1
|
Barla I, Dagla IV, Daskalopoulou A, Panagiotopoulou M, Kritikaki M, Dalezis P, Thomaidis N, Tsarbopoulos A, Trafalis D, Gikas E. Metabolomics highlights biochemical perturbations occurring in the kidney and liver of mice administered a human dose of colistin. Front Mol Biosci 2024; 11:1338497. [PMID: 39050734 PMCID: PMC11266156 DOI: 10.3389/fmolb.2024.1338497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/23/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction: Colistin (CMS) is used for the curation of infections caused by multidrug-resistant bacteria. CMS is constrained by toxicity, particularly in kidney and neuronal cells. The recommended human doses are 2.5-5 mg/kg/day, and the toxicity is linked to higher doses. So far, the in vivo toxicity studies have used doses even 10-fold higher than human doses. It is essential to investigate the impact of metabolic response of doses, that are comparable to human doses, to identify biomarkers of latent toxicity. The innovation of the current study is the in vivo stimulation of CMS's impact using a range of CMS doses that have never been investigated before, i.e., 1 and 1.5 mg/kg. The 1 and 1.5 mg/kg, administered in mice, correspond to the therapeutic and toxic human doses, based on previous expertise of our team, regarding the human exposure. The study mainly focused on the biochemical impact of CMS on the metabolome, and on the alterations provoked by 50%-fold of dose increase. The main objectives were i) the comprehension of the biochemical changes resulting after CMS administration and ii) from its dose increase; and iii) the determination of dose-related metabolites that could be considered as toxicity monitoring biomarkers. Methods: The in vivo experiment employed two doses of CMS versus a control group treated with normal saline, and samples of plasma, kidney, and liver were analysed with a UPLC-MS-based metabolomics protocol. Both univariate and multivariate statistical approaches (PCA, OPLS-DA, PLS regression, ROC) and pathway analysis were combined for the data interpretation. Results: The results pointed out six dose-responding metabolites (PAA, DA4S, 2,8-DHA, etc.), dysregulation of renal dopamine, and extended perturbations in renal purine metabolism. Also, the study determined altered levels of liver suberylglycine, a metabolite linked to hepatic steatosis. One of the most intriguing findings was the detection of elevated levels of renal xanthine and uric acid, that act as AChE activators, leading to the rapid degradation of acetylcholine. This evidence provides a naïve hypothesis, for the potential association between the CMS induced nephrotoxicity and CMS induced 39 neurotoxicity, that should be further investigated.
Collapse
Affiliation(s)
- I. Barla
- Laboratory of Analytical Chemistry, Department of Chemistry, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - I. V. Dagla
- GAIA Research Center, The Goulandris Natural History Museum, Kifissia, Greece
| | - A. Daskalopoulou
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, School of Health Science, National and Kapodistrian University of Athens, Athens, Greece
| | - M. Panagiotopoulou
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, School of Health Science, National and Kapodistrian University of Athens, Athens, Greece
| | - M. Kritikaki
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, School of Health Science, National and Kapodistrian University of Athens, Athens, Greece
| | - P. Dalezis
- Laboratory of Pharmacology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - N. Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - A. Tsarbopoulos
- Laboratory of Pharmacology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - D. Trafalis
- Laboratory of Pharmacology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - E. Gikas
- Laboratory of Analytical Chemistry, Department of Chemistry, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Jati S, Munoz-Mayorga D, Shahabi S, Tang K, Tao Y, Dickson DW, Litvan I, Ghosh G, Mahata SK, Chen X. Chromogranin A (CgA) Deficiency Attenuates Tauopathy by Altering Epinephrine-Alpha-Adrenergic Receptor Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598548. [PMID: 38915622 PMCID: PMC11195202 DOI: 10.1101/2024.06.11.598548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Our previous studies have indicated that insulin resistance, hyperglycemia, and hypertension in aged wild-type (WT) mice can be reversed in mice lacking chromogranin-A (CgA-KO mice). These health conditions are associated with a higher risk of Alzheimer's disease (AD). CgA, a neuroendocrine secretory protein has been detected in protein aggregates in the brains of AD patients. Here, we determined the role of CgA in tauopathies, including AD (secondary tauopathy) and corticobasal degeneration (CBD, primary tauopathy). We found elevated levels of CgA in both AD and CBD brains, which were positively correlated with increased phosphorylated tau in the frontal cortex. Furthermore, CgA ablation in a human P301S tau (hTau) transgenic mice (CgA-KO/hTau) exhibited reduced tau aggregation, resistance to tau spreading, and an extended lifespan, coupled with improved cognitive function. Transcriptomic analysis of mice cortices highlighted altered levels of alpha-adrenergic receptors (Adra) in hTau mice compared to WT mice, akin to AD patients. Since CgA regulates the release of the Adra ligands epinephrine (EPI) and norepinephrine (NE), we determined their levels and found elevated EPI levels in the cortices of hTau mice, AD and CBD patients. CgA-KO/hTau mice exhibited reversal of EPI levels in the cortex and the expression of several affected genes, including Adra1 and 2, nearly returning them to WT levels. Treatment of hippocampal slice cultures with EPI or an Adra1 agonist intensified, while an Adra1 antagonist inhibited, tau hyperphosphorylation and aggregation. These findings reveal a critical role of CgA in regulation of tau pathogenesis via the EPI-Adra signaling axis.
