1
|
Dhalla NS, Mota KO, Elimban V, Shah AK, de Vasconcelos CML, Bhullar SK. Role of Vasoactive Hormone-Induced Signal Transduction in Cardiac Hypertrophy and Heart Failure. Cells 2024; 13:856. [PMID: 38786079 PMCID: PMC11119949 DOI: 10.3390/cells13100856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Heart failure is the common concluding pathway for a majority of cardiovascular diseases and is associated with cardiac dysfunction. Since heart failure is invariably preceded by adaptive or maladaptive cardiac hypertrophy, several biochemical mechanisms have been proposed to explain the development of cardiac hypertrophy and progression to heart failure. One of these includes the activation of different neuroendocrine systems for elevating the circulating levels of different vasoactive hormones such as catecholamines, angiotensin II, vasopressin, serotonin and endothelins. All these hormones are released in the circulation and stimulate different signal transduction systems by acting on their respective receptors on the cell membrane to promote protein synthesis in cardiomyocytes and induce cardiac hypertrophy. The elevated levels of these vasoactive hormones induce hemodynamic overload, increase ventricular wall tension, increase protein synthesis and the occurrence of cardiac remodeling. In addition, there occurs an increase in proinflammatory cytokines and collagen synthesis for the induction of myocardial fibrosis and the transition of adaptive to maladaptive hypertrophy. The prolonged exposure of the hypertrophied heart to these vasoactive hormones has been reported to result in the oxidation of catecholamines and serotonin via monoamine oxidase as well as the activation of NADPH oxidase via angiotensin II and endothelins to promote oxidative stress. The development of oxidative stress produces subcellular defects, Ca2+-handling abnormalities, mitochondrial Ca2+-overload and cardiac dysfunction by activating different proteases and depressing cardiac gene expression, in addition to destabilizing the extracellular matrix upon activating some metalloproteinases. These observations support the view that elevated levels of various vasoactive hormones, by producing hemodynamic overload and activating their respective receptor-mediated signal transduction mechanisms, induce cardiac hypertrophy. Furthermore, the occurrence of oxidative stress due to the prolonged exposure of the hypertrophied heart to these hormones plays a critical role in the progression of heart failure.
Collapse
Affiliation(s)
- Naranjan S. Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (V.E.); (S.K.B.)
| | - Karina O. Mota
- Department of Physiology, Center of Biological and Health Sciences, Federal University of Sergipe, Sao Cristóvao 49100-000, Brazil; (K.O.M.); (C.M.L.d.V.)
| | - Vijayan Elimban
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (V.E.); (S.K.B.)
| | - Anureet K. Shah
- Department of Nutrition and Food Science, California State University, Los Angeles, CA 90032-8162, USA;
| | - Carla M. L. de Vasconcelos
- Department of Physiology, Center of Biological and Health Sciences, Federal University of Sergipe, Sao Cristóvao 49100-000, Brazil; (K.O.M.); (C.M.L.d.V.)
| | - Sukhwinder K. Bhullar
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (V.E.); (S.K.B.)
| |
Collapse
|
2
|
Bahr F, Ricke-Hoch M, Ponimaskin E, Müller F. Serotonin Receptors in Myocardial Infarction: Friend or Foe? ACS Chem Neurosci 2024; 15:1619-1634. [PMID: 38573542 PMCID: PMC11027101 DOI: 10.1021/acschemneuro.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024] Open
Abstract
Acute myocardial infarction (AMI) is one of the leading causes of death worldwide and treatment costs pose a major burden on the global health care system. Despite the variety of treatment options, individual recovery can be still poor and the mortality rate, especially in the first few years after the event, remains high. Therefore, intense research is currently focused on identifying novel target molecules to improve the outcome following AMI. One of the potentially interesting targets is the serotonergic system (5-HT system), not at least because of its connection to mental disorders. It is known that patients suffering from AMI have an increased risk of developing depression and vice versa. This implicates that the 5-HT system can be affected in response to AMI and might thus represent a target structure for patients' treatment. This review aims to highlight the importance of the 5-HT system after AMI by describing the role of individual serotonin receptors (5-HTR) in the regulation of physiological and pathophysiological responses. It particularly focuses on the signaling pathways of the serotonin receptors 1, 2, 4, and 7, which are expressed in the cardiovascular system, during disease onset, and the following remodeling process. This overview also emphasizes the importance of the 5-HT system in AMI etiology and highlights 5-HTRs as potential treatment targets.
Collapse
Affiliation(s)
- F.S. Bahr
- Cellular
Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - M. Ricke-Hoch
- Cardiology
and Angiology, Hannover Medical School, 30625 Hannover, Germany
| | - E. Ponimaskin
- Cellular
Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - F.E. Müller
- Cellular
Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
3
|
Wsół A. Cardiovascular safety of psychedelic medicine: current status and future directions. Pharmacol Rep 2023; 75:1362-1380. [PMID: 37874530 PMCID: PMC10661823 DOI: 10.1007/s43440-023-00539-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/25/2023]
Abstract
Psychedelics are powerful psychoactive substances that alter perception and mood processes. Their effectiveness in the treatment of psychiatric diseases was known before their prohibition. An increasing number of recent studies, due to the indisputable resurgence of serotonergic hallucinogens, have shown their efficacy in alleviating depression, anxiety, substance abuse therapies, and existential distress treatment in patients facing life-threatening illness. Psychedelics are generally considered to be physiologically safe with low toxicity and low addictive potential. However, their agonism at serotonergic receptors should be considered in the context of possible serotonin-related cardiotoxicity (5-HT2A/2B and 5-HT4 receptors), influence on platelet aggregation (5-HT2A receptor), and their proarrhythmic potential. The use of psychedelics has also been associated with significant sympathomimetic effects in both experimental and clinical studies. Therefore, the present review aims to provide a critical discussion of the cardiovascular safety of psilocybin, d-lysergic acid diethylamide (LSD), N,N-dimethyltryptamine, ayahuasca, and mescaline, based on the results of experimental research and clinical trials in humans. Experimental studies provide inconsistent information on the potential cardiovascular effects and toxicity of psychedelics. Data from clinical trials point to the relative cardiovascular safety of psychedelic-assisted therapies in the population of "healthy" volunteers. However, there is insufficient evidence from therapies carried out with microdoses of psychedelics, and there is still a lack of data on the safety of psychedelics in the population of patients with cardiovascular disease. Therefore, the exact determination of the cardiovascular safety of psychedelic therapies (especially long-term therapies) requires further research.
