1
|
Lanza G, Fisicaro F, Dubbioso R, Ranieri F, Chistyakov AV, Cantone M, Pennisi M, Grasso AA, Bella R, Di Lazzaro V. A comprehensive review of transcranial magnetic stimulation in secondary dementia. Front Aging Neurosci 2022; 14:995000. [PMID: 36225892 PMCID: PMC9549917 DOI: 10.3389/fnagi.2022.995000] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Although primary degenerative diseases are the main cause of dementia, a non-negligible proportion of patients is affected by a secondary and potentially treatable cognitive disorder. Therefore, diagnostic tools able to early identify and monitor them and to predict the response to treatment are needed. Transcranial magnetic stimulation (TMS) is a non-invasive neurophysiological technique capable of evaluating in vivo and in “real time” the motor areas, the cortico-spinal tract, and the neurotransmission pathways in several neurological and neuropsychiatric disorders, including cognitive impairment and dementia. While consistent evidence has been accumulated for Alzheimer’s disease, other degenerative cognitive disorders, and vascular dementia, to date a comprehensive review of TMS studies available in other secondary dementias is lacking. These conditions include, among others, normal-pressure hydrocephalus, multiple sclerosis, celiac disease and other immunologically mediated diseases, as well as a number of inflammatory, infective, metabolic, toxic, nutritional, endocrine, sleep-related, and rare genetic disorders. Overall, we observed that, while in degenerative dementia neurophysiological alterations might mirror specific, and possibly primary, neuropathological changes (and hence be used as early biomarkers), this pathogenic link appears to be weaker for most secondary forms of dementia, in which neurotransmitter dysfunction is more likely related to a systemic or diffuse neural damage. In these cases, therefore, an effort toward the understanding of pathological mechanisms of cognitive impairment should be made, also by investigating the relationship between functional alterations of brain circuits and the specific mechanisms of neuronal damage triggered by the causative disease. Neurophysiologically, although no distinctive TMS pattern can be identified that might be used to predict the occurrence or progression of cognitive decline in a specific condition, some TMS-associated measures of cortical function and plasticity (such as the short-latency afferent inhibition, the short-interval intracortical inhibition, and the cortical silent period) might add useful information in most of secondary dementia, especially in combination with suggestive clinical features and other diagnostic tests. The possibility to detect dysfunctional cortical circuits, to monitor the disease course, to probe the response to treatment, and to design novel neuromodulatory interventions in secondary dementia still represents a gap in the literature that needs to be explored.
Collapse
Affiliation(s)
- Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
- *Correspondence: Giuseppe Lanza,
| | - Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, Naples, Italy
| | - Federico Ranieri
- Unit of Neurology, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Mariagiovanna Cantone
- Neurology Unit, Policlinico University Hospital “G. Rodolico – San Marco”, Catania, Italy
- Neurology Unit, Sant’Elia Hospital, ASP Caltanissetta, Caltanissetta, Italy
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Alfio Antonio Grasso
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology and Neurobiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| |
Collapse
|
2
|
Westermeyer JJ, Soukup B, Mayer J, Lee K. Identifying, Assessing, and Treating Korsakoff Syndrome Patients: Updated Perspectives. J Nerv Ment Dis 2021; 209:592-599. [PMID: 34397759 DOI: 10.1097/nmd.0000000000001351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
ABSTRACT Objectives consist of updating published reports on the recognition, assessment, and care of patients with Wernicke-Korsakoff syndrome (WKS). Methods included defining relevant terms, describing core clinical phenomena, conducting meaningful reviews for latter-day WKS publications, and selecting instructive case examples. Findings covered epidemiology, precipitants, neuroimaging studies, alternate learning strategies in WKS, adjunctive treatments, and promising research. In conclusion, patients, their family members, clinicians, and public health experts should benefit from this updated knowledge. Countries with substantial alcohol consumption should consider emulating Holland in designating WKS research centers, founding regional clinical facilities, and funding multidisciplinary expert teams.
Collapse
Affiliation(s)
| | | | | | - Kathryn Lee
- Minneapolis VA Health Care Center, Minneapolis
| |
Collapse
|
3
|
Turco CV, Toepp SL, Foglia SD, Dans PW, Nelson AJ. Association of short- and long-latency afferent inhibition with human behavior. Clin Neurophysiol 2021; 132:1462-1480. [PMID: 34030051 DOI: 10.1016/j.clinph.2021.02.402] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/26/2021] [Accepted: 02/12/2021] [Indexed: 01/04/2023]
Abstract
Transcranial magnetic stimulation (TMS) paired with nerve stimulation evokes short-latency afferent inhibition (SAI) and long-latency afferent inhibition (LAI), which are non-invasive assessments of the excitability of the sensorimotor system. SAI and LAI are abnormally reduced in various special populations in comparison to healthy controls. However, the relationship between afferent inhibition and human behavior remains unclear. The purpose of this review is to survey the current literature and synthesize observations and patterns that affect the interpretation of SAI and LAI in the context of human behavior. We discuss human behaviour across the motor and cognitive domains, and in special and control populations. Further, we discuss future considerations for research in this field and the potential for clinical applications. By understanding how human behavior is mediated by changes in SAI and LAI, this can allow us to better understand the neurophysiological underpinnings of human motor control.