Collapse
|
3
|
Meng HH, Liu WY, Zhao WL, Zheng Q, Wang JS. Study on the acute toxicity of trichlorfon and its breakdown product dichlorvos to goldfish (Carassius auratus) based on 1H NMR metabonomics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125664-125676. [PMID: 38001290 DOI: 10.1007/s11356-023-31012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/07/2023] [Indexed: 11/26/2023]
Abstract
Trichlorfon, one of the most widely used organophosphate insecticides, is commonly employed in aquaculture and agriculture to combat parasitic infestations. However, its inherent instability leads to rapid decomposition into dichlorvos (DDVP), increasing its toxicity by eightfold. Therefore, the environmental effects of trichlorfon in real-world scenarios involve the combined effects of trichlorfon and its degradation product, DDVP. In this study, we systematically investigated the degradation of trichlorfon in tap water over time using HPLC and LC-MS/MS analysis. Subsequently, an experiment was conducted to assess the acute toxicity of trichlorfon and DDVP on goldfish (Carassius auratus), employing a 1H NMR-based metabolic approach in conjunction with serum biochemistry, histopathological inspection, and correlation network analysis. Exposure to trichlorfon and its degradation product DDVP leads to increased lipid peroxidation, reduced antioxidant activity, and severe hepatotoxicity and nephrotoxicity in goldfish. Based on the observed pathological changes and metabolite alterations, short-term exposure to trichlorfon significantly affected the liver and kidney functions of goldfish, while exerting minimal influence on the brain, potentially due to the presence of the blood-brain barrier. The changes in the metabolic profile indicated that trichlorfon and DDVP influenced several pathways, including oxidative stress, protein synthesis, energy metabolism, and nucleic acid metabolism. This study demonstrated the applicability and potential of 1H NMR-based metabonomics in pesticide environmental risk assessment, providing a feasible method for the comprehensive study of pesticide toxicity in water environments.
Collapse
Affiliation(s)
- Hui-Hui Meng
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Wen-Ya Liu
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Wen-Long Zhao
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Qi Zheng
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Jun-Song Wang
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.
| |
Collapse
|
4
|
An Integrated Strategy of Chemical Fingerprint and Network Pharmacology for the Discovery of Efficacy-Related Q-Markers of Pheretima. Int J Anal Chem 2022; 2022:8774913. [PMID: 36245784 PMCID: PMC9553678 DOI: 10.1155/2022/8774913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/22/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Pheretima, one of the animal-derived traditional Chinese medicines, has been wildly used in various cardiovascular and cerebrovascular diseases, including stroke, coronary heart disease, hyperlipidemia, and hyperglycemia. However, it was still a big challenge to select the quality markers for Pheretima quality control. The fingerprint and network pharmacology-based strategy was proposed to screen the efficiency related quality markers (Q-Markers) of Pheretima. The ratio of sample to liquid, ultrasonic-extraction time, temperature, and power were optimized by orthogonal design, respectively. The chemical fingerprint of forty batches of Pheretima was established, and six common peaks were screened. The network pharmacology was used to construct the Pheretima-Components-Targets-Pathways-Stroke network. It was found that six potential efficacy Q-markers in Pheretima could exert the relaxing meridians effect to treat stroke through acting on multiple targets and regulating various pathways. A simple HPLC-DAD method was developed and validated to determine the efficacy Q-markers. Grey relational analysis was used to further verify the relation of potential efficiency related quality markers with the anticoagulation activity of Pheretima, which indicated that the contents of these markers exhibited high relationship with the anticoagulation activity. It was concluded that hypoxanthine, uridine, phenylalanine, inosine, guanosine, and tryptophan were selected as quality markers related to relaxing meridians to evaluate the quality of Pheretima. The fingerprint and network pharmacology-based strategy was proved to be a powerful strategy for the discovery of efficiency related Q-markers of Pheretima.
