1
|
Zhu X, Dai G, Wang M, Tan M, Li Y, Xu Z, Lei D, Chen L, Chen X, Liu H. Continuous theta burst stimulation over right cerebellum for speech impairment in Parkinson's disease: study protocol for a randomized, sham-controlled, clinical trial. Front Aging Neurosci 2023; 15:1215330. [PMID: 37655339 PMCID: PMC10465698 DOI: 10.3389/fnagi.2023.1215330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Abstract
Background Speech impairment is a common symptom of Parkinson's disease (PD) that worsens with disease progression and affects communication and quality of life. Current pharmacological and surgical treatments for PD have inconsistent effects on speech impairment. The cerebellum is an essential part of sensorimotor network that regulates speech production and becomes dysfunctional in PD. Continuous theta-burst stimulation (cTBS) is a non-invasive brain stimulation technique that can modulate the cerebellum and its connections with other brain regions. Objective To investigate whether cTBS over the right cerebellum coupled with speech-language therapy (SLT) can improve speech impairment in PD. Methods In this randomized controlled trial (RCT), 40 patients with PD will be recruited and assigned to either an experimental group (EG) or a control group (CG). Both groups will receive 10 sessions of standard SLT. The EG will receive real cTBS over the right cerebellum, while the CG will receive sham stimulation. Blinded assessors will evaluate the treatment outcome at three time points: pre-intervention, post-intervention, and at a 12-week follow-up. The primary outcome measures are voice/speech quality and neurobehavioral parameters of auditory-vocal integration. The secondary outcome measures are cognitive function, quality of life, and functional connectivity determined by resting-state functional magnetic resonance imaging (fMRI). Significance This trial will provide evidence for the efficacy and safety of cerebellar cTBS for the treatment of speech impairment in PD and shed light on the neural mechanism of this intervention. It will also have implications for other speech impairment attributed to cerebellar dysfunctions. Clinical trial registration www.chictr.org.cn, identifier ChiCTR2100050543.
Collapse
Affiliation(s)
- Xiaoxia Zhu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guangyan Dai
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Meng Wang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingdan Tan
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yongxue Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhiqin Xu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Di Lei
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ling Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xi Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Romero Arias T, Redondo Cortés I, Pérez Del Olmo A. Biomechanical Parameters of Voice in Parkinson's Disease Patients. Folia Phoniatr Logop 2023; 76:91-101. [PMID: 37499642 DOI: 10.1159/000533289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023] Open
Abstract
INTRODUCTION Previous research on voice in Parkinson's disease (PD) has consistently demonstrated alterations in acoustic parameters, including fundamental frequency (F0), maximum phonation time, Shimmer, and Jitter. However, investigations into acoustic parameter alterations in individuals with PD are limited. METHODS We conducted an experimental study involving 20 PD patients (six women and fourteen men). Subjective measures of voice (VHI-30 scale and GRBAS) and objective measures using the OnlineLAB App tool for analyzing biomechanical correlates of voice were recorded. The app analyzed a total of 22 biomechanical parameters of voice. RESULTS The results of subjective measures were consistent with findings from previous studies. However, the results of objective measures did not align with studies that employed acoustic measures. CONCLUSIONS The biomechanical analysis revealed alterations in various parameters according to gender. These findings open up a new avenue of research in voice analysis for patients with PD, whether through acoustic or biomechanical analysis, aiming to determine whether the observed changes in these patients' voices are attributable to age or disease progression. This line of investigation will help elucidate the relative contribution of these factors to vocal alterations in PD patients and provide a more comprehensive understanding of the underlying mechanisms.
Collapse
Affiliation(s)
- Tatiana Romero Arias
- Faculty of Health Sciences, Speech Therapy Section, Pontifical University of Salamanca, Salamanca, Spain
| | - Inés Redondo Cortés
- Faculty of Health Sciences, Speech Therapy Section, Pontifical University of Salamanca, Salamanca, Spain
| | - Adrián Pérez Del Olmo
- Faculty of Health Sciences, Speech Therapy Section, Pontifical University of Salamanca, Salamanca, Spain
| |
Collapse
|
3
|
Dai G, Wang M, Li Y, Guo Z, Jones JA, Li T, Chang Y, Wang EQ, Chen L, Liu P, Chen X, Liu H. Continuous theta burst stimulation over left supplementary motor area facilitates auditory-vocal integration in individuals with Parkinson’s disease. Front Aging Neurosci 2022; 14:948696. [PMID: 36051304 PMCID: PMC9426458 DOI: 10.3389/fnagi.2022.948696] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/27/2022] [Indexed: 11/26/2022] Open
Abstract
Accumulating evidence suggests that impairment in auditory-vocal integration characterized by abnormally enhanced vocal compensations for auditory feedback perturbations contributes to hypokinetic dysarthria in Parkinson’s disease (PD). However, treatment of this abnormality remains a challenge. The present study examined whether abnormalities in auditory-motor integration for vocal pitch regulation in PD can be modulated by neuronavigated continuous theta burst stimulation (c-TBS) over the left supplementary motor area (SMA). After receiving active or sham c-TBS over left SMA, 16 individuals with PD vocalized vowel sounds while hearing their own voice unexpectedly pitch-shifted two semitones upward or downward. A group of pairwise-matched healthy participants was recruited as controls. Their vocal responses and event-related potentials (ERPs) were measured and compared across the conditions. The results showed that applying c-TBS over left SMA led to smaller vocal responses paralleled by smaller P1 and P2 responses and larger N1 responses in individuals with PD. Major neural generators of reduced P2 responses were located in the right inferior and medial frontal gyrus, pre- and post-central gyrus, and insula. Moreover, suppressed vocal compensations were predicted by reduced P2 amplitudes and enhanced N1 amplitudes. Notably, abnormally enhanced vocal and P2 responses in individuals with PD were normalized by c-TBS over left SMA when compared to healthy controls. Our results provide the first causal evidence that abnormalities in auditory-motor control of vocal pitch production in PD can be modulated by c-TBS over left SMA, suggesting that it may be a promising non-invasive treatment for speech motor disorders in PD.
Collapse
Affiliation(s)
- Guangyan Dai
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Meng Wang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yongxue Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhiqiang Guo
- School of Computer, Zhuhai College of Science and Technology, Zhuhai, China
| | - Jeffery A. Jones
- Psychology Department and Laurier Centre for Cognitive Neuroscience, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Tingni Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yichen Chang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Emily Q. Wang
- Department of Communication Disorders and Sciences, RUSH University Medical Center, Chicago, IL, United States
| | - Ling Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Peng Liu,
| | - Xi Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Xi Chen,
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Hanjun Liu,
| |
Collapse
|
4
|
García AM, Welch AE, Mandelli ML, Henry ML, Lukic S, Torres Prioris MJ, Deleon J, Ratnasiri BM, Lorca-Puls DL, Miller BL, Seeley W, Vogel AP, Gorno-Tempini ML. Automated Detection of Speech Timing Alterations in Autopsy-Confirmed Nonfluent/Agrammatic Variant Primary Progressive Aphasia. Neurology 2022; 99:e500-e511. [PMID: 35914945 PMCID: PMC9421598 DOI: 10.1212/wnl.0000000000200750] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 04/04/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Motor speech function, including speech timing, is a key domain for diagnosing nonfluent/agrammatic variant primary progressive aphasia (nfvPPA). Yet, standard assessments use subjective, specialist-dependent evaluations, undermining reliability and scalability. Moreover, few studies have examined relevant anatomo-clinical alterations in patients with pathologically confirmed diagnoses. This study overcomes such caveats using automated speech timing analyses in a unique cohort of autopsy-proven cases. METHODS In a cross-sectional study, we administered an overt reading task and quantified articulation rate, mean syllable and pause duration, and syllable and pause duration variability. Neuroanatomical disruptions were assessed using cortical thickness and white matter (WM) atrophy analysis. RESULTS We evaluated 22 persons with nfvPPA (mean age: 67.3 years; 13 female patients) and confirmed underlying 4-repeat tauopathy, 15 persons with semantic variant primary progressive aphasia (svPPA; mean age: 66.5 years; 8 female patients), and 10 healthy controls (HCs; 70 years; 5 female patients). All 5 speech timing measures revealed alterations in persons with nfvPPA relative to both the HC and svPPA groups, controlling for dementia severity. The articulation rate robustly discriminated individuals with nfvPPA from HCs (area under the ROC curve [AUC] = 0.95), outperforming specialist-dependent perceptual measures of dysarthria and apraxia of speech severity. Patients with nfvPPA exhibited structural abnormalities in left precentral and middle frontal as well as bilateral superior frontal regions, including their underlying WM. The articulation rate correlated with atrophy of the left pars opercularis and supplementary/presupplementary motor areas. Secondary analyses showed that, controlling for dementia severity, all measures yielded greater deficits in patients with nfvPPA and corticobasal degeneration (nfvPPA-CBD, n = 12) than in those with progressive supranuclear palsy pathology (nfvPPA-PSP, n = 10). The articulation rate robustly discriminated between individuals in each subgroup (AUC = 0.82). More widespread cortical thinning was observed for the nfvPPA-CBD than the nfvPPA-PSP group across frontal regions. DISCUSSION Automated speech timing analyses can capture specific markers of nfvPPA while potentially discriminating between patients with different tauopathies. Thanks to its objectivity and scalability; this approach could support standard speech assessments. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that automated speech analysis can accurately differentiate patients with nonfluent PPA from normal controls and patients with semantic variant PPA.