Collapse
Affiliation(s)
- Claudia V Turco
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Stephen L Toepp
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Stevie D Foglia
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Patrick W Dans
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Aimee J Nelson
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
4
|
Coppola G, Di Lenola D, Abagnale C, Ferrandes F, Sebastianelli G, Casillo F, Di Lorenzo C, Serrao M, Evangelista M, Schoenen J, Pierelli F. Short-latency afferent inhibition and somato-sensory evoked potentials during the migraine cycle: surrogate markers of a cycling cholinergic thalamo-cortical drive? J Headache Pain 2020; 21:34. [PMID: 32299338 PMCID: PMC7164277 DOI: 10.1186/s10194-020-01104-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/07/2020] [Indexed: 12/21/2022] Open
Abstract
Background Short-latency afferent inhibition (SAI) consists of motor cortex inhibition induced by sensory afferents and depends on the excitatory effect of cholinergic thalamocortical projections on inhibitory GABAergic cortical networks. Given the electrophysiological evidence for thalamo-cortical dysrhythmia in migraine, we studied SAI in migraineurs during and between attacks and searched for correlations with somatosensory habituation, thalamocortical activation, and clinical features. Methods SAI was obtained by conditioning the transcranial magnetic stimulation-induced motor evoked potential (MEP) with an electric stimulus on the median nerve at the wrist with random stimulus intervals corresponding to the latency of individual somatosensory evoked potentials (SSEP) N20 plus 2, 4, 6, or 8 ms. We recruited 30 migraine without aura patients, 16 between (MO), 14 during an attack (MI), and 16 healthy volunteers (HV). We calculated the slope of the linear regression between the unconditioned MEP amplitude and the 4-conditioned MEPs as a measure of SAI. We also measured SSEP amplitude habituation, and high-frequency oscillations (HFO) as an index of thalamo-cortical activation. Results Compared to HV, SAI, SSEP habituation and early SSEP HFOs were significantly reduced in MO patients between attacks, but enhanced during an attack. There was a positive correlation between degree of SAI and amplitude of early HFOs in HV, but not in MO or MI. Conclusions The migraine cycle-dependent variations of SAI and SSEP HFOs are further evidence that facilitatory thalamocortical activation (of GABAergic networks in the motor cortex for SAI), likely to be cholinergic, is reduced in migraine between attacks, but increased ictally.
Collapse
Affiliation(s)
- Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica 79, 04100, Latina, Italy.
| | - Davide Di Lenola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica 79, 04100, Latina, Italy
| | - Chiara Abagnale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica 79, 04100, Latina, Italy
| | - Fabio Ferrandes
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica 79, 04100, Latina, Italy
| | - Gabriele Sebastianelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica 79, 04100, Latina, Italy
| | - Francesco Casillo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica 79, 04100, Latina, Italy
| | - Cherubino Di Lorenzo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica 79, 04100, Latina, Italy
| | - Mariano Serrao
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica 79, 04100, Latina, Italy
| | - Maurizio Evangelista
- Università Cattolica del Sacro Cuore/CIC, Istituto di Anestesiologia, Rianimazione e Terapia del Dolore, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Jean Schoenen
- Headache Research Unit, University Department of Neurology CHR, Citadelle Hospital. University of Liège, Boulevard du Douzième de Ligne 1, 4000, Liège, Belgium
| | - Francesco Pierelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica 79, 04100, Latina, Italy.,IRCCS - Neuromed, via Atinense, 18, 86077, Pozzilli, IS, Italy
| |
Collapse
|
5
|
Hanlon CA, Dowdle LT, Henderson JS. Modulating Neural Circuits with Transcranial Magnetic Stimulation: Implications for Addiction Treatment Development. Pharmacol Rev 2018; 70:661-683. [PMID: 29945899 PMCID: PMC6020107 DOI: 10.1124/pr.116.013649] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although the last 50 years of clinical and preclinical research have demonstrated that addiction is a brain disease, we still have no neural circuit-based treatments for substance dependence or cue reactivity at large. Now, for the first time, it appears that a noninvasive brain stimulation technique known as transcranial magnetic stimulation (TMS), which is Food and Drug Administration approved to treat depression, may be the first tool available to fill this critical void in addiction treatment development. The goals of this review are to 1) introduce TMS as a tool to induce causal change in behavior, cortical excitability, and frontal-striatal activity; 2) describe repetitive TMS (rTMS) as an interventional tool; 3) provide an overview of the studies that have evaluated rTMS as a therapeutic tool for alcohol and drug use disorders; and 4) outline a conceptual framework for target selection when designing future rTMS clinical trials in substance use disorders. The manuscript concludes with some suggestions for methodological innovation, specifically with regard to combining rTMS with pharmacotherapy as well as cognitive behavioral training paradigms. We have attempted to create a comprehensive manuscript that provides the reader with a basic set of knowledge and an introduction to the primary experimental questions that will likely drive the field of TMS treatment development forward for the next several years.
