Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | | | | | | | |
Collapse
|
29
|
Morales AA, Gutman D, Cejas PJ, Lee KP, Boise LH. Reactive oxygen species are not required for an arsenic trioxide-induced antioxidant response or apoptosis. J Biol Chem 2009; 284:12886-95. [PMID: 19279006 DOI: 10.1074/jbc.m806546200] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Arsenicals are both environmental carcinogens as well as therapeutic agents for the treatment of trypanosomiasis and more recently cancer. Arsenic trioxide (ATO) has been successfully used for the treatment of acute promyelocytic leukemia (APL) and has activity in multiple myeloma (MM). While signaling events associated with carcinogenesis have been well studied, it still remains to be determined which of these events are involved in anti-cancer signaling. To better define this response, gene expression profiling following ATO treatment of four MM cell lines was performed. The pattern was consistent with a strong antioxidative response, particularly of genes activated by Nrf2. While Nrf2 is expressed constitutively at the mRNA level, the protein is not detected in untreated cells. Consistent with inactivation of Keap1, Nrf2 protein is stabilized and present in the nucleus within 6 h of ATO treatment. Despite the activation of this antioxidative response, ROS may not be important in ATO-induced death. Inhibition of ATO-induced ROS with butylated hydroxyanisole (BHA) does not affect Nrf2 activation or cell death. Moreover, silencing Nrf2 had no effect on ATO-induced apoptosis. Together these data suggest that ROS is not important in the induction of the antioxidative response or cellular death by ATO.
Collapse
Affiliation(s)
- Alejo A Morales
- Department of Microbiology and Immunology and The Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | | | | | |
Collapse
|