Collapse
Affiliation(s)
- Adolfo M García
- From the Global Brain Health Institute (A.M.G.), University of California, San Francisco; Cognitive Neuroscience Center (A.M.G.), Universidad de San Andrés, Buenos Aires; National Scientific and Technical Research Council (CONICET) (A.M.G.), Buenos Aires, Argentina; Departamento de Lingüística y Literatura, Facultad de Humanidades (A.M.G.), Universidad de Santiago de Chile; Memory and Aging Center (A.E.W., M.L.M., S.L., J.D., B.M.R., D.L.L.P., B.L.M., W.S., M.L.G.-T.), Department of Neurology, University of California, San Francisco; Department of Communication Sciences and Disorders (M.L.H.), University of Texas at Austin; Department of Communication Sciences and Disorders (S.L.), Adelphi University, Garden City, NY; Cognitive Neurology and Aphasia Unit (M.J.T.P.), Centro de Investigaciones Médico-Sanitarias (M.J.T.P.), University of Malaga; Instituto de Investigación Biomédica de Málaga - IBIMA (M.J.T.P.), Malaga; Area of Psychobiology (M.J.T.P.), Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain; Sección Neurología (D.L.L.P.), Departamento de Especialidades, Facultad de Medicina, Universidad de Concepción, Chile; Centre for Neuroscience of Speech (A.P.V.), Department of Audiology & Speech Pathology, The University of Melbourne; and Redenlab (A.P.V.), Melbourne, Australia
| | - Ariane E Welch
- From the Global Brain Health Institute (A.M.G.), University of California, San Francisco; Cognitive Neuroscience Center (A.M.G.), Universidad de San Andrés, Buenos Aires; National Scientific and Technical Research Council (CONICET) (A.M.G.), Buenos Aires, Argentina; Departamento de Lingüística y Literatura, Facultad de Humanidades (A.M.G.), Universidad de Santiago de Chile; Memory and Aging Center (A.E.W., M.L.M., S.L., J.D., B.M.R., D.L.L.P., B.L.M., W.S., M.L.G.-T.), Department of Neurology, University of California, San Francisco; Department of Communication Sciences and Disorders (M.L.H.), University of Texas at Austin; Department of Communication Sciences and Disorders (S.L.), Adelphi University, Garden City, NY; Cognitive Neurology and Aphasia Unit (M.J.T.P.), Centro de Investigaciones Médico-Sanitarias (M.J.T.P.), University of Malaga; Instituto de Investigación Biomédica de Málaga - IBIMA (M.J.T.P.), Malaga; Area of Psychobiology (M.J.T.P.), Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain; Sección Neurología (D.L.L.P.), Departamento de Especialidades, Facultad de Medicina, Universidad de Concepción, Chile; Centre for Neuroscience of Speech (A.P.V.), Department of Audiology & Speech Pathology, The University of Melbourne; and Redenlab (A.P.V.), Melbourne, Australia
| | - Maria Luisa Mandelli
- From the Global Brain Health Institute (A.M.G.), University of California, San Francisco; Cognitive Neuroscience Center (A.M.G.), Universidad de San Andrés, Buenos Aires; National Scientific and Technical Research Council (CONICET) (A.M.G.), Buenos Aires, Argentina; Departamento de Lingüística y Literatura, Facultad de Humanidades (A.M.G.), Universidad de Santiago de Chile; Memory and Aging Center (A.E.W., M.L.M., S.L., J.D., B.M.R., D.L.L.P., B.L.M., W.S., M.L.G.-T.), Department of Neurology, University of California, San Francisco; Department of Communication Sciences and Disorders (M.L.H.), University of Texas at Austin; Department of Communication Sciences and Disorders (S.L.), Adelphi University, Garden City, NY; Cognitive Neurology and Aphasia Unit (M.J.T.P.), Centro de Investigaciones Médico-Sanitarias (M.J.T.P.), University of Malaga; Instituto de Investigación Biomédica de Málaga - IBIMA (M.J.T.P.), Malaga; Area of Psychobiology (M.J.T.P.), Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain; Sección Neurología (D.L.L.P.), Departamento de Especialidades, Facultad de Medicina, Universidad de Concepción, Chile; Centre for Neuroscience of Speech (A.P.V.), Department of Audiology & Speech Pathology, The University of Melbourne; and Redenlab (A.P.V.), Melbourne, Australia
| | - Maya L Henry
- From the Global Brain Health Institute (A.M.G.), University of California, San Francisco; Cognitive Neuroscience Center (A.M.G.), Universidad de San Andrés, Buenos Aires; National Scientific and Technical Research Council (CONICET) (A.M.G.), Buenos Aires, Argentina; Departamento de Lingüística y Literatura, Facultad de Humanidades (A.M.G.), Universidad de Santiago de Chile; Memory and Aging Center (A.E.W., M.L.M., S.L., J.D., B.M.R., D.L.L.P., B.L.M., W.S., M.L.G.-T.), Department of Neurology, University of California, San Francisco; Department of Communication Sciences and Disorders (M.L.H.), University of Texas at Austin; Department of Communication Sciences and Disorders (S.L.), Adelphi University, Garden City, NY; Cognitive Neurology and Aphasia Unit (M.J.T.P.), Centro de Investigaciones Médico-Sanitarias (M.J.T.P.), University of Malaga; Instituto de Investigación Biomédica de Málaga - IBIMA (M.J.T.P.), Malaga; Area of Psychobiology (M.J.T.P.), Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain; Sección Neurología (D.L.L.P.), Departamento de Especialidades, Facultad de Medicina, Universidad de Concepción, Chile; Centre for Neuroscience of Speech (A.P.V.), Department of Audiology & Speech Pathology, The University of Melbourne; and Redenlab (A.P.V.), Melbourne, Australia
| | - Sladjana Lukic
- From the Global Brain Health Institute (A.M.G.), University of California, San Francisco; Cognitive Neuroscience Center (A.M.G.), Universidad de San Andrés, Buenos Aires; National Scientific and Technical Research Council (CONICET) (A.M.G.), Buenos Aires, Argentina; Departamento de Lingüística y Literatura, Facultad de Humanidades (A.M.G.), Universidad de Santiago de Chile; Memory and Aging Center (A.E.W., M.L.M., S.L., J.D., B.M.R., D.L.L.P., B.L.M., W.S., M.L.G.-T.), Department of Neurology, University of California, San Francisco; Department of Communication Sciences and Disorders (M.L.H.), University of Texas at Austin; Department of Communication Sciences and Disorders (S.L.), Adelphi University, Garden City, NY; Cognitive Neurology and Aphasia Unit (M.J.T.P.), Centro de Investigaciones Médico-Sanitarias (M.J.T.P.), University of Malaga; Instituto de Investigación Biomédica de Málaga - IBIMA (M.J.T.P.), Malaga; Area of Psychobiology (M.J.T.P.), Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain; Sección Neurología (D.L.L.P.), Departamento de Especialidades, Facultad de Medicina, Universidad de Concepción, Chile; Centre for Neuroscience of Speech (A.P.V.), Department of Audiology & Speech Pathology, The University of Melbourne; and Redenlab (A.P.V.), Melbourne, Australia
| | - María José Torres Prioris
- From the Global Brain Health Institute (A.M.G.), University of California, San Francisco; Cognitive Neuroscience Center (A.M.G.), Universidad de San Andrés, Buenos Aires; National Scientific and Technical Research Council (CONICET) (A.M.G.), Buenos Aires, Argentina; Departamento de Lingüística y Literatura, Facultad de Humanidades (A.M.G.), Universidad de Santiago de Chile; Memory and Aging Center (A.E.W., M.L.M., S.L., J.D., B.M.R., D.L.L.P., B.L.M., W.S., M.L.G.-T.), Department of Neurology, University of California, San Francisco; Department of Communication Sciences and Disorders (M.L.H.), University of Texas at Austin; Department of Communication Sciences and Disorders (S.L.), Adelphi University, Garden City, NY; Cognitive Neurology and Aphasia Unit (M.J.T.P.), Centro de Investigaciones Médico-Sanitarias (M.J.T.P.), University of Malaga; Instituto de Investigación Biomédica de Málaga - IBIMA (M.J.T.P.), Malaga; Area of Psychobiology (M.J.T.P.), Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain; Sección Neurología (D.L.L.P.), Departamento de Especialidades, Facultad de Medicina, Universidad de Concepción, Chile; Centre for Neuroscience of Speech (A.P.V.), Department of Audiology & Speech Pathology, The University of Melbourne; and Redenlab (A.P.V.), Melbourne, Australia