Collapse
Affiliation(s)
- Agnieszka Wsół
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland.
| |
Collapse
|
4
|
Opinion AGR, Vanhomwegen M, De Boeck G, Aerts J. Long-term stress induced cortisol downregulation, growth reduction and cardiac remodeling in Atlantic salmon. J Exp Biol 2023; 226:jeb246504. [PMID: 37921456 PMCID: PMC10690108 DOI: 10.1242/jeb.246504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023]
Abstract
Stress and elevated plasma cortisol in salmonids have been linked with pathological remodeling of the heart and deterioration of fitness and welfare. However, these associations were based on biomarkers that fail to provide a retrospective view of stress. This study is the first whereby the association of long-term stress, using scale cortisol as a chronic stress biomarker, with cardiac morphology and growth performance of wild Atlantic salmon (Salmo salar) is made. Growth, heart morphology, plasma and scale cortisol levels, and expression of genes involved in cortisol regulation of the hypothalamic-pituitary-interrenal axis of undisturbed fish (control) were compared with those of fish exposed daily to stress for 8 weeks. Though scale cortisol levels showed a time-dependent accumulation in both groups, plasma and scale cortisol levels of stress group fish were 29.1% and 25.0% lower than those of control fish, respectively. These results correlated with the overall upregulation of stress-axis genes involved in the systemic negative feedback of cortisol, and local feedback via 11β-hydroxysteroid dehydrogenases, glucocorticoid and mineralocorticoid receptors in the stress treatment at the hypothalamus and pituitary level. These lower cortisol levels were, however, counterintuitive in terms of the growth performance as stress group fish grew 33.7% slower than control fish, which probably influenced the 8.4% increase in relative ventricle mass in the stress group. Though compact myocardium area between the treatments was comparable, these parameters showed significant linear correlations with scale cortisol levels, indicating the involvement of chronic stress in cardiac remodeling. These findings underscore the importance of scale cortisol as biomarker when associating chronic stress with long-term processes including cardiac remodeling.
Collapse
Affiliation(s)
- April Grace R. Opinion
- University of Antwerp, Department of Biology, ECOSPHERE, 2020 Antwerp, Belgium
- Ghent University, Department of Biology, Stress Physiology Research Group (StressChron), 8400 Ostend, Belgium
| | - Marine Vanhomwegen
- Ghent University, Department of Biology, Stress Physiology Research Group (StressChron), 8400 Ostend, Belgium
| | - Gudrun De Boeck
- University of Antwerp, Department of Biology, ECOSPHERE, 2020 Antwerp, Belgium
| | - Johan Aerts
- Ghent University, Department of Biology, Stress Physiology Research Group (StressChron), 8400 Ostend, Belgium
- Flanders Research Institute for Agriculture, Fisheries and Food, Animal Sciences Unit, Stress Physiology Research Group (StressChron), 8400 Ostend, Belgium
| |
Collapse
|
5
|
Schulz R, Schlüter KD. Importance of Mitochondria in Cardiac Pathologies: Focus on Uncoupling Proteins and Monoamine Oxidases. Int J Mol Sci 2023; 24:ijms24076459. [PMID: 37047436 PMCID: PMC10095304 DOI: 10.3390/ijms24076459] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
On the one hand, reactive oxygen species (ROS) are involved in the onset and progression of a wide array of diseases. On the other hand, these are a part of signaling pathways related to cell metabolism, growth and survival. While ROS are produced at various cellular sites, in cardiomyocytes the largest amount of ROS is generated by mitochondria. Apart from the electron transport chain and various other proteins, uncoupling protein (UCP) and monoamine oxidases (MAO) have been proposed to modify mitochondrial ROS formation. Here, we review the recent information on UCP and MAO in cardiac injuries induced by ischemia-reperfusion (I/R) as well as protection from I/R and heart failure secondary to I/R injury or pressure overload. The current data in the literature suggest that I/R will preferentially upregulate UCP2 in cardiac tissue but not UCP3. Studies addressing the consequences of such induction are currently inconclusive because the precise function of UCP2 in cardiac tissue is not well understood, and tissue- and species-specific aspects complicate the situation. In general, UCP2 may reduce oxidative stress by mild uncoupling and both UCP2 and UCP3 affect substrate utilization in cardiac tissue, thereby modifying post-ischemic remodeling. MAOs are important for the physiological regulation of substrate concentrations. Upon increased expression and or activity of MAOs, however, the increased production of ROS and reactive aldehydes contribute to cardiac alterations such as hypertrophy, inflammation, irreversible cardiomyocyte injury, and failure.
Collapse
|
6
|
Ahmed MI, Abdelrazek HMA, Moustafa YM, Alshawwa SZ, Mobasher MA, Abdel-Wahab BA, Abdelgawad FE, Khodeer DM. Cardioprotective Effect of Flibanserin against Isoproterenol-Induced Myocardial Infarction in Female Rats: Role of Cardiac 5-HT2A Receptor Gene/5-HT/Ca2+ Pathway. Pharmaceuticals (Basel) 2023; 16:ph16040502. [PMID: 37111259 PMCID: PMC10143970 DOI: 10.3390/ph16040502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Myocardial infarction (MI) is a life-threatening ischemic disease and is one of the leading causes of morbidity and mortality worldwide. Serotonin (5-HT) release during myocardial ischemia plays an important role in the progression of myocardial cellular injury. This study was conducted to investigate the possible cardioprotective effect of flibanserin (FLP) against isoproterenol (ISO)-induced MI in rats. Rats were randomly divided into five groups and were treated orally (p.o.) with FLP (15, 30, and 45 mg/kg) for 28 days. ISO was administered subcutaneously (S.C.) (85 mg/kg) on the 27th and 28th days to induce MI. ISO-induced myocardial infarcted rats exhibited a significant increase in cardiac markers, oxidative stress markers, cardiac and serum 5-HT levels, and total cardiac calcium (Ca2+) concentration. ISO-induced myocardial infarcted rats also revealed a remarkable alteration of electrocardiogram (ECG) pattern and significantly upregulated expression of the 5-Hydroxytryptamine 2A (5-HT2A) receptors gene. Moreover, ISO-induced myocardial infarcted rats showed significant histopathological findings of MI and hypertrophic signs. However, pretreatment with FLP significantly attenuated the ISO-induced MI in a dose-dependent manner, as the effect of FLP (45 mg/kg) was more pronounced than that of the other two doses, FLP (15 and 30 mg/kg). The present study provides evidence for the cardioprotective efficacy of FLP against ISO-induced MI in rats.