Collapse
|
5
|
Zhu L, Tong G, Yang F, Zhao Y, Chen G. The role of neuroimmune and inflammation in pediatric uremia-induced neuropathy. Front Immunol 2022; 13:1013562. [PMID: 36189322 PMCID: PMC9520989 DOI: 10.3389/fimmu.2022.1013562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Uremic neuropathy in children encompasses a wide range of central nervous system (CNS), peripheral nervous system (PNS), autonomic nervous system (ANS), and psychological abnormalities, which is associated with progressive renal dysfunction. Clinically, the diagnosis of uremic neuropathy in children is often made retrospectively when symptoms improve after dialysis or transplantation, due to there is no defining signs or laboratory and imaging findings. These neurological disorders consequently result in increased morbidity and mortality among children population, making uremia an urgent public health problem worldwide. In this review, we discuss the epidemiology, potential mechanisms, possible treatments, and the shortcomings of current research of uremic neuropathy in children. Mechanistically, the uremic neuropathy may be caused by retention of uremic solutes, increased oxidative stress, neurotransmitter imbalance, and disturbance of the blood-brain barrier (BBB). Neuroimmune, including the change of inflammatory factors and immune cells, may also play a crucial role in the progression of uremic neuropathy. Different from the invasive treatment of dialysis and kidney transplantation, intervention in neuroimmune and targeted anti-inflammatory therapy may provide a new insight for the treatment of uremia.
Collapse
Affiliation(s)
- Linfeng Zhu
- Department of Urology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Guoqin Tong
- Department of Neurology, The First People’s Hospital of XiaoShan District, Hangzhou, China
| | - Fan Yang
- Department of Urology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yijun Zhao
- Department of Urology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Guangjie Chen
- Department of Urology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- *Correspondence: Guangjie Chen,
| |
Collapse
|
6
|
Aqueous Extracts of Fish Roe as a Source of Several Bioactive Compounds. SEPARATIONS 2022. [DOI: 10.3390/separations9080210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Regular consumption of seafood and, in particular, fish has been associated with important health benefits. A fish product that has been increasingly included in the human nutrition is roe. Despite its nutritional value has been established (fatty acid profile and protein content), the knowledge of the composition of its aqueous extracts is still limited. This work describes the bioactive compounds profile in the roe-derived aqueous extracts of three different marine species (sardine, horse mackerel and sea bass) using a method based on liquid chromatography coupled to high-resolution mass spectrometry with an electrospray ionisation source (LC-ESI/HRMS). The presence of substances with well-known nutritional and functional properties (e.g., antioxidant and anti-inflammatory properties) was demonstrated, namely essential amino acids (e.g., taurine), peptides (e.g., anserine and carnosine), B-group vitamins (e.g., nicotinamide) and gadusol. Therefore, roe-derived aqueous extracts are excellent sources of bioactive compounds and may be used as a font of functional components for several medical and veterinary applications.