| | - Jessica Deleon
- From the Global Brain Health Institute (A.M.G.), University of California, San Francisco; Cognitive Neuroscience Center (A.M.G.), Universidad de San Andrés, Buenos Aires; National Scientific and Technical Research Council (CONICET) (A.M.G.), Buenos Aires, Argentina; Departamento de Lingüística y Literatura, Facultad de Humanidades (A.M.G.), Universidad de Santiago de Chile; Memory and Aging Center (A.E.W., M.L.M., S.L., J.D., B.M.R., D.L.L.P., B.L.M., W.S., M.L.G.-T.), Department of Neurology, University of California, San Francisco; Department of Communication Sciences and Disorders (M.L.H.), University of Texas at Austin; Department of Communication Sciences and Disorders (S.L.), Adelphi University, Garden City, NY; Cognitive Neurology and Aphasia Unit (M.J.T.P.), Centro de Investigaciones Médico-Sanitarias (M.J.T.P.), University of Malaga; Instituto de Investigación Biomédica de Málaga - IBIMA (M.J.T.P.), Malaga; Area of Psychobiology (M.J.T.P.), Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain; Sección Neurología (D.L.L.P.), Departamento de Especialidades, Facultad de Medicina, Universidad de Concepción, Chile; Centre for Neuroscience of Speech (A.P.V.), Department of Audiology & Speech Pathology, The University of Melbourne; and Redenlab (A.P.V.), Melbourne, Australia
| | - Buddhika M Ratnasiri
- From the Global Brain Health Institute (A.M.G.), University of California, San Francisco; Cognitive Neuroscience Center (A.M.G.), Universidad de San Andrés, Buenos Aires; National Scientific and Technical Research Council (CONICET) (A.M.G.), Buenos Aires, Argentina; Departamento de Lingüística y Literatura, Facultad de Humanidades (A.M.G.), Universidad de Santiago de Chile; Memory and Aging Center (A.E.W., M.L.M., S.L., J.D., B.M.R., D.L.L.P., B.L.M., W.S., M.L.G.-T.), Department of Neurology, University of California, San Francisco; Department of Communication Sciences and Disorders (M.L.H.), University of Texas at Austin; Department of Communication Sciences and Disorders (S.L.), Adelphi University, Garden City, NY; Cognitive Neurology and Aphasia Unit (M.J.T.P.), Centro de Investigaciones Médico-Sanitarias (M.J.T.P.), University of Malaga; Instituto de Investigación Biomédica de Málaga - IBIMA (M.J.T.P.), Malaga; Area of Psychobiology (M.J.T.P.), Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain; Sección Neurología (D.L.L.P.), Departamento de Especialidades, Facultad de Medicina, Universidad de Concepción, Chile; Centre for Neuroscience of Speech (A.P.V.), Department of Audiology & Speech Pathology, The University of Melbourne; and Redenlab (A.P.V.), Melbourne, Australia
| | - Diego L Lorca-Puls
- From the Global Brain Health Institute (A.M.G.), University of California, San Francisco; Cognitive Neuroscience Center (A.M.G.), Universidad de San Andrés, Buenos Aires; National Scientific and Technical Research Council (CONICET) (A.M.G.), Buenos Aires, Argentina; Departamento de Lingüística y Literatura, Facultad de Humanidades (A.M.G.), Universidad de Santiago de Chile; Memory and Aging Center (A.E.W., M.L.M., S.L., J.D., B.M.R., D.L.L.P., B.L.M., W.S., M.L.G.-T.), Department of Neurology, University of California, San Francisco; Department of Communication Sciences and Disorders (M.L.H.), University of Texas at Austin; Department of Communication Sciences and Disorders (S.L.), Adelphi University, Garden City, NY; Cognitive Neurology and Aphasia Unit (M.J.T.P.), Centro de Investigaciones Médico-Sanitarias (M.J.T.P.), University of Malaga; Instituto de Investigación Biomédica de Málaga - IBIMA (M.J.T.P.), Malaga; Area of Psychobiology (M.J.T.P.), Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain; Sección Neurología (D.L.L.P.), Departamento de Especialidades, Facultad de Medicina, Universidad de Concepción, Chile; Centre for Neuroscience of Speech (A.P.V.), Department of Audiology & Speech Pathology, The University of Melbourne; and Redenlab (A.P.V.), Melbourne, Australia
| | - Bruce L Miller
- From the Global Brain Health Institute (A.M.G.), University of California, San Francisco; Cognitive Neuroscience Center (A.M.G.), Universidad de San Andrés, Buenos Aires; National Scientific and Technical Research Council (CONICET) (A.M.G.), Buenos Aires, Argentina; Departamento de Lingüística y Literatura, Facultad de Humanidades (A.M.G.), Universidad de Santiago de Chile; Memory and Aging Center (A.E.W., M.L.M., S.L., J.D., B.M.R., D.L.L.P., B.L.M., W.S., M.L.G.-T.), Department of Neurology, University of California, San Francisco; Department of Communication Sciences and Disorders (M.L.H.), University of Texas at Austin; Department of Communication Sciences and Disorders (S.L.), Adelphi University, Garden City, NY; Cognitive Neurology and Aphasia Unit (M.J.T.P.), Centro de Investigaciones Médico-Sanitarias (M.J.T.P.), University of Malaga; Instituto de Investigación Biomédica de Málaga - IBIMA (M.J.T.P.), Malaga; Area of Psychobiology (M.J.T.P.), Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain; Sección Neurología (D.L.L.P.), Departamento de Especialidades, Facultad de Medicina, Universidad de Concepción, Chile; Centre for Neuroscience of Speech (A.P.V.), Department of Audiology & Speech Pathology, The University of Melbourne; and Redenlab (A.P.V.), Melbourne, Australia
| | - William Seeley
- From the Global Brain Health Institute (A.M.G.), University of California, San Francisco; Cognitive Neuroscience Center (A.M.G.), Universidad de San Andrés, Buenos Aires; National Scientific and Technical Research Council (CONICET) (A.M.G.), Buenos Aires, Argentina; Departamento de Lingüística y Literatura, Facultad de Humanidades (A.M.G.), Universidad de Santiago de Chile; Memory and Aging Center (A.E.W., M.L.M., S.L., J.D., B.M.R., D.L.L.P., B.L.M., W.S., M.L.G.-T.), Department of Neurology, University of California, San Francisco; Department of Communication Sciences and Disorders (M.L.H.), University of Texas at Austin; Department of Communication Sciences and Disorders (S.L.), Adelphi University, Garden City, NY; Cognitive Neurology and Aphasia Unit (M.J.T.P.), Centro de Investigaciones Médico-Sanitarias (M.J.T.P.), University of Malaga; Instituto de Investigación Biomédica de Málaga - IBIMA (M.J.T.P.), Malaga; Area of Psychobiology (M.J.T.P.), Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain; Sección Neurología (D.L.L.P.), Departamento de Especialidades, Facultad de Medicina, Universidad de Concepción, Chile; Centre for Neuroscience of Speech (A.P.V.), Department of Audiology & Speech Pathology, The University of Melbourne; and Redenlab (A.P.V.), Melbourne, Australia
| | - Adam P Vogel