Collapse
|
7
|
Neumann J, Hofmann B, Dhein S, Gergs U. Cardiac Roles of Serotonin (5-HT) and 5-HT-Receptors in Health and Disease. Int J Mol Sci 2023; 24:4765. [PMID: 36902195 PMCID: PMC10003731 DOI: 10.3390/ijms24054765] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Serotonin acts solely via 5-HT4-receptors to control human cardiac contractile function. The effects of serotonin via 5-HT4-receptors lead to positive inotropic and chronotropic effects, as well as arrhythmias, in the human heart. In addition, 5-HT4-receptors may play a role in sepsis, ischaemia, and reperfusion. These presumptive effects of 5-HT4-receptors are the focus of the present review. We also discuss the formation and inactivation of serotonin in the body, namely, in the heart. We identify cardiovascular diseases where serotonin might play a causative or additional role. We address the mechanisms which 5-HT4-receptors can use for cardiac signal transduction and their possible roles in cardiac diseases. We define areas where further research in this regard should be directed in the future, and identify animal models that might be generated to this end. Finally, we discuss in what regard 5-HT4-receptor agonists or antagonists might be useful drugs that could enter clinical practice. Serotonin has been the target of many studies for decades; thus, we found it timely to summarise our current knowledge here.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany
| | - Britt Hofmann
- Cardiac Surgery, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany
| | - Stefan Dhein
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Universität Leipzig, D-04109 Leipzig, Germany
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany
| |
Collapse
|
8
|
Kent ME, Hu B, Eggleston TM, Squires RS, Zimmerman KA, Weiss RM, Roghair RD, Lin F, Cornell RA, Haskell SE. Hypersensitivity of Zebrafish htr2b Mutant Embryos to Sertraline Indicates a Role for Serotonin Signaling in Cardiac Development. J Cardiovasc Pharmacol 2022; 80:261-269. [PMID: 35904815 PMCID: PMC9354722 DOI: 10.1097/fjc.0000000000001297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/05/2022] [Indexed: 11/09/2022]
Abstract
ABSTRACT Selective serotonin reuptake inhibitors (SSRIs) are antidepressants prescribed in 10% of pregnancies in the United States. Maternal use of SSRIs has been linked to an elevated rate of congenital heart defects, but the exact mechanism of pathogenesis is unknown. Previously, we have shown a decrease in cardiomyocyte proliferation, left ventricle size, and reduced cardiac expression of the serotonin receptor 5-HT 2B in offspring of mice exposed to the SSRI sertraline during pregnancy, relative to offspring of untreated mice. These results suggest that disruption of serotonin signaling leads to heart defects. Supporting this conclusion, we show here that zebrafish embryos exposed to sertraline develop with a smaller ventricle, reduced cardiomyocyte number, and lower cardiac expression of htr2b relative to untreated embryos. Moreover, zebrafish embryos homozygous for a nonsense mutation of htr2b ( htr2bsa16649 ) were sensitized to sertraline treatment relative to wild-type embryos. Specifically, the ventricle area was reduced in the homozygous htr2b mutants treated with sertraline compared with wild-type embryos treated with sertraline and homozygous htr2b mutants treated with vehicle control. Whereas long-term effects on left ventricle shortening fraction and stroke volume were observed by echocardiography in adult mice exposed to sertraline in utero, echocardiograms of adult zebrafish exposed to sertraline as embryos were normal. These results implicate the 5-HT 2B receptor functions in heart development and suggest zebrafish are a relevant animal model that can be used to investigate the connection between maternal SSRI use and elevated risk of congenital heart defects.
Collapse
Affiliation(s)
| | - Bo Hu
- Anatomy and Cell Biology; and
| | | | | | - Kathy A. Zimmerman
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Robert M. Weiss
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA
| | | | | | | | | |
Collapse
|
9
|
Shimizu K, Sunagawa Y, Funamoto M, Honda H, Katanasaka Y, Murai N, Kawase Y, Hirako Y, Katagiri T, Yabe H, Shimizu S, Sari N, Wada H, Hasegawa K, Morimoto T. The Selective Serotonin 2A Receptor Antagonist Sarpogrelate Prevents Cardiac Hypertrophy and Systolic Dysfunction via Inhibition of the ERK1/2-GATA4 Signaling Pathway. Pharmaceuticals (Basel) 2021; 14:ph14121268. [PMID: 34959669 PMCID: PMC8708651 DOI: 10.3390/ph14121268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/15/2021] [Accepted: 12/01/2021] [Indexed: 01/02/2023] Open
Abstract
Drug repositioning has recently emerged as a strategy for developing new treatments at low cost. In this study, we used a library of approved drugs to screen for compounds that suppress cardiomyocyte hypertrophy. We identified the antiplatelet drug sarpogrelate, a selective serotonin-2A (5-HT2A) receptor antagonist, and investigated the drug's anti-hypertrophic effect in cultured cardiomyocytes and its effect on heart failure in vivo. Primary cultured cardiomyocytes pretreated with sarpogrelate were stimulated with angiotensin II, endothelin-1, or phenylephrine. Immunofluorescence staining showed that sarpogrelate suppressed the cardiomyocyte hypertrophy induced by each of the stimuli. Western blotting analysis revealed that 5-HT2A receptor level was not changed by phenylephrine, and that sarpogrelate suppressed phenylephrine-induced phosphorylation of ERK1/2 and GATA4. C57BL/6J male mice were subjected to transverse aortic constriction (TAC) surgery followed by daily oral administration of sarpogrelate for 8 weeks. Echocardiography showed that 5 mg/kg of sarpogrelate suppressed TAC-induced cardiac hypertrophy and systolic dysfunction. Western blotting revealed that sarpogrelate suppressed TAC-induced phosphorylation of ERK1/2 and GATA4. These results indicate that sarpogrelate suppresses the development of heart failure and that it does so at least in part by inhibiting the ERK1/2-GATA4 signaling pathway.