Collapse
|
7
|
Chen YY, Wang MC, Wang YN, Hu HH, Liu QQ, Liu HJ, Zhao YY. Redox signaling and Alzheimer's disease: from pathomechanism insights to biomarker discovery and therapy strategy. Biomark Res 2020; 8:42. [PMID: 32944245 PMCID: PMC7488504 DOI: 10.1186/s40364-020-00218-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/20/2020] [Indexed: 12/20/2022] Open
Abstract
Abstract Aging and average life expectancy have been increasing at a rapid rate, while there is an exponential risk to suffer from brain-related frailties and neurodegenerative diseases as the population ages. Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide with a projected expectation to blossom into the major challenge in elders and the cases are forecasted to increase about 3-fold in the next 40 years. Considering the etiological factors of AD are too complex to be completely understood, there is almost no effective cure to date, suggesting deeper pathomechanism insights are urgently needed. Metabolites are able to reflect the dynamic processes that are in progress or have happened, and metabolomic may therefore provide a more cost-effective and productive route to disease intervention, especially in the arena for pathomechanism exploration and new biomarker identification. In this review, we primarily focused on how redox signaling was involved in AD-related pathologies and the association between redox signaling and altered metabolic pathways. Moreover, we also expatiated the main redox signaling-associated mechanisms and their cross-talk that may be amenable to mechanism-based therapies. Five natural products with promising efficacy on AD inhibition and the benefit of AD intervention on its complications were highlighted as well. Graphical Abstract
Collapse
Affiliation(s)
- Yuan-Yuan Chen
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069 Shaanxi China
| | - Min-Chang Wang
- Instrumental Analysis Center, Xi'an Modern Chemistry Institute, Xi'an, 710065 Shaanxi China
| | - Yan-Ni Wang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069 Shaanxi China
| | - He-He Hu
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069 Shaanxi China
| | - Qing-Quan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010 China
| | - Hai-Jing Liu
- Shaanxi Institute for Food and Drug Control, Xi'an, 710065 Shaanxi China
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069 Shaanxi China
| |
Collapse
|
8
|
Zhou H, Tai J, Xu H, Lu X, Meng D. Xanthoceraside Could Ameliorate Alzheimer's Disease Symptoms of Rats by Affecting the Gut Microbiota Composition and Modulating the Endogenous Metabolite Levels. Front Pharmacol 2019; 10:1035. [PMID: 31572201 PMCID: PMC6753234 DOI: 10.3389/fphar.2019.01035] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 08/14/2019] [Indexed: 01/29/2023] Open
Abstract
Xanthoceraside (XAN) is a natural-derived compound with anti-Alzheimer activity from the husks of Xanthoceras sorbifolia. Although its therapeutic effect had been confirmed in previous studies, the mechanism was still unclear due to its poor solubility and low permeability. In this study, the pharmacological effect of XAN on Alzheimer's disease (AD) was confirmed by behavior experiments and H&E staining observation. Fecal microbiota transplantation (FMT) experiment also replicated the therapeutic effects, which indicates the potential targets of XAN on gut microbiota. The sequencing of 16S rRNA genes in fecal samples demonstrated that XAN reversed gut microbiota dysbiosis in AD animals. XAN could change the relative abundances of several phyla and genus of bacterial, particularly the ratio of Firmicutes/Bacteroidetes. Among them, Clostridium IV, Desulfovibrio, Corynebacterium, and Enterorhabdus had been reported to be involved in the pathologic developments of AD and other central nervous system disease. In metabolomics study, a series of host endogenous metabolites were detected, including amino acids, lysophosphatidylcholine, dihydrosphingosine, phytosphingosine, inosine, and hypoxanthine, which were all closely associated with the development of AD. Combined with the Spearman's correlation analysis, it was confirmed that the increases of five bacterial strains and decreases of six bacterial strains were closely correlated with the increases of nine host metabolites and the decreases of another five host metabolites. Therefore, XAN can modulate the structure of gut microbiota in AD rats; the changes of gut microbiota were significantly correlated with endogenous metabolites, and symptom of AD was ultimately alleviated. Our findings suggest that XAN may be a potential therapeutic drug for AD, and the gut microbiota may be potential targeting territory of XAN via microbiome-gut-brain pathway.
Collapse
Affiliation(s)
- Hongxu Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Jingjie Tai
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Haiyan Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiumei Lu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Dali Meng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
9
|
Mazumder MK, Paul R, Bhattacharya P, Borah A. Neurological sequel of chronic kidney disease: From diminished Acetylcholinesterase activity to mitochondrial dysfunctions, oxidative stress and inflammation in mice brain. Sci Rep 2019; 9:3097. [PMID: 30816118 PMCID: PMC6395638 DOI: 10.1038/s41598-018-37935-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/14/2018] [Indexed: 12/27/2022] Open
Abstract
With increasing prevalence, chronic kidney disease (CKD) has become a global health problem. Due to the retention of uremic toxins, electrolytes and water, and the resultant metabolic disturbances, CKD affects several organs, including the nervous system. Thus, CKD patients suffer from several neurological complications, including dementia, cognitive impairment, motor abnormalities, depression, and mood and sleep disturbances. However, the mechanisms underlying the neurological complications are least elucidated. We have recently reported a highly reproducible mice model of CKD induced by high adenine diet, which exhibited psychomotor behavioral abnormalities and blood-brain barrier disruption. In the present study, using the mice model, we have investigated psycho-motor and cognitive behaviour, and the neurochemical and histopathological alterations in brain relevant to the observed behavioural abnormalities. The results demonstrate global loss of Acetylcholinesterase activity, and decrease in neuronal arborisation and dendritic spine density in discrete brain regions, of the CKD mice. Oxidative stress, inflammation, and mitochondrial dysfunctions were found in specific brain regions of the mice, which have been regarded as the underlying causes of the observed neurochemical and histopathological alterations. Thus, the present study is of immense importance, and has therapeutic implications in the management of CKD-associated neurological complications.