- From the Global Brain Health Institute (A.M.G.), University of California, San Francisco; Cognitive Neuroscience Center (A.M.G.), Universidad de San Andrés, Buenos Aires; National Scientific and Technical Research Council (CONICET) (A.M.G.), Buenos Aires, Argentina; Departamento de Lingüística y Literatura, Facultad de Humanidades (A.M.G.), Universidad de Santiago de Chile; Memory and Aging Center (A.E.W., M.L.M., S.L., J.D., B.M.R., D.L.L.P., B.L.M., W.S., M.L.G.-T.), Department of Neurology, University of California, San Francisco; Department of Communication Sciences and Disorders (M.L.H.), University of Texas at Austin; Department of Communication Sciences and Disorders (S.L.), Adelphi University, Garden City, NY; Cognitive Neurology and Aphasia Unit (M.J.T.P.), Centro de Investigaciones Médico-Sanitarias (M.J.T.P.), University of Malaga; Instituto de Investigación Biomédica de Málaga - IBIMA (M.J.T.P.), Malaga; Area of Psychobiology (M.J.T.P.), Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain; Sección Neurología (D.L.L.P.), Departamento de Especialidades, Facultad de Medicina, Universidad de Concepción, Chile; Centre for Neuroscience of Speech (A.P.V.), Department of Audiology & Speech Pathology, The University of Melbourne; and Redenlab (A.P.V.), Melbourne, Australia
| | - Maria Luisa Gorno-Tempini
- From the Global Brain Health Institute (A.M.G.), University of California, San Francisco; Cognitive Neuroscience Center (A.M.G.), Universidad de San Andrés, Buenos Aires; National Scientific and Technical Research Council (CONICET) (A.M.G.), Buenos Aires, Argentina; Departamento de Lingüística y Literatura, Facultad de Humanidades (A.M.G.), Universidad de Santiago de Chile; Memory and Aging Center (A.E.W., M.L.M., S.L., J.D., B.M.R., D.L.L.P., B.L.M., W.S., M.L.G.-T.), Department of Neurology, University of California, San Francisco; Department of Communication Sciences and Disorders (M.L.H.), University of Texas at Austin; Department of Communication Sciences and Disorders (S.L.), Adelphi University, Garden City, NY; Cognitive Neurology and Aphasia Unit (M.J.T.P.), Centro de Investigaciones Médico-Sanitarias (M.J.T.P.), University of Malaga; Instituto de Investigación Biomédica de Málaga - IBIMA (M.J.T.P.), Malaga; Area of Psychobiology (M.J.T.P.), Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain; Sección Neurología (D.L.L.P.), Departamento de Especialidades, Facultad de Medicina, Universidad de Concepción, Chile; Centre for Neuroscience of Speech (A.P.V.), Department of Audiology & Speech Pathology, The University of Melbourne; and Redenlab (A.P.V.), Melbourne, Australia.
| |
Collapse
|
5
|
Tomeh A, Yusof Khan AHK, Inche Mat LN, Basri H, Wan Sulaiman WA. Repetitive Transcranial Magnetic Stimulation of the Primary Motor Cortex beyond Motor Rehabilitation: A Review of the Current Evidence. Brain Sci 2022; 12:brainsci12060761. [PMID: 35741646 PMCID: PMC9221422 DOI: 10.3390/brainsci12060761] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) has emerged as a novel technique to stimulate the human brain through the scalp. Over the years, identifying the optimal brain region and stimulation parameters has been a subject of debate in the literature on therapeutic uses of repetitive TMS (rTMS). Nevertheless, the primary motor cortex (M1) has been a conventional target for rTMS to treat motor symptoms, such as hemiplegia and spasticity, as it controls the voluntary movement of the body. However, with an expanding knowledge base of the M1 cortical and subcortical connections, M1-rTMS has shown a therapeutic efficacy that goes beyond the conventional motor rehabilitation to involve pain, headache, fatigue, dysphagia, speech and voice impairments, sleep disorders, cognitive dysfunction, disorders of consciousness, anxiety, depression, and bladder dysfunction. In this review, we summarize the latest evidence on using M1-rTMS to treat non-motor symptoms of diverse etiologies and discuss the potential mechanistic rationale behind the management of each of these symptoms.
Collapse
Affiliation(s)
- Abdulhameed Tomeh
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.T.); (A.H.K.Y.K.); (L.N.I.M.); (H.B.)
| | - Abdul Hanif Khan Yusof Khan
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.T.); (A.H.K.Y.K.); (L.N.I.M.); (H.B.)
- Malaysian Research Institute on Ageing (MyAgeingTM), Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Liyana Najwa Inche Mat
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.T.); (A.H.K.Y.K.); (L.N.I.M.); (H.B.)
| | - Hamidon Basri
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.T.); (A.H.K.Y.K.); (L.N.I.M.); (H.B.)
| | - Wan Aliaa Wan Sulaiman
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.T.); (A.H.K.Y.K.); (L.N.I.M.); (H.B.)
- Malaysian Research Institute on Ageing (MyAgeingTM), Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: ; Tel.: +60-3-9769-5560
| |
Collapse
|
6
|
Non-invasive brain stimulation for treating neurogenic dysarthria: A systematic review. Ann Phys Rehabil Med 2021; 65:101580. [PMID: 34626861 DOI: 10.1016/j.rehab.2021.101580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Although non-invasive central and peripheral stimulations are accruing support as promising treatments in different neurological conditions, their effects on dysarthria have not been systematically investigated. OBJECTIVE The purpose of this review was to examine the evidence base of non-invasive stimulation for treating dysarthria, identify which stimulation parameters have the most potential for treatment and determine safety risks. METHODS A systematic review with meta-analysis, when possible, involving publications indexed in MEDLINE, PsychINFO, EMBASE CINHAL the Linguistics and Language Behavioral Abstracts, Web of Science, Cochrane Register of Control Trials and 2 trial registries was completed. Articles were searched in December 2018 and updated in June 2021 using keywords related to brain and electrical stimulation, dysarthria and research design. We included trials with randomised, cross-over or quasi-experimental designs; involving a control group; and investigating treatment of neurogenic dysarthria with non-invasive stimulation. Methodological quality was determined with the Cochrane's Risk of Bias-2 tool. RESULTS In total, 6186 studies were identified; 10 studies (6 randomised controlled trials and 4 cross-over studies) fulfilled the inclusion criteria. All 10 trials (268 adults with Parkinson's disease, stroke and neurodegenerative cerebellar ataxia) focused on brain stimulation (6 repetitive transcranial magnetic stimulation; 3 transcranial direct current stimulation; and 1 repetitive transorbital alternating current stimulation). Adjunct speech-language therapy was delivered in 2 trials. Most trials reported one or more positive effects of stimulation on dysarthria-related features; however, given the overall high risk of bias and heterogeneity in participant, trial and outcome measurement characteristics, no conclusions can be drawn. Post-treatment size effects for 2 stroke trials demonstrated no statistically significant differences between active and sham stimulation across 3 dysarthria outcomes. CONCLUSIONS Evidence for use of non-invasive brain stimulation in treating dysarthria remains inconclusive. Research trials that provide reliable and replicable findings are required.