Collapse
Affiliation(s)
- Kana Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
- National Hospital Organization Kyoto Medical Center, Division of Translational Research, Kyoto 612-8555, Japan;
| | - Yoichi Sunagawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
- National Hospital Organization Kyoto Medical Center, Division of Translational Research, Kyoto 612-8555, Japan;
- Shizuoka General Hospital, Shizuoka 420-8527, Japan
| | - Masafumi Funamoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
- National Hospital Organization Kyoto Medical Center, Division of Translational Research, Kyoto 612-8555, Japan;
| | - Hiroki Honda
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
| | - Yasufumi Katanasaka
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
- National Hospital Organization Kyoto Medical Center, Division of Translational Research, Kyoto 612-8555, Japan;
- Shizuoka General Hospital, Shizuoka 420-8527, Japan
| | - Noriyuki Murai
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
| | - Yuto Kawase
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
| | - Yuta Hirako
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
| | - Takahiro Katagiri
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
| | - Harumi Yabe
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
| | - Satoshi Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
- National Hospital Organization Kyoto Medical Center, Division of Translational Research, Kyoto 612-8555, Japan;
| | - Nurmila Sari
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
| | - Hiromichi Wada
- National Hospital Organization Kyoto Medical Center, Division of Translational Research, Kyoto 612-8555, Japan;
| | - Koji Hasegawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
- National Hospital Organization Kyoto Medical Center, Division of Translational Research, Kyoto 612-8555, Japan;
| | - Tatsuya Morimoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
- National Hospital Organization Kyoto Medical Center, Division of Translational Research, Kyoto 612-8555, Japan;
- Shizuoka General Hospital, Shizuoka 420-8527, Japan
- Correspondence: ; Tel.: +81-54-264-5763
| |
Collapse
|
10
|
Increased release of serotonin from rat primary isolated adult cardiac myofibroblasts. Sci Rep 2021; 11:20376. [PMID: 34645867 PMCID: PMC8514503 DOI: 10.1038/s41598-021-99632-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/22/2021] [Indexed: 11/08/2022] Open
Abstract
Elevated blood serotonin levels have been observed in patients with heart failure and serotonin has a role in pathological cardiac function. The serotonin receptor system was examined in adult rat isolated cardiac fibroblast and myofibroblast cells. This is one of the first studies that has investigated serotonin receptors and other proteins involved in the serotonin receptor system in rat cardiac fibroblast and myofibroblast cells. Rat primary cardiac fibroblasts were isolated and transformed into myofibroblasts using 5 ng/ml TGF-β1. Transformation of cells to myofibroblasts was confirmed with the presence of α-smooth muscle actin using Western blot. Serotonin metabolism and receptor protein expression was assessed using Western blot techniques and serotonin levels measured using ELISA. The 5-HT1A, 5-HT2A and 5-HT2B receptors were found to be present in both rat cardiac fibroblasts and myofibroblast cells, however no significance in protein expression between the two cell types was found (P > 0.05). In this study a significant increase in the serotonin transporter (SERT), tryptophan hydroxylase 1 and extracellular serotonin levels was observed in rat cardiac myofibroblasts when compared to fibroblasts (P < 0.05). These results suggest that serotonin levels may rise in parallel with cardiac myofibroblast populations and contribute to the pathogenesis of heart failure via serotonin receptors.
Collapse
|
11
|
Fouad Shalaby M, Latif HAAE, Yamani ME, Galal MA, Kamal S, Sindi I. Protective Role of Sarpogrelate in Combination with Bromocriptine and Cabergoline for Treatment of Diabetes in Alloxan-induced Diabetic Rats. CURRENT THERAPEUTIC RESEARCH 2021; 95:100647. [PMID: 34777640 PMCID: PMC8577162 DOI: 10.1016/j.curtheres.2021.100647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/30/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND Although dopamine D2 receptor agonists, bromocriptine and cabergoline, are notable medications in the treatment of Parkinsonism, hyperprolactinemia, and hyperglycemia, there is an identified relationship between the utilization of D2-like R agonists and the progress of myocardial injury, especially in the early phase of therapy. OBJECTIVE This investigation aimed to examine the potential activity of sarpogrelate (a 5-hydroxytryptamine 2A [5-HT2A] receptor blocker) in reducing myocardial injury prompted by extended haul utilization of D2 receptor agonists in a model of diabetic rats. METHODS In the in vivo studies, both bromocriptine and cabergoline were managed independently and combined with sarpogrelate for about a month in diabetic nephropathy rats. Blood glucose level and other myocardial biochemical parameters were estimated. The probable mechanism for insulin secretagogue action was evaluated through in vitro isolated islets study. Sodium/potassium-adenosine triphosphatase activity was assayed in an isolated microsomal fraction of the renal cortex. Isolated perfused rat hearts were treated with different doses of dopamine before and after being subjected to the tested drugs, dose response of heart rate, and heart contractility were recorded. RESULTS Bromocriptine and cabergoline created a significant reduction in blood glucose level without any action on insulin secretagogues. Bromocriptine prevented the loss of sodium/potassium-adenosine triphosphatase activity in the cortex of an ischemic kidney. Treatment of bromocriptine or cabergoline with sarpogrelate altogether decreased the levels of the elevated myocardial biomarkers in serum. Administration of different doses of dopamine in presence of bromocriptine or capergoline resulted in significantly rising in the heart rate percentage comparing to dopamine alone. A mix of bromocriptine or cabergoline with sarpogrelate diminished both heart rate and contractility, respectively. CONCLUSIONS The examination demonstrated that the combined use of sarpogrelate with bromocriptine or cabergoline decreased the potential adverse effects of these 2 drugs on myocardial tissues.