Collapse
Affiliation(s)
- Muhammed Khairujjaman Mazumder
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar - 788011, Assam, India
| | - Rajib Paul
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar - 788011, Assam, India.,Department of Zoology, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya (PDUAM), Eraligool-788723, Karimganj, Assam, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar - 382355, Gujarat, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar - 788011, Assam, India.
| |
Collapse
|
10
|
Mazumder MK, Phukan BC, Bhattacharjee A, Borah A. Disturbed purine nucleotide metabolism in chronic kidney disease is a risk factor for cognitive impairment. Med Hypotheses 2017; 111:36-39. [PMID: 29406992 DOI: 10.1016/j.mehy.2017.12.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 10/25/2017] [Accepted: 12/12/2017] [Indexed: 02/07/2023]
Abstract
Chronic kidney disease (CKD) is an increasing global health burden. Disturbance in purine metabolism pathway and a higher level of serum uric acid, called hyperuricemia, is a risk factor of CKD, and it has been linked to increased prevalence and progression of the disease. In a recent study, it has been demonstrated that purine nucleotides and uric acid alter the activity of acetylcholinesterase (AChE). Thus, we hypothesize that adenine, hypoxanthine, xanthine, 2,8-dihydroxyadenine and uric acid may potentially interfere with the activity of AChE. The hypothesis has been tested using computational tools. Uric acid has been found to be the most potent inhibitor of AChE, with a binding affinity higher than the known inhibitors of the enzyme. Further, since depleted AChE activity is associated with dementia and cognitive impairment, the present study suggest that disturbed purine nucleotide metabolism in CKD is a risk factor for cognitive impairment.
Collapse
Affiliation(s)
- Muhammed Khairujjaman Mazumder
- Cellular & Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, P.O. Dorgakona, Cachar, Silchar 788011, Assam, India
| | - Banashree Chetia Phukan
- Cellular & Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, P.O. Dorgakona, Cachar, Silchar 788011, Assam, India
| | - Aradhana Bhattacharjee
- Cellular & Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, P.O. Dorgakona, Cachar, Silchar 788011, Assam, India
| | - Anupom Borah
- Cellular & Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, P.O. Dorgakona, Cachar, Silchar 788011, Assam, India.
| |
Collapse
|
11
|
Li N, Liu Y, Li W, Zhou L, Li Q, Wang X, He P. A UPLC/MS-based metabolomics investigation of the protective effect of ginsenosides Rg1 and Rg2 in mice with Alzheimer's disease. J Ginseng Res 2015; 40:9-17. [PMID: 26843817 PMCID: PMC4703800 DOI: 10.1016/j.jgr.2015.04.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/20/2015] [Accepted: 04/20/2015] [Indexed: 01/10/2023] Open
Abstract
Background Alzheimer's disease (AD) is a progressive brain disease, for which there is no effective drug therapy at present. Ginsenoside Rg1 (G-Rg1) and G-Rg2 have been reported to alleviate memory deterioration. However, the mechanism of their anti-AD effect has not yet been clearly elucidated. Methods Ultra performance liquid chromatography tandem MS (UPLC/MS)-based metabolomics was used to identify metabolites that are differentially expressed in the brains of AD mice with or without ginsenoside treatment. The cognitive function of mice and pathological changes in the brain were also assessed using the Morris water maze (MWM) and immunohistochemistry, respectively. Results The impaired cognitive function and increased hippocampal Aβ deposition in AD mice were ameliorated by G-Rg1 and G-Rg2. In addition, a total of 11 potential biomarkers that are associated with the metabolism of lysophosphatidylcholines (LPCs), hypoxanthine, and sphingolipids were identified in the brains of AD mice and their levels were partly restored after treatment with G-Rg1 and G-Rg2. G-Rg1 and G-Rg2 treatment influenced the levels of hypoxanthine, dihydrosphingosine, hexadecasphinganine, LPC C 16:0, and LPC C 18:0 in AD mice. Additionally, G-Rg1 treatment also influenced the levels of phytosphingosine, LPC C 13:0, LPC C 15:0, LPC C 18:1, and LPC C 18:3 in AD mice. Conclusion These results indicate that the improvements in cognitive function and morphological changes produced by G-Rg1 and G-Rg2 treatment are caused by regulation of related brain metabolic pathways. This will extend our understanding of the mechanisms involved in the effects of G-Rg1 and G-Rg2 on AD.