Collapse
Affiliation(s)
- Colleen A Hanlon
- Departments of Psychiatry (C.A.H., L.T.D., J.S.H.) and Neurosciences (C.A.H., L.T.D.), Medical University of South Carolina, Charleston, South Carolina; and Ralph Johnson VA Medical Center, Charleston, South Carolina (C.A.H.)
| | - Logan T Dowdle
- Departments of Psychiatry (C.A.H., L.T.D., J.S.H.) and Neurosciences (C.A.H., L.T.D.), Medical University of South Carolina, Charleston, South Carolina; and Ralph Johnson VA Medical Center, Charleston, South Carolina (C.A.H.)
| | - J Scott Henderson
- Departments of Psychiatry (C.A.H., L.T.D., J.S.H.) and Neurosciences (C.A.H., L.T.D.), Medical University of South Carolina, Charleston, South Carolina; and Ralph Johnson VA Medical Center, Charleston, South Carolina (C.A.H.)
| |
Collapse
|
6
|
Mango D, Nisticò R, Furlan R, Finardi A, Centonze D, Mori F. PDGF Modulates Synaptic Excitability and Short-Latency Afferent Inhibition in Multiple Sclerosis. Neurochem Res 2018; 44:726-733. [PMID: 29392518 DOI: 10.1007/s11064-018-2484-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 01/19/2018] [Accepted: 01/23/2018] [Indexed: 12/25/2022]
Abstract
Maintenance of synaptic plasticity reserve is crucial to contrast clinical deterioration in MS and PDGF plays a key role in this phenomenon. Indeed, higher cerebrospinal fluid PDGF concentration correlates with improved clinical recovery after a relapse, and the amplitude of LTP-like cortical plasticity in relapsing-remitting MS patients. However, LTP-like cortical plasticity varies depending on the individual level of inhibitory cortical circuits. Aim of this study was to explore whether PDGF-CSF concentration correlates with inhibitory cortical circuits explored by means of transcranial magnetic stimulation in patients affected by relapsing-remitting MS. We further performed electrophysiological experiments evaluating GABAergic transmission in the experimental autoimmune encephalomyelitis (EAE) hippocampus. Our results reveal that increased CSF PDGF concentration correlates with decreased short afferent inhibition in the motor cortex in MS patients and decreased GABAergic activity in EAE. These findings show that PDGF affects GABAergic activity both in MS patients and in EAE hippocampus.
Collapse
Affiliation(s)
- Dalila Mango
- Neuropharmacology Unit, EBRI Rita Levi-Montalcini Foundation, Rome, Italy
| | - Robert Nisticò
- Neuropharmacology Unit, EBRI Rita Levi-Montalcini Foundation, Rome, Italy. .,Department of Biology, University of Rome "Tor Vergata", Rome, Italy.
| | - Roberto Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Annamaria Finardi
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Diego Centonze
- Neurology and Neurorehabilitation Units, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, IS, Italy. .,Multiple Sclerosis Research Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.