Collapse
Affiliation(s)
- Mohammed Fouad Shalaby
- Pharmaceutical Sciences Department, Pharmacy Programme, Batterjee Medical College, Jeddah, Kingdom of Saudi Arabia
| | - Hekma A. Abd El Latif
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed El Yamani
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - May Ahmed Galal
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sherifa Kamal
- Pharmacology Department, National Organization for Drug Control and Research, Giza, Egypt
| | - Ikhlas Sindi
- Research Unit, Batterjee Medical College, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
12
|
Gao W, Guo N, Zhao S, Chen Z, Zhang W, Yan F, Liao H, Chi K. HTR2A promotes the development of cardiac hypertrophy by activating PI3K-PDK1-AKT-mTOR signaling. Cell Stress Chaperones 2020; 25:899-908. [PMID: 32519137 PMCID: PMC7591670 DOI: 10.1007/s12192-020-01124-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/16/2020] [Accepted: 05/20/2020] [Indexed: 01/19/2023] Open
Abstract
5-Hydroxytryptamine receptor 2A (HTR2A) is a central regulator of fetal brain development and cognitive function in adults. However, the roles of HTR2A in the cardiovascular system are not fully understood. Here in this study, we explored the function of HTR2A in cardiac hypertrophy. Significantly, the expression levels of HTR2A mRNA and protein levels were upregulated in hypertrophic hearts of human patients. Besides, the expression of HTR2A was also upregulated in isoproterenol (ISO)-induced cardiac hypertrophy in the mouse. Next, the expression of HTR2A was knocked down with shRNA or overexpressed with adenovirus in neonatal rat cardiomyocytes, and ISO was used to induce cardiomyocyte hypertrophy. We showed that HTR2A knockdown repressed ISO-induced cardiomyocyte hypertrophy, which was demonstrated by decreased cardiomyocyte size and repressed expression of hypertrophic fetal genes (e.g., myosin heavy chain beta (β-Mhc), atrial natriuretic peptide (Anp), and brain natriuretic peptide (Bnp)). By contrast, HTR2A overexpression promoted cardiomyocyte hypertrophy. Of note, we observed that HTR2A promoted the activation (phosphorylation) of AKT-mTOR (mammalian target of rapamycin) signaling in cardiomyocytes, and repression of AKT-mTOR with perifosine or rapamycin blocked the effects of HTR2A on cardiomyocyte hypertrophy. Finally, we showed that HTR2A regulated AKT-mTOR signaling through activating the PI3K-PDK1 pathway, and inhibition of either PI3K or PDK1 blocked the roles of HTR2A in regulating AKT-mTOR signaling and cardiomyocyte hypertrophy. Altogether, these findings demonstrated that HTR2A activated PI3K-PDK1-AKT-mTOR signaling and promoted cardiac hypertrophy.
Collapse
MESH Headings
- 3-Phosphoinositide-Dependent Protein Kinases/metabolism
- Animals
- Animals, Newborn
- Cardiomegaly/genetics
- Cardiomegaly/metabolism
- Cardiomegaly/pathology
- Humans
- Isoproterenol
- Male
- Mice, Inbred C57BL
- Models, Biological
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Phosphatidylinositol 3-Kinases/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Rats, Sprague-Dawley
- Receptor, Serotonin, 5-HT2A/genetics
- Receptor, Serotonin, 5-HT2A/metabolism
- Signal Transduction
- TOR Serine-Threonine Kinases/metabolism
Collapse
Affiliation(s)
- Weinian Gao
- Department of Cardiac Macrovascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Na Guo
- Department of Cardiology, Shijiazhuang Traditional Chinese Medicine Hospital, Shijiazhuang, 050000, China
| | - Shuguang Zhao
- Department of Cardiac Macrovascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| | - Ziying Chen
- Department of Cardiac Macrovascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Wenli Zhang
- Department of Cardiac Macrovascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Fang Yan
- Department of Cardiac Macrovascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Hongjuan Liao
- Department of Cardiac Macrovascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Kui Chi
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| |
Collapse
|
13
|
Doroshenko YM, Lelevich VV. Biogenic Monoamines, Their Precursors, and Metabolites in the Brain of Rats under Experimental Circulatory Failure. NEUROCHEM J+ 2020. [DOI: 10.1134/s1819712420030034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Rozenblit-Susan S, Chapnik N, Froy O. Serotonin Prevents Differentiation of Brown Adipocytes by Interfering with Their Clock. Obesity (Silver Spring) 2019; 27:2018-2024. [PMID: 31674727 DOI: 10.1002/oby.22606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 07/03/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Serotonin was shown to interfere with the differentiation of brown adipocytes. In addition, clock components inhibit brown adipogenesis through direct transcriptional control of key components of the transforming growth factor β pathway. The aim of this study was to investigate whether serotonin abrogates brown adipogenesis by affecting clock functionality. METHODS Nondifferentiated and differentiated HIB1B brown adipocytes were treated with serotonin, and their clock expression and functionality and differentiation state were examined. RESULTS Nondifferentiated HIB1B brown adipocytes treated with serotonin showed increased brown adipocyte markers alongside increased brain-muscle Arnt-like protein 1 (Bmal1) and RAR related orphan receptor A (Rora) but decreased nuclear receptor Rev-erbα mRNA levels. BMAL1 overexpression together with serotonin led to significantly lower brown adipocyte markers. Serotonin in the differentiation cocktail led to reduced brown adipocyte markers as well as clock gene expression. After differentiation, serotonin treatment significantly decreased brown adipocyte markers and reduced BMAL1 and RORα but increased REV-ERBα protein levels. Addition of serotonin to the differentiation medium or addition after differentiation reduced activity of calcium/calmodulin-dependent protein kinase type II subunit gamma, which interferes with circadian locomoter output cycles protein kaput (CLOCK):BMAL1 dimerization and transactivation. CONCLUSIONS Clock expression is required at the early stages of differentiation to brown adipocytes, and serotonin interferes with this process by modulating clock functionality. Serotonin interferes with clock functionality by reducing the levels of the active form of calcium/calmodulin-dependent protein kinase type II subunit gamma.