Collapse
|
7
|
Maffia M, De Micco R, Pettorino M, Siciliano M, Tessitore A, De Meo A. Speech Rhythm Variation in Early-Stage Parkinson's Disease: A Study on Different Speaking Tasks. Front Psychol 2021; 12:668291. [PMID: 34194369 PMCID: PMC8236634 DOI: 10.3389/fpsyg.2021.668291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/17/2021] [Indexed: 11/25/2022] Open
Abstract
Patients with Parkinson's disease (PD) usually reveal speech disorders and, among other symptoms, the alteration of speech rhythm. The purpose of this study is twofold: (1) to test the validity of two acoustic parameters-%V, vowel percentage and VtoV, the mean interval between two consecutive vowel onset points-for the identification of rhythm variation in early-stage PD speech and (2) to analyze the effect of PD on speech rhythm in two different speaking tasks: reading passage and monolog. A group of 20 patients with early-stage PD was involved in this study and compared with 20 age- and sex-matched healthy controls (HCs). The results of the acoustic analysis confirmed that %V is a useful cue for early-stage PD speech characterization, having significantly higher values in the production of patients with PD than the values in HC speech. A simple speaking task, such as the reading task, was found to be more effective than spontaneous speech in the detection of rhythmic variations.
Collapse
Affiliation(s)
- Marta Maffia
- Department of Literary, Linguistics and Comparative Studies, University “L'Orientale, ” Naples, Italy
| | - Rosa De Micco
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli, ” Naples, Italy
| | - Massimo Pettorino
- Department of Literary, Linguistics and Comparative Studies, University “L'Orientale, ” Naples, Italy
| | - Mattia Siciliano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli, ” Naples, Italy
- Department of Psychology, University of Campania “Luigi Vanvitelli, ” Caserta, Italy
| | - Alessandro Tessitore
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli, ” Naples, Italy
| | - Anna De Meo
- Department of Literary, Linguistics and Comparative Studies, University “L'Orientale, ” Naples, Italy
| |
Collapse
|
8
|
Brabenec L, Klobusiakova P, Simko P, Kostalova M, Mekyska J, Rektorova I. Non-invasive brain stimulation for speech in Parkinson's disease: A randomized controlled trial. Brain Stimul 2021; 14:571-578. [PMID: 33781956 DOI: 10.1016/j.brs.2021.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 01/24/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Hypokinetic dysarthria is a common but difficult-to-treat symptom of Parkinson's disease (PD). OBJECTIVES We evaluated the long-term effects of multiple-session repetitive transcranial magnetic stimulation on hypokinetic dysarthria in PD. Neural mechanisms of stimulation were assessed by functional MRI. METHODS A randomized parallel-group sham stimulation-controlled design was used. Patients were randomly assigned to ten sessions (2 weeks) of real (1 Hz) or sham stimulation over the right superior temporal gyrus. Stimulation effects were evaluated at weeks 2, 6, and 10 after the baseline assessment. Articulation, prosody, and speech intelligibility were quantified by speech therapist using a validated tool (Phonetics score of the Dysarthric Profile). Activations of the speech network regions and intrinsic connectivity were assessed using 3T MRI. Linear mixed models and post-hoc tests were utilized for data analyses. RESULTS Altogether 33 PD patients completed the study (20 in the real stimulation group and 13 in the sham stimulation group). Linear mixed models revealed significant effects of time (F(3, 88.1) = 22.7, p < 0.001) and time-by-group interactions: F(3, 88.0) = 2.8, p = 0.040) for the Phonetics score. Real as compared to sham stimulation led to activation increases in the orofacial sensorimotor cortex and caudate nucleus and to increased intrinsic connectivity of these regions with the stimulated area. CONCLUSIONS This is the first study to show the long-term treatment effects of non-invasive brain stimulation for hypokinetic dysarthria in PD. Neural mechanisms of the changes are discussed.
Collapse
Affiliation(s)
- Lubos Brabenec
- Applied Neuroscience Research Group, Central European Institute of Technology - CEITEC, Masaryk University, Brno, Czech Republic
| | - Patricia Klobusiakova
- Applied Neuroscience Research Group, Central European Institute of Technology - CEITEC, Masaryk University, Brno, Czech Republic; Faculty of Medicine, Masaryk University, Brno, Czech Republic; Surgeon General Office of the Slovak Armed Forces, Ružomberok, Slovak Republic
| | - Patrik Simko
- Applied Neuroscience Research Group, Central European Institute of Technology - CEITEC, Masaryk University, Brno, Czech Republic; Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Milena Kostalova
- Applied Neuroscience Research Group, Central European Institute of Technology - CEITEC, Masaryk University, Brno, Czech Republic; Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Neurology, Faculty Hospital and Masaryk University, Brno, Czech Republic
| | - Jiri Mekyska
- Department of Telecommunications, Brno University of Technology, Brno, Czech Republic
| | - Irena Rektorova
- Applied Neuroscience Research Group, Central European Institute of Technology - CEITEC, Masaryk University, Brno, Czech Republic; First Department of Neurology, Faculty of Medicine and St. Anne's University Hospital, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
9
|
Norel R, Agurto C, Heisig S, Rice JJ, Zhang H, Ostrand R, Wacnik PW, Ho BK, Ramos VL, Cecchi GA. Speech-based characterization of dopamine replacement therapy in people with Parkinson's disease. NPJ PARKINSONS DISEASE 2020; 6:12. [PMID: 32566741 PMCID: PMC7293295 DOI: 10.1038/s41531-020-0113-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 05/19/2020] [Indexed: 11/10/2022]
Abstract
People with Parkinson's (PWP) disease are under constant tension with respect to their dopamine replacement therapy (DRT) regimen. Waiting too long between doses results in more prominent symptoms, loss of motor function, and greater risk of falling per step. Shortened pill cycles can lead to accelerated habituation and faster development of disabling dyskinesias. The Unified Parkinson's Disease Rating Scale (MDS-UPDRS) is the gold standard for monitoring Parkinson's disease progression but requires a neurologist to administer and therefore is not an ideal instrument to continuously evaluate short-term disease fluctuations. We investigated the feasibility of using speech to detect changes in medication states, based on expectations of subtle changes in voice and content related to dopaminergic levels. We calculated acoustic and prosodic features for three speech tasks (picture description, reverse counting, and diadochokinetic rate) for 25 PWP, each evaluated "ON" and "OFF" DRT. Additionally, we generated semantic features for the picture description task. Classification of ON/OFF medication states using features generated from picture description, reverse counting and diadochokinetic rate tasks resulted in cross-validated accuracy rates of 0.89, 0.84, and 0.60, respectively. The most discriminating task was picture description which provided evidence that participants are more likely to use action words in ON than in OFF state. We also found that speech tempo was modified by DRT. Our results suggest that automatic speech assessment can capture changes associated with the DRT cycle. Given the ease of acquiring speech data, this method shows promise to remotely monitor DRT effects.