| | - Francesco Mori
- Neurology and Neurorehabilitation Units, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, IS, Italy.,Multiple Sclerosis Research Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
7
|
Turco CV, El-Sayes J, Savoie MJ, Fassett HJ, Locke MB, Nelson AJ. Short- and long-latency afferent inhibition; uses, mechanisms and influencing factors. Brain Stimul 2018; 11:59-74. [DOI: 10.1016/j.brs.2017.09.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/28/2017] [Accepted: 09/14/2017] [Indexed: 12/11/2022] Open
|
8
|
Bonnet U, Taazimi B, Borda T, Grabbe HD. Improvement of a Woman’s Alcohol-Related Dementia via Off-label Memantine Treatment. Ann Pharmacother 2014; 48:1371-5. [DOI: 10.1177/1060028014542270] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective: To report a case of long-term treatment of moderate alcohol-related dementia (ARD) with memantine. Case Summary: We present the case of a 48-year-old German woman with a long history of alcohol dependence and cognitive impairments, who was diagnosed with moderate ARD (according to ICD-10 criteria) after having ruled out other dementias. Her cognitive functioning improved with off-label use of memantine (up to 20 mg/d) under abstinent conditions. Discontinuation and reinstitution of memantine were associated with a worsening and an improving of her cognitive performance, respectively, which was documented in neuropsychiatric tests. The patient had 2 alcohol relapses during this study. Only the first relapse was associated with discontinuation of memantine and cognitive deterioration. The second relapse happened during receiving of memantine and was not associated with a decline in cognitive functioning. After 16 months of treatment, moderate ARD had been improved to the grade of an amnestic mild cognitive impairment (according to DemTect) and to mild dementia (according to Clinical Dementia Rating Scale), respectively. Discussion: The on-off-on pattern of the memantine treatment supports the assumption that this antidementia agent played a key role in the improvement of ARD. An alcohol relapse did not attenuate the improvement of cognition with memantine. Conclusion: The use of memantine improved cognitive functioning of a female patient with ARD.
Collapse
Affiliation(s)
- Udo Bonnet
- Department of Psychiatry, Psychotherapy and Psychosomatics of Evangelisches Krankenhaus Castrop-Rauxel, Castrop-Rauxel, Germany
- University of Duisburg, Essen, Germany
| | - Behnaz Taazimi
- Department of Psychiatry, Psychotherapy and Psychosomatics of Evangelisches Krankenhaus Castrop-Rauxel, Castrop-Rauxel, Germany
| | - Thorsten Borda
- Department of Psychiatry, Psychotherapy and Psychosomatics of Evangelisches Krankenhaus Castrop-Rauxel, Castrop-Rauxel, Germany
| | - Heinz-Dieter Grabbe
- Department of Psychiatry, Psychotherapy and Psychosomatics of Evangelisches Krankenhaus Castrop-Rauxel, Castrop-Rauxel, Germany
| |
Collapse
|
9
|
Cantone M, Di Pino G, Capone F, Piombo M, Chiarello D, Cheeran B, Pennisi G, Di Lazzaro V. The contribution of transcranial magnetic stimulation in the diagnosis and in the management of dementia. Clin Neurophysiol 2014; 125:1509-32. [PMID: 24840904 DOI: 10.1016/j.clinph.2014.04.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/01/2014] [Accepted: 04/19/2014] [Indexed: 12/11/2022]
Abstract
Transcranial magnetic stimulation (TMS) is emerging as a promising tool to non-invasively assess specific cortical circuits in neurological diseases. A number of studies have reported the abnormalities in TMS assays of cortical function in dementias. A PubMed-based literature review on TMS studies targeting primary and secondary dementia has been conducted using the key words "transcranial magnetic stimulation" or "motor cortex excitability" and "dementia" or "cognitive impairment" or "memory impairment" or "memory decline". Cortical excitability is increased in Alzheimer's disease (AD) and in vascular dementia (VaD), generally reduced in secondary dementias. Short-latency afferent inhibition (SAI), a measure of central cholinergic circuitry, is normal in VaD and in frontotemporal dementia (FTD), but suppressed in AD. In mild cognitive impairment, abnormal SAI may predict the progression to AD. No change in cortical excitability has been observed in FTD, in Parkinson's dementia and in dementia with Lewy bodies. Short-interval intracortical inhibition and controlateral silent period (cSP), two measures of gabaergic cortical inhibition, are abnormal in most dementias associated with parkinsonian symptoms. Ipsilateral silent period (iSP), which is dependent on integrity of the corpus callosum is abnormal in AD. While single TMS measure owns low specificity, a panel of measures can support the clinical diagnosis, predict progression and possibly identify earlier the "brain at risk". In dementias, TMS can be also exploited to select and evaluate the responders to specific drugs and, it might become a rehabilitative tool, in the attempt to restore impaired brain plasticity.