Collapse
Affiliation(s)
- Sigal Rozenblit-Susan
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Nava Chapnik
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Oren Froy
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
15
|
Nørstrud KS, Vindas MA, Nilsson GE, Johansen IB. Short-term cortisol exposure alters cardiac hypertrophic and non-hypertrophic signalling in a time-dependent manner in rainbow trout. Biol Open 2018; 7:bio.037853. [PMID: 30341103 PMCID: PMC6310887 DOI: 10.1242/bio.037853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cardiac disease is a growing concern in farmed animals, and stress has been implicated as a factor for myocardial dysfunction and mortality in commercial fish rearing. We recently showed that the stress hormone cortisol induces pathological cardiac remodelling in rainbow trout. Wild and farmed salmonids are exposed to fluctuations and sometimes prolonged episodes of increased cortisol levels. Thus, studying the timeframe of cortisol-induced cardiac remodelling is necessary to understand its role in the pathogenesis of cardiovascular disease in salmonids. We here establish that 3 weeks of cortisol exposure is sufficient to increase relative ventricular mass (RVM) by 20% in rainbow trout. Moreover, increased RVMs are associated with altered expression of hypertrophic and non-hypertrophic remodelling markers. Further, we characterised the time course of cortisol-induced cardiac remodelling by feeding rainbow trout cortisol-containing feed for 2, 7 and 21 days. We show that the effect of cortisol on expression of hypertrophic and non-hypertrophic remodelling markers is time-dependent and in some cases acute. Our data indicate that short-term stressors and life cycle transitions associated with elevated cortisol levels can potentially influence hypertrophic and non-hypertrophic remodelling of the trout heart.
Collapse
Affiliation(s)
| | - Marco A Vindas
- Department of Biosciences, University of Oslo, Oslo 0371, Norway.,Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo 0454, Norway
| | - Göran E Nilsson
- Department of Biosciences, University of Oslo, Oslo 0371, Norway
| | - Ida B Johansen
- Department of Biosciences, University of Oslo, Oslo 0371, Norway .,Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo 0454, Norway
| |
Collapse
|
16
|
Inhibition of Nogo-B promotes cardiac hypertrophy via endoplasmic reticulum stress. Biomed Pharmacother 2018; 104:193-203. [PMID: 29772440 DOI: 10.1016/j.biopha.2018.05.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/06/2018] [Accepted: 05/08/2018] [Indexed: 02/05/2023] Open
Abstract
AIMS Nogo-B is a key endoplasmic reticulum (ER) protein that regulates ER stress signaling. However, its role in cardiac hypertrophy remains poorly understood. ER stress is interrelated with autophagy in the process of cardiac hypertrophy. Therefore, we aimed to test the hypothesis that both ER stress and autophagy signaling mediate the function of Nogo-B in cardiac hypertrophy. MAIN METHODS Rat models of transverse aortic constriction (TAC), neonatal rat cardiomyocytes (NRCMs) stimulated with norepinephrine (Ne) and primary cardiac fibroblasts treated with transforming growth factor β1 (TGF-β1) were used in this study. The expression of Nogo-B and markers of ER stress were determined by quantitative RT-PCR, western blotting and immunofluorescence. Autophagy was measured by monitoring autophagic flux. Specific small interfering RNA (siRNA) of Nogo-B was transfected to investigate the role of Nogo-B in regulating cardiac hypertrophy. KEY FINDINGS In TAC-induced hypertrophic heart tissues, Ne-treated hypertrophic cardiomyocytes and TGF-β1-stimulated cardiac fibroblasts, the expression of Nogo-B, and markers of ER stress were significantly elevated. Impairment of autophagic flux was observed in the activated cardiac fibroblasts. Down-regulation of Nogo-B by siRNA further exacerbated Ne-induced cardiomyocyte hypertrophy and TGF-β1-induced cardiac fibroblast activation. Gene silencing of Nogo-B promoted the activation of the ER stress pathway and the impairment of autophagic flux. Moreover, inhibition of Nogo-B activated the protein kinase RNA-like ER kinase (PERK)/activating transcriptional factor 4 (ATF4) and activating transcriptional factor 6 (ATF6) branches of ER stress pathways. SIGNIFICANCE These findings suggest that inhibition of Nogo-B promotes cardiomyocyte hypertrophy and cardiac fibroblast activation by activating the PERK/ATF4 signaling pathway and defects of autophagic flux.
Collapse
|
17
|
Abstract
Selective serotonin reuptake inhibitors are prescribed to 6%-10% of pregnant women in the United States. Using an intrauterine plus neonatal exposure model to represent exposure throughout human pregnancy, we hypothesized sertraline exposure would impact intracardiac serotonin signaling and lead to small left heart syndrome in the absence of maternal psychopathology. C57BL/6 adult female mice received sertraline (5 mg·kg·d IP) or saline throughout pregnancy to time of delivery. Pups maintained exposure on postnatal days 1-14 to encompass the developmental window analogous to human gestation. Sertraline-exposed mice had increased cardiac hydroxyproline content, decreased 5-HT2B receptor mRNA levels, and increased 5-HT2A receptor and serotonin transporter mRNA levels on postnatal day 21 (P < 0.05). These changes were associated with diminished exercise capacity at 6 weeks (P < 0.05) and decreased adult shortening fraction and stroke volume at 5 months. Isolated cardiomyocytes from neonatal sertraline-exposed mice had significantly decreased proliferation, cross-sectional area, and phosphorylation of Akt (P < 0.05 vs. neonatal control mice). Perinatal sertraline exposure alters neonatal cardiac development and produces long-standing changes in adult cardiac function and exercise capacity. Further studies are needed to assess whether similar findings are present in the growing population that has been exposed to selective serotonin reuptake inhibitors during development.