Collapse
Affiliation(s)
- R Norel
- IBM T.J. Watson Research Center, Yorktown Heights, NY 10598 USA
| | - C Agurto
- IBM T.J. Watson Research Center, Yorktown Heights, NY 10598 USA
| | - S Heisig
- IBM T.J. Watson Research Center, Yorktown Heights, NY 10598 USA
| | - J J Rice
- IBM T.J. Watson Research Center, Yorktown Heights, NY 10598 USA
| | - H Zhang
- Pfizer Digital Medicine & Translational Imaging: Early Clinical Development, Cambridge, MA 02139 USA
| | - R Ostrand
- IBM T.J. Watson Research Center, Yorktown Heights, NY 10598 USA
| | - P W Wacnik
- Pfizer Digital Medicine & Translational Imaging: Early Clinical Development, Cambridge, MA 02139 USA
| | - B K Ho
- Department of Neurology, Tufts University School of Medicine and Tufts Medical Center, 800 Washington St, Boston, MA 02111 USA
| | - V L Ramos
- Pfizer Digital Medicine & Translational Imaging: Early Clinical Development, Cambridge, MA 02139 USA
| | - G A Cecchi
- IBM T.J. Watson Research Center, Yorktown Heights, NY 10598 USA
| |
Collapse
|
10
|
Brabenec L, Klobusiakova P, Barton M, Mekyska J, Galaz Z, Zvoncak V, Kiska T, Mucha J, Smekal Z, Kostalova M, Rektorova I. Non-invasive stimulation of the auditory feedback area for improved articulation in Parkinson's disease. Parkinsonism Relat Disord 2019; 61:187-192. [DOI: 10.1016/j.parkreldis.2018.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 01/24/2023]
|
11
|
Arefyeva AP, Skripkina NA, Vasenina EE. Speech disorders in Parkinson's disease. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:32-36. [DOI: 10.17116/jnevro201911909232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Changes in Phonation and Their Relations with Progress of Parkinson’s Disease. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8122339] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hypokinetic dysarthria, which is associated with Parkinson’s disease (PD), affects several speech dimensions, including phonation. Although the scientific community has dealt with a quantitative analysis of phonation in PD patients, a complex research revealing probable relations between phonatory features and progress of PD is missing. Therefore, the aim of this study is to explore these relations and model them mathematically to be able to estimate progress of PD during a two-year follow-up. We enrolled 51 PD patients who were assessed by three commonly used clinical scales. In addition, we quantified eight possible phonatory disorders in five vowels. To identify the relationship between baseline phonatory features and changes in clinical scores, we performed a partial correlation analysis. Finally, we trained XGBoost models to predict the changes in clinical scores during a two-year follow-up. For two years, the patients’ voices became more aperiodic with increased microperturbations of frequency and amplitude. Next, the XGBoost models were able to predict changes in clinical scores with an error in range 11–26%. Although we identified some significant correlations between changes in phonatory features and clinical scores, they are less interpretable. This study suggests that it is possible to predict the progress of PD based on the acoustic analysis of phonation. Moreover, it recommends utilizing the sustained vowel /i/ instead of /a/.
Collapse
|
13
|
Kent RD, Vorperian HK. Static measurements of vowel formant frequencies and bandwidths: A review. JOURNAL OF COMMUNICATION DISORDERS 2018; 74:74-97. [PMID: 29891085 PMCID: PMC6002811 DOI: 10.1016/j.jcomdis.2018.05.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/23/2018] [Accepted: 05/27/2018] [Indexed: 05/05/2023]
Abstract
PURPOSE Data on vowel formants have been derived primarily from static measures representing an assumed steady state. This review summarizes data on formant frequencies and bandwidths for American English and also addresses (a) sources of variability (focusing on speech sample and time sampling point), and (b) methods of data reduction such as vowel area and dispersion. METHOD Searches were conducted with CINAHL, Google Scholar, MEDLINE/PubMed, SCOPUS, and other online sources including legacy articles and references. The primary search items were vowels, vowel space area, vowel dispersion, formants, formant frequency, and formant bandwidth. RESULTS Data on formant frequencies and bandwidths are available for both sexes over the lifespan, but considerable variability in results across studies affects even features of the basic vowel quadrilateral. Origins of variability likely include differences in speech sample and time sampling point. The data reveal the emergence of sex differences by 4 years of age, maturational reductions in formant bandwidth, and decreased formant frequencies with advancing age in some persons. It appears that a combination of methods of data reduction provide for optimal data interpretation. CONCLUSION The lifespan database on vowel formants shows considerable variability within specific age-sex groups, pointing to the need for standardized procedures.
Collapse
Affiliation(s)
- Raymond D Kent
- Waisman Center, University of Wisconsin-Madison, United States.
| | | |
Collapse
|
14
|
Speech disorders in Parkinson’s disease: early diagnostics and effects of medication and brain stimulation. J Neural Transm (Vienna) 2017; 124:303-334. [PMID: 28101650 DOI: 10.1007/s00702-017-1676-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/04/2017] [Indexed: 01/31/2023]
|
15
|
Speech prosody impairment predicts cognitive decline in Parkinson’s disease. Parkinsonism Relat Disord 2016; 29:90-5. [DOI: 10.1016/j.parkreldis.2016.05.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/02/2016] [Accepted: 05/18/2016] [Indexed: 11/22/2022]
|
16
|
Galaz Z, Mekyska J, Mzourek Z, Smekal Z, Rektorova I, Eliasova I, Kostalova M, Mrackova M, Berankova D. Prosodic analysis of neutral, stress-modified and rhymed speech in patients with Parkinson's disease. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2016; 127:301-317. [PMID: 26826900 DOI: 10.1016/j.cmpb.2015.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 12/16/2015] [Accepted: 12/25/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Hypokinetic dysarthria (HD) is a frequent speech disorder associated with idiopathic Parkinson's disease (PD). It affects all dimensions of speech production. One of the most common features of HD is dysprosody that is characterized by alterations of rhythm and speech rate, flat speech melody, and impairment of speech intensity control. Dysprosody has a detrimental impact on speech naturalness and intelligibility. METHODS This paper deals with quantitative prosodic analysis of neutral, stress-modified and rhymed speech in patients with PD. The analysis of prosody is based on quantification of monopitch, monoloudness, and speech rate abnormalities. Experimental dataset consists of 98 patients with PD and 51 healthy speakers. For the purpose of HD identification, sequential floating feature selection algorithm and random forests classifier is used. In this paper, we also introduce a concept of permutation test applied in the field of acoustic analysis of dysarthric speech. RESULTS Prosodic features obtained from stress-modified reading task provided higher classification accuracies compared to the ones extracted from reading task with neutral emotion demonstrating the importance of stress in speech prosody. Features calculated from poem recitation task outperformed both reading tasks in the case of gender-undifferentiated analysis showing that rhythmical demands can in general lead to more precise identification of HD. Additionally, some gender-related patterns of dysprosody has been observed. CONCLUSIONS This paper confirms reduced variation of fundamental frequency in PD patients with HD. Interestingly, increased variability of speech intensity compared to healthy speakers has been detected. Regarding speech rate disturbances, our results does not report any particular pattern. We conclude further development of prosodic features quantifying the relationship between monopitch, monoloudness and speech rate disruptions in HD can have a great potential in future PD analysis.