Collapse
Affiliation(s)
- Naijing Li
- Department of Gerontology, The Shengjing Affiliated Hospital, China Medical University, Shenyang, China
| | - Ying Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Wei Li
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Ling Zhou
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Qing Li
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xueqing Wang
- Department of Gastroenterology, The Shengjing Affiliated Hospital, China Medical University, Shenyang, China
| | - Ping He
- Department of Gerontology, The Shengjing Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
12
|
Watanabe K, Watanabe T, Nakayama M. Cerebro-renal interactions: impact of uremic toxins on cognitive function. Neurotoxicology 2014; 44:184-93. [PMID: 25003961 DOI: 10.1016/j.neuro.2014.06.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/13/2014] [Accepted: 06/27/2014] [Indexed: 01/21/2023]
Abstract
Cognitive impairment (CI) associated with chronic kidney disease (CKD) has received attention as an important problem in recent years. Causes of CI with CKD are multifactorial, and include cerebrovascular disease, renal anemia, secondary hyperparathyroidism, dialysis disequilibrium, and uremic toxins (UTs). Among these causes, little is known about the role of UTs. We therefore selected 21 uremic compounds, and summarized reports of cerebro-renal interactions associated with UTs. Among the compounds, uric acid, indoxyl sulfate, p-cresyl sulfate, interleukin 1-β, interleukin 6, TNF-α, and PTH were most likely to affect the cerebro-renal interaction dysfunction; however, sufficient data have not been obtained for other UTs. Notably, most of the data were not obtained under uremic conditions; therefore, the impact and mechanism of each UT on cognition and central nervous system in uremic state remains unknown. At present, impacts and mechanisms of UT effects on cognition are poorly understood. Clarifying the mechanisms and establishing novel therapeutic strategies for cerebro-renal interaction dysfunction is expected to be subject of future research.
Collapse
Affiliation(s)
- Kimio Watanabe
- Department of Nephrology, Hypertension, Diabetology, Endocrinology and Metabolism, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Tsuyoshi Watanabe
- Department of Nephrology, Hypertension, Diabetology, Endocrinology and Metabolism, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Masaaki Nakayama
- Department of Nephrology, Hypertension, Diabetology, Endocrinology and Metabolism, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan.
| |
Collapse
|
13
|
Rodrigues AF, Roecker R, Junges GM, de Lima DD, da Cruz JGP, Wyse ATS, Dal Magro DD. Hypoxanthine induces oxidative stress in kidney of rats: protective effect of vitamins E plus C and allopurinol. Cell Biochem Funct 2014; 32:387-94. [PMID: 24578313 DOI: 10.1002/cbf.3029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/13/2014] [Accepted: 01/15/2014] [Indexed: 11/08/2022]
Abstract
In the present study, we investigated the in vitro effect of hypoxanthine on the activities of antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase, as well as on thiobarbituric-acid-reactive substances (TBA-RS), in the renal cortex and medulla of rats. Results showed that hypoxanthine, at a concentration of 10.0 μM, enhanced the activities of CAT and SOD in the renal cortex of 15-, 30- and 60-day-old rats, enhanced SOD activity in the renal medulla of 60-day-old rats and enhanced TBA-RS levels in the renal medulla of 30-day-old rats, as compared with controls. Furthermore, we also verified the influence of allopurinol (an inhibitor of xanthine oxidase), as well as of the antioxidants, trolox and ascorbic acid on the effects elicited by hypoxanthine on the parameters tested. Allopurinol and/or administration of antioxidants prevented most alterations caused by hypoxanthine in the oxidative stress parameters evaluated. Data suggest that hypoxanthine alters antioxidant defences and induces lipid peroxidation in the kidney of rats; however, in the presence of allopurinol and antioxidants, some of these alterations in oxidative stress were prevented. Our findings lend support to a potential therapeutic strategy for this condition, which may include the use of appropriate antioxidants for ameliorating the damage caused by hypoxanthine.
Collapse
Affiliation(s)
- André F Rodrigues
- Departamento de Ciências Naturais, Centro de Ciências Exatas e Naturais, Universidade Regional de Blumenau, Blumenau, Santa Catarina, Brazil
| | | | | | | | | | | | | |
Collapse
|