Collapse
|
18
|
Silva TO, Jung I, Trott A, Bica CG, Casarin JN, Fortuna PC, Ribeiro EE, de Assis FD, Figueira GC, Barbisan F, Fernanda Manica-Cattani M, Bonadiman BSR, Houenou LJ, Prado-Lima PASD, da Cruz IBM. Association between T102C 5-HT2A receptor gene polymorphism and 5-year mortality risk among Brazilian Amazon riparian elderly population. Am J Hum Biol 2017; 29. [PMID: 28488759 DOI: 10.1002/ajhb.23016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 01/16/2017] [Accepted: 04/17/2017] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVE Serotonin (5-HT) is a pleiotropic molecule that exerts several functions on brain and peripheral tissues via different receptors. The gene for the 5-HT2A receptor shows some variations, including a T102C polymorphism, that have been associated with increased risk of neuropsychiatric and vascular disorders. However, the potential impact of 5-HT2A imbalance caused by genetic variations on the human lifespan has not yet been established. METHODS We performed a prospective study involving an Amazon riparian elderly free-living population in Maués City, Brazil, with a 5-year follow-up. Out of a cohort of 637 subjects selected in July, 2009, we genotyped 471 individuals, including 209 males (44.4%) and 262 females (55.6%), all averaging 72.3 ± 7.8 years of age (ranging from 60 to 100 years). RESULTS The T102C-SNP genotypic frequencies were 14.0% TT, 28.0% CC, and 58.0% CT. From 80 elderly individuals who died during the period investigated, we observed significantly (P = .005) higher numbers of TT carriers (27.3%) and CC carriers (21.2%), compared to heterozygous CT carriers (12.5%). Cox-regression analysis showed that association between the T102C-SNP and elderly survival was independent of age, sex, and other health variables. CONCLUSIONS Our findings strongly suggest that imbalance in 5-HT2A may cause significant disturbances that lead to an increased susceptibility to death for individuals who are over 60 years of age.
Collapse
Affiliation(s)
- Tális O Silva
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | - Ivo Jung
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | - Alexis Trott
- Programa de Pós-Graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Rio Grande do Sul, Brazil
| | - Cláudia G Bica
- Programa de Pós-Graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Rio Grande do Sul, Brazil
| | - Jeferson N Casarin
- Laboratory of Molecular Aspects Associated with Genetic Diseases, University of Western Santa Catarina, Unoesc, Brazil
| | - Paola C Fortuna
- Laboratory of Molecular Aspects Associated with Genetic Diseases, University of Western Santa Catarina, Unoesc, Brazil
| | - Euler E Ribeiro
- Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Fernanda D de Assis
- Laboratório de Biogenômica, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | - Guilherme C Figueira
- Laboratório de Biogenômica, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | - Fernanda Barbisan
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | - Maria Fernanda Manica-Cattani
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | - Beatriz S R Bonadiman
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | - Lucien J Houenou
- Biotechnology Department, Forsyth Technical Community College, 2100 Silas Creek Parkway, Winston-Salem, North Carolina, 27103, USA
| | | | - Ivana B M da Cruz
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil.,Programa de Pós-Graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil.,Laboratório de Biogenômica, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| |
Collapse
|
19
|
|
20
|
Cardiovascular remodeling and the peripheral serotonergic system. Arch Cardiovasc Dis 2017; 110:51-59. [DOI: 10.1016/j.acvd.2016.08.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/12/2016] [Accepted: 08/19/2016] [Indexed: 02/08/2023]
|
21
|
Fisher JR, Wallace CE, Tripoli DL, Sheline YI, Cirrito JR. Redundant Gs-coupled serotonin receptors regulate amyloid-β metabolism in vivo. Mol Neurodegener 2016; 11:45. [PMID: 27315796 PMCID: PMC4912779 DOI: 10.1186/s13024-016-0112-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 06/14/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The aggregation of amyloid-β (Aβ) into insoluble plaques is a hallmark pathology of Alzheimer's disease (AD). Previous work has shown increasing serotonin levels with selective serotonin re-uptake inhibitor (SSRI) compounds reduces Aβ in the brain interstitial fluid (ISF) in a mouse model of AD and in the cerebrospinal fluid of humans. We investigated which serotonin receptor (5-HTR) subtypes and downstream effectors were responsible for this reduction. RESULTS Agonists of 5-HT4R, 5-HT6R, and 5-HT7R significantly reduced ISF Aβ, but agonists of other receptor subtypes did not. Additionally, inhibition of Protein Kinase A (PKA) blocked the effects of citalopram, an SSRI, on ISF Aβ levels. Serotonin signaling does not appear to change gene expression to reduce Aβ levels in acute timeframes, but likely acts within the cytoplasm to increase α-secretase enzymatic activity. Broad pharmacological inhibition of putative α-secretases increased ISF Aβ and blocked the effects of citalopram. CONCLUSIONS In total, these studies map the major signaling components linking serotonin receptors to suppression of brain ISF Aβ. These results suggest the reduction in ISF Aβ is mediated by a select group of 5-HTRs and open future avenues for targeted therapy of AD.
Collapse
Affiliation(s)
- Jonathan R Fisher
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Clare E Wallace
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Danielle L Tripoli
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Yvette I Sheline
- Departments of Psychiatry, Radiology, and Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - John R Cirrito
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA. .,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA. .,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA. .,Present Address: Washington University, Neurology, 660 South Euclid Avenue, Campus Box 8111, St. Louis, MO, 63110, USA.
| |
Collapse
|
22
|
Abstract
Ayahuasca is a hallucinogenic brew traditionally used by Northwestern Amazonian indigenous groups for therapeutic purposes. It is prepared by the decoction of Banisteriopsis caapi with the leaves of Psychotria viridis. Banisteriopsis caapi contains β-carbolines that are inhibitors of monoamine oxidase and P. viris is rich in dimethyltryptamine, a 5-HT(1A/2A/2C) agonist. Acute ayahuasca administration produces moderate cardiovascular effects in healthy volunteers, but information regarding long-term use is lacking. This study investigated the effects of ayahuasca (2-4 mL/kg) in the rat aorta after acute and chronic (14 days) administration. Ayahuasca caused flattening and stretching of vascular smooth muscle cells and changes in the arrangement and distribution of collagen and elastic fibers. Chronic treatment with the higher dose significantly increased media thickness and the ratio of media thickness to lumen diameter. More research is needed on the cardiovascular function of long-term ayahuasca consumers.