Collapse
Affiliation(s)
- Zoltan Galaz
- Department of Telecommunications, Brno University of Technology, Technicka 10, 61600 Brno, Czech Republic
| | - Jiri Mekyska
- Department of Telecommunications, Brno University of Technology, Technicka 10, 61600 Brno, Czech Republic
| | - Zdenek Mzourek
- Department of Telecommunications, Brno University of Technology, Technicka 10, 61600 Brno, Czech Republic
| | - Zdenek Smekal
- Department of Telecommunications, Brno University of Technology, Technicka 10, 61600 Brno, Czech Republic
| | - Irena Rektorova
- First Department of Neurology, St. Anne's University Hospital, Pekarska 53, 65691 Brno, Czech Republic; Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Komenskeho nam. 2, 60200 Brno, Czech Republic.
| | - Ilona Eliasova
- First Department of Neurology, St. Anne's University Hospital, Pekarska 53, 65691 Brno, Czech Republic; Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Komenskeho nam. 2, 60200 Brno, Czech Republic
| | - Milena Kostalova
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Komenskeho nam. 2, 60200 Brno, Czech Republic; Department of Neurology, Faculty Hospital and Masaryk University, Jihlavska 20, 63900 Brno, Czech Republic
| | - Martina Mrackova
- First Department of Neurology, St. Anne's University Hospital, Pekarska 53, 65691 Brno, Czech Republic; Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Komenskeho nam. 2, 60200 Brno, Czech Republic
| | - Dagmar Berankova
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Komenskeho nam. 2, 60200 Brno, Czech Republic
| |
Collapse
|
17
|
Gadenz CD, Moreira TDC, Capobianco DM, Cassol M. Effects of Repetitive Transcranial Magnetic Stimulation in the Rehabilitation of Communication and Deglutition Disorders: Systematic Review of Randomized Controlled Trials. Folia Phoniatr Logop 2015; 67:97-105. [PMID: 26580744 DOI: 10.1159/000439128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023] Open
Abstract
OBJECTIVE To systematically review randomized controlled trials that evaluate the effects of repetitive transcranial magnetic stimulation (rTMS) on rehabilitation aspects related to communication and swallowing functions. METHODS A search was conducted on PubMed, Clinical Trials, Cochrane Library, and ASHA electronic databases. Studies were judged according to the eligibility criteria and analyzed by 2 independent and blinded researchers. RESULTS We analyzed 9 studies: 4 about aphasia, 3 about dysphagia, 1 about dysarthria in Parkinson's disease and 1 about linguistic deficits in Alzheimer's disease. All aphasia studies used low-frequency rTMS to stimulate Broca's homologous area. High-frequency rTMS was applied over the pharyngoesophageal cortex from the left and/or right hemisphere in the dysphagia studies and over the left dorsolateral prefrontal cortex in the Parkinson's and Alzheimer's studies. Two aphasia and all dysphagia studies showed a significant improvement of the disorder, compared to the sham group. The other 2 studies related to aphasia found a benefit restricted to subgroups with a severe case or injury on the anterior portion of the language cortical area, respectively, whereas the Alzheimer's study demonstrated positive effects specific to auditory comprehension. There were no changes for vocal function in the Parkinson's study. CONCLUSION The benefits of the technique and its applicability in neurogenic disorders related to communication and deglutition are still uncertain. Therefore, other randomized controlled trials are needed to clarify the optimal stimulation protocol for each disorder studied and its real effects.
Collapse
Affiliation(s)
- Camila Dalbosco Gadenz
- Graduate Program in Rehabilitation Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | | | | | | |
Collapse
|
18
|
Mekyska J, Janousova E, Gomez-Vilda P, Smekal Z, Rektorova I, Eliasova I, Kostalova M, Mrackova M, Alonso-Hernandez JB, Faundez-Zanuy M, López-de-Ipiña K. Robust and complex approach of pathological speech signal analysis. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2015.02.085] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Elfmarková N, Gajdoš M, Mračková M, Mekyska J, Mikl M, Rektorová I. Impact of Parkinson's disease and levodopa on resting state functional connectivity related to speech prosody control. Parkinsonism Relat Disord 2015; 22 Suppl 1:S52-5. [PMID: 26363673 DOI: 10.1016/j.parkreldis.2015.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND Impaired speech prosody is common in Parkinson's disease (PD). We assessed the impact of PD and levodopa on MRI resting-state functional connectivity (rs-FC) underlying speech prosody control. METHODS We studied 19 PD patients in the OFF and ON dopaminergic conditions and 15 age-matched healthy controls using functional MRI and seed partial least squares correlation (PLSC) analysis. In the PD group, we also correlated levodopa-induced rs-FC changes with the results of acoustic analysis. RESULTS The PLCS analysis revealed a significant impact of PD but not of medication on the rs-FC strength of spatial correlation maps seeded by the anterior cingulate (p = 0.006), the right orofacial primary sensorimotor cortex (OF_SM1; p = 0.025) and the right caudate head (CN; p = 0.047). In the PD group, levodopa-induced changes in the CN and OF_SM1 connectivity strengths were related to changes in speech prosody. CONCLUSIONS We demonstrated an impact of PD but not of levodopa on rs-FC within the brain networks related to speech prosody control. When only the PD patients were taken into account, the association between treatment-induced changes in speech prosody and changes in rs-FC within the associative striato-prefrontal and motor speech networks was found.
Collapse
Affiliation(s)
- Nela Elfmarková
- Brain and Mind Research Program, Central European Institute of Technology, CEITEC MU, Masaryk University, Brno, Czech Republic; First Department of Neurology, School of Medicine, Masaryk University and St. Anne's Hospital, Brno, Czech Republic
| | - Martin Gajdoš
- Brain and Mind Research Program, Central European Institute of Technology, CEITEC MU, Masaryk University, Brno, Czech Republic
| | - Martina Mračková
- Brain and Mind Research Program, Central European Institute of Technology, CEITEC MU, Masaryk University, Brno, Czech Republic; First Department of Neurology, School of Medicine, Masaryk University and St. Anne's Hospital, Brno, Czech Republic
| | - Jiří Mekyska
- Department of Telecommunications, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Michal Mikl
- Brain and Mind Research Program, Central European Institute of Technology, CEITEC MU, Masaryk University, Brno, Czech Republic
| | - Irena Rektorová
- Brain and Mind Research Program, Central European Institute of Technology, CEITEC MU, Masaryk University, Brno, Czech Republic; First Department of Neurology, School of Medicine, Masaryk University and St. Anne's Hospital, Brno, Czech Republic.