Collapse
Affiliation(s)
- Mariagiovanna Cantone
- Institute of Neurology, Campus Bio-Medico University, Via Álvaro del Portillo 200, 00128 Rome, Italy
| | - Giovanni Di Pino
- Institute of Neurology, Campus Bio-Medico University, Via Álvaro del Portillo 200, 00128 Rome, Italy; Fondazione Alberto Sordi - Research Institute for Ageing, Via Álvaro del Portillo 5, 00128 Rome, Italy
| | - Fioravante Capone
- Institute of Neurology, Campus Bio-Medico University, Via Álvaro del Portillo 200, 00128 Rome, Italy; Fondazione Alberto Sordi - Research Institute for Ageing, Via Álvaro del Portillo 5, 00128 Rome, Italy
| | - Marianna Piombo
- Institute of Neurology, Campus Bio-Medico University, Via Álvaro del Portillo 200, 00128 Rome, Italy; Fondazione Alberto Sordi - Research Institute for Ageing, Via Álvaro del Portillo 5, 00128 Rome, Italy
| | - Daniela Chiarello
- Institute of Neurology, Campus Bio-Medico University, Via Álvaro del Portillo 200, 00128 Rome, Italy; Fondazione Alberto Sordi - Research Institute for Ageing, Via Álvaro del Portillo 5, 00128 Rome, Italy
| | - Binith Cheeran
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Giovanni Pennisi
- Department "G.F. Ingrassia", Section of Neurosciences, University of Catania, Via Santa Sofia, 78-95123 Catania, Italy
| | - Vincenzo Di Lazzaro
- Institute of Neurology, Campus Bio-Medico University, Via Álvaro del Portillo 200, 00128 Rome, Italy; Fondazione Alberto Sordi - Research Institute for Ageing, Via Álvaro del Portillo 5, 00128 Rome, Italy.
| |
Collapse
|
10
|
Thiamine deficiency induced neurochemical, neuroanatomical, and neuropsychological alterations: a reappraisal. ScientificWorldJournal 2013; 2013:309143. [PMID: 24235882 PMCID: PMC3818926 DOI: 10.1155/2013/309143] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 09/12/2013] [Indexed: 01/31/2023] Open
Abstract
Nutritional deficiency can cause, mainly in chronic alcoholic subjects, the Wernicke encephalopathy and its chronic neurological sequela, the Wernicke-Korsakoff syndrome (WKS). Long-term chronic ethanol abuse results in hippocampal and cortical cell loss. Thiamine deficiency also alters principally hippocampal- and frontal cortical-dependent neurochemistry; moreover in WKS patients, important pathological damage to the diencephalon can occur. In fact, the amnesic syndrome typical for WKS is mainly due to the damage in the diencephalic-hippocampal circuitry, including thalamic nuclei and mammillary bodies. The loss of cholinergic cells in the basal forebrain region results in decreased cholinergic input to the hippocampus and the cortex and reduced choline acetyltransferase and acetylcholinesterase activities and function, as well as in acetylcholine receptor downregulation within these brain regions. In this narrative review, we will focus on the neurochemical, neuroanatomical, and neuropsychological studies shedding light on the effects of thiamine deficiency in experimental models and in humans.
Collapse
|
11
|
Young-Bernier M, Kamil Y, Tremblay F, Davidson PSR. Associations between a neurophysiological marker of central cholinergic activity and cognitive functions in young and older adults. Behav Brain Funct 2012; 8:17. [PMID: 22537877 PMCID: PMC3379946 DOI: 10.1186/1744-9081-8-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 04/26/2012] [Indexed: 12/02/2022] Open
Abstract
Background The deterioration of the central cholinergic system in aging is hypothesized to underlie declines in several cognitive domains, including memory and executive functions. However, there is surprisingly little direct evidence regarding acetylcholine’s specific role(s) in normal human cognitive aging. Methods We used short-latency afferent inhibition (SAI) with transcranial magnetic stimulation (TMS) as a putative marker of cholinergic activity in vivo in young (n = 24) and older adults (n = 31). Results We found a significant age difference in SAI, concordant with other evidence of cholinergic decline in normal aging. We also found clear age differences on several of the memory and one of the executive function measures. Individual differences in SAI levels predicted memory but not executive functions. Conclusion Individual differences in SAI levels were better predictors of memory than executive functions. We discuss cases in which the relations between SAI and cognition might be even stronger, and refer to other age-related biological changes that may interact with cholinergic activity in cognitive aging.
Collapse
Affiliation(s)
- Marielle Young-Bernier
- School of Psychology, University of Ottawa, 136 Jean Jacques Lussier Private, Ottawa, Ontario K1N 6N5, Canada
| | | | | | | |
Collapse
|
12
|
Young-Bernier M, Davidson PS, Tremblay F. Paired-pulse afferent modulation of TMS responses reveals a selective decrease in short latency afferent inhibition with age. Neurobiol Aging 2012; 33:835.e1-11. [DOI: 10.1016/j.neurobiolaging.2011.08.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 08/04/2011] [Accepted: 08/18/2011] [Indexed: 10/17/2022]
|