| |
Collapse
|
20
|
de Celis Alonso B, Hidalgo-Tobón SS, Menéndez-González M, Salas-Pacheco J, Arias-Carrión O. Magnetic Resonance Techniques Applied to the Diagnosis and Treatment of Parkinson's Disease. Front Neurol 2015; 6:146. [PMID: 26191037 PMCID: PMC4490248 DOI: 10.3389/fneur.2015.00146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/18/2015] [Indexed: 12/26/2022] Open
Abstract
Parkinson's disease (PD) affects at least 10 million people worldwide. It is a neurodegenerative disease, which is currently diagnosed by neurological examination. No neuroimaging investigation or blood biomarker is available to aid diagnosis and prognosis. Most effort toward diagnosis using magnetic resonance (MR) has been focused on the use of structural/anatomical neuroimaging and diffusion tensor imaging (DTI). However, deep brain stimulation, a current strategy for treating PD, is guided by MR imaging (MRI). For clinical prognosis, diagnosis, and follow-up investigations, blood oxygen level-dependent MRI, DTI, spectroscopy, and transcranial magnetic stimulation have been used. These techniques represent the state of the art in the last 5 years. Here, we focus on MR techniques for the diagnosis and treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Benito de Celis Alonso
- Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla , Puebla , Mexico ; Fundación para el Desarrollo Carlos Sigüenza , Puebla , Mexico
| | - Silvia S Hidalgo-Tobón
- Departamento de Imagenología, Hospital Infantil de México "Federico Gómez" , Mexico City , Mexico ; Departamento de Física, Universidad Autónoma Metropolitana Iztapalapa , Mexico City , Mexico
| | | | - José Salas-Pacheco
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango , Durango , Mexico
| | - Oscar Arias-Carrión
- Unidad de Trastornos del Movimiento y Sueño (TMS), Hospital General Dr. Manuel Gea González , Mexico City , Mexico
| |
Collapse
|
21
|
Therapeutic applications of repetitive transcranial magnetic stimulation (rTMS) in movement disorders: A review. Parkinsonism Relat Disord 2014; 20:695-707. [DOI: 10.1016/j.parkreldis.2014.03.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 03/10/2014] [Accepted: 03/18/2014] [Indexed: 11/19/2022]
|
22
|
Lefaucheur JP, André-Obadia N, Antal A, Ayache SS, Baeken C, Benninger DH, Cantello RM, Cincotta M, de Carvalho M, De Ridder D, Devanne H, Di Lazzaro V, Filipović SR, Hummel FC, Jääskeläinen SK, Kimiskidis VK, Koch G, Langguth B, Nyffeler T, Oliviero A, Padberg F, Poulet E, Rossi S, Rossini PM, Rothwell JC, Schönfeldt-Lecuona C, Siebner HR, Slotema CW, Stagg CJ, Valls-Sole J, Ziemann U, Paulus W, Garcia-Larrea L. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol 2014; 125:2150-2206. [PMID: 25034472 DOI: 10.1016/j.clinph.2014.05.021] [Citation(s) in RCA: 1287] [Impact Index Per Article: 128.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/09/2014] [Accepted: 05/13/2014] [Indexed: 12/11/2022]
Abstract
A group of European experts was commissioned to establish guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS) from evidence published up until March 2014, regarding pain, movement disorders, stroke, amyotrophic lateral sclerosis, multiple sclerosis, epilepsy, consciousness disorders, tinnitus, depression, anxiety disorders, obsessive-compulsive disorder, schizophrenia, craving/addiction, and conversion. Despite unavoidable inhomogeneities, there is a sufficient body of evidence to accept with level A (definite efficacy) the analgesic effect of high-frequency (HF) rTMS of the primary motor cortex (M1) contralateral to the pain and the antidepressant effect of HF-rTMS of the left dorsolateral prefrontal cortex (DLPFC). A Level B recommendation (probable efficacy) is proposed for the antidepressant effect of low-frequency (LF) rTMS of the right DLPFC, HF-rTMS of the left DLPFC for the negative symptoms of schizophrenia, and LF-rTMS of contralesional M1 in chronic motor stroke. The effects of rTMS in a number of indications reach level C (possible efficacy), including LF-rTMS of the left temporoparietal cortex in tinnitus and auditory hallucinations. It remains to determine how to optimize rTMS protocols and techniques to give them relevance in routine clinical practice. In addition, professionals carrying out rTMS protocols should undergo rigorous training to ensure the quality of the technical realization, guarantee the proper care of patients, and maximize the chances of success. Under these conditions, the therapeutic use of rTMS should be able to develop in the coming years.
Collapse
Affiliation(s)
- Jean-Pascal Lefaucheur
- Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France; EA 4391, Nerve Excitability and Therapeutic Team, Faculty of Medicine, Paris Est Créteil University, Créteil, France.
| | - Nathalie André-Obadia
- Neurophysiology and Epilepsy Unit, Pierre Wertheimer Neurological Hospital, Hospices Civils de Lyon, Bron, France; Inserm U 1028, NeuroPain Team, Neuroscience Research Center of Lyon (CRNL), Lyon-1 University, Bron, France
| | - Andrea Antal
- Department of Clinical Neurophysiology, Georg-August University, Göttingen, Germany
| | - Samar S Ayache
- Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France; EA 4391, Nerve Excitability and Therapeutic Team, Faculty of Medicine, Paris Est Créteil University, Créteil, France
| | - Chris Baeken
- Department of Psychiatry and Medical Psychology, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium; Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium
| | - David H Benninger
- Neurology Service, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Roberto M Cantello
- Department of Translational Medicine, Section of Neurology, University of Piemonte Orientale "A. Avogadro", Novara, Italy
| | | | - Mamede de Carvalho
- Institute of Physiology, Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, Portugal
| | - Dirk De Ridder
- Brai(2)n, Tinnitus Research Initiative Clinic Antwerp, Belgium; Department of Neurosurgery, University Hospital Antwerp, Belgium
| | - Hervé Devanne
- Department of Clinical Neurophysiology, Lille University Hospital, Lille, France; ULCO, Lille-Nord de France University, Lille, France
| | - Vincenzo Di Lazzaro
- Department of Neurosciences, Institute of Neurology, Campus Bio-Medico University, Rome, Italy
| | - Saša R Filipović
- Department of Neurophysiology, Institute for Medical Research, University of Belgrade, Beograd, Serbia
| | - Friedhelm C Hummel
- Brain Imaging and Neurostimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Satu K Jääskeläinen
- Department of Clinical Neurophysiology, Turku University Hospital, University of Turku, Turku, Finland
| | - Vasilios K Kimiskidis
- Laboratory of Clinical Neurophysiology, AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Giacomo Koch
- Non-Invasive Brain Stimulation Unit, Neurologia Clinica e Comportamentale, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Thomas Nyffeler
- Perception and Eye Movement Laboratory, Department of Neurology, University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Antonio Oliviero
- FENNSI Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University, Munich, Germany
| | - Emmanuel Poulet
- Department of Emergency Psychiatry, CHU Lyon, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France; EAM 4615, Lyon-1 University, Bron, France
| | - Simone Rossi
- Brain Investigation & Neuromodulation Lab, Unit of Neurology and Clinical Neurophysiology, Department of Neuroscience, University of Siena, Siena, Italy
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Rome, Italy; Institute of Neurology, Catholic University, Rome, Italy
| | - John C Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | | | - Hartwig R Siebner
- Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | | | - Charlotte J Stagg
- Oxford Centre for Functional MRI of the Brain (FMRIB), Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | - Josep Valls-Sole
- EMG Unit, Neurology Service, Hospital Clinic, Department of Medicine, University of Barcelona, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Ulf Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
| | - Walter Paulus
- Department of Clinical Neurophysiology, Georg-August University, Göttingen, Germany
| | - Luis Garcia-Larrea
- Inserm U 1028, NeuroPain Team, Neuroscience Research Center of Lyon (CRNL), Lyon-1 University, Bron, France; Pain Unit, Pierre Wertheimer Neurological Hospital, Hospices Civils de Lyon, Bron, France
| |
Collapse
|
23
|
Rusz J, Cmejla R, Tykalova T, Ruzickova H, Klempir J, Majerova V, Picmausova J, Roth J, Ruzicka E. Imprecise vowel articulation as a potential early marker of Parkinson's disease: effect of speaking task. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 134:2171-81. [PMID: 23967947 DOI: 10.1121/1.4816541] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The purpose of this study was to analyze vowel articulation across various speaking tasks in a group of 20 early Parkinson's disease (PD) individuals prior to pharmacotherapy. Vowels were extracted from sustained phonation, sentence repetition, reading passage, and monologue. Acoustic analysis was based upon measures of the first (F1) and second (F2) formant of the vowels /a/, /i/, and /u/, vowel space area (VSA), F2i/F2u and vowel articulation index (VAI). Parkinsonian speakers manifested abnormalities in vowel articulation across F2u, VSA, F2i/F2u, and VAI in all speaking tasks except sustained phonation, compared to 15 age-matched healthy control participants. Findings suggest that sustained phonation is an inappropriate task to investigate vowel articulation in early PD. In contrast, monologue was the most sensitive in differentiating between controls and PD patients, with classification accuracy up to 80%. Measurements of vowel articulation were able to capture even minor abnormalities in speech of PD patients with no perceptible dysarthria. In conclusion, impaired vowel articulation may be considered as a possible early marker of PD. A certain type of speaking task can exert significant influence on vowel articulation. Specifically, complex tasks such as monologue are more likely to elicit articulatory deficits in parkinsonian speech, compared to other speaking tasks.
Collapse
Affiliation(s)
- Jan Rusz
- Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Circuit Theory, Technicka 2, 166 27, Prague 6, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|