Collapse
|
23
|
Novel Therapeutic Strategies for Reducing Right Heart Failure Associated Mortality in Fibrotic Lung Diseases. BIOMED RESEARCH INTERNATIONAL 2015; 2015:929170. [PMID: 26583148 PMCID: PMC4637079 DOI: 10.1155/2015/929170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 08/26/2015] [Indexed: 11/21/2022]
Abstract
Fibrotic lung diseases carry a significant mortality burden worldwide. A large proportion of these deaths are due to right heart failure and pulmonary hypertension. Underlying contributory factors which appear to play a role in the mechanism of progression of right heart dysfunction include chronic hypoxia, defective calcium handling, hyperaldosteronism, pulmonary vascular alterations, cyclic strain of pressure and volume changes, elevation of circulating TGF-β, and elevated systemic NO levels. Specific therapies targeting pulmonary hypertension include calcium channel blockers, endothelin (ET-1) receptor antagonists, prostacyclin analogs, phosphodiesterase type 5 (PDE5) inhibitors, and rho-kinase (ROCK) inhibitors. Newer antifibrotic and anti-inflammatory agents may exert beneficial effects on heart failure in idiopathic pulmonary fibrosis. Furthermore, right ventricle-targeted therapies, aimed at mitigating the effects of functional right ventricular failure, include β-adrenoceptor (β-AR) blockers, angiotensin-converting enzyme (ACE) inhibitors, antioxidants, modulators of metabolism, and 5-hydroxytryptamine-2B (5-HT2B) receptor antagonists. Newer nonpharmacologic modalities for right ventricular support are increasingly being implemented. Early, effective, and individualized therapy may prevent overt right heart failure in fibrotic lung disease leading to improved outcomes and quality of life.
Collapse
|
24
|
5-HT2B receptor antagonists inhibit fibrosis and protect from RV heart failure. BIOMED RESEARCH INTERNATIONAL 2015; 2015:438403. [PMID: 25667920 PMCID: PMC4312574 DOI: 10.1155/2015/438403] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 10/28/2014] [Indexed: 01/08/2023]
Abstract
Objective. The serotonin (5-HT) pathway was shown to play a role in pulmonary hypertension (PH), but its functions in right ventricular failure (RVF) remain poorly understood. The aim of the current study was to investigate the effects of Terguride (5-HT2A and 2B receptor antagonist) or SB204741 (5-HT2B receptor antagonist) on right heart function and structure upon pulmonary artery banding (PAB) in mice. Methods. Seven days after PAB, mice were treated for 14 days with Terguride (0.2 mg/kg bid) or SB204741 (5 mg/kg day). Right heart function and remodeling were assessed by right heart catheterization, magnetic resonance imaging (MRI), and histomorphometric methods. Total secreted collagen content was determined in mouse cardiac fibroblasts isolated from RV tissues. Results. Chronic treatment with Terguride or SB204741 reduced right ventricular fibrosis and showed improved heart function in mice after PAB. Moreover, 5-HT2B receptor antagonists diminished TGF-beta1 induced collagen synthesis of RV cardiac fibroblasts in vitro. Conclusion. 5-HT2B receptor antagonists reduce collagen deposition, thereby inhibiting right ventricular fibrosis. Chronic treatment prevented the development and progression of pressure overload-induced RVF in mice. Thus, 5-HT2B receptor antagonists represent a valuable novel therapeutic approach for RVF.
Collapse
|
25
|
Janssen R, Zuidwijk MJ, Kuster DWD, Muller A, Simonides WS. Thyroid Hormone-Regulated Cardiac microRNAs are Predicted to Suppress Pathological Hypertrophic Signaling. Front Endocrinol (Lausanne) 2014; 5:171. [PMID: 25368602 PMCID: PMC4202793 DOI: 10.3389/fendo.2014.00171] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/30/2014] [Indexed: 12/12/2022] Open
Abstract
Cardiomyocyte size in the healthy heart is in part determined by the level of circulating thyroid hormone (TH). Higher levels of TH induce ventricular hypertrophy, primarily in response to an increase in hemodynamic load. Normal cardiac function is maintained in this form of hypertrophy, whereas progressive contractile dysfunction is a hallmark of pathological hypertrophy. MicroRNAs (miRNAs) are important modulators of signal-transduction pathways driving adverse remodeling. Because little is known about the involvement of miRNAs in cardiac TH action and hypertrophy, we examined the miRNA expression profile of the hypertrophied left ventricle (LV) using a mouse model of TH-induced cardiac hypertrophy. C57Bl/6J mice were rendered hypothyroid by treatment with propylthiouracil and were subsequently treated for 3 days with TH (T3) or saline. T3 treatment increased LV weight by 38% (p < 0.05). RNA was isolated from the LV and expression of 641 mouse miRNAs was determined using Taqman Megaplex arrays. Data were analyzed using RQ-manager and DataAssist. A total of 52 T3-regulated miRNAs showing a >2-fold change (p < 0.05) were included in Ingenuity Pathway Analysis to predict target mRNAs involved in cardiac hypertrophy. The analysis was further restricted to proteins that have been validated as key factors in hypertrophic signal transduction in mouse models of ventricular remodeling. A total of 27 mRNAs were identified as bona fide targets. The predicted regulation of 19% of these targets indicates enhancement of physiological hypertrophy, while 56% indicates suppression of pathological remodeling. Our data suggest that cardiac TH action includes a novel level of regulation in which a unique set of TH-dependent miRNAs primarily suppresses pathological hypertrophic signaling. This may be relevant for our understanding of the progression of adverse remodeling, since cardiac TH levels are known to decrease substantially in various forms of pathological hypertrophy.
Collapse
Affiliation(s)
- Rob Janssen
- Department of Physiology, VU University Medical Center, Institute for Cardiovascular Research, Amsterdam, Netherlands
| | - Marian J. Zuidwijk
- Department of Physiology, VU University Medical Center, Institute for Cardiovascular Research, Amsterdam, Netherlands
| | - Diederik W. D. Kuster
- Department of Physiology, VU University Medical Center, Institute for Cardiovascular Research, Amsterdam, Netherlands
| | - Alice Muller
- Department of Physiology, VU University Medical Center, Institute for Cardiovascular Research, Amsterdam, Netherlands
| | - Warner S. Simonides
- Department of Physiology, VU University Medical Center, Institute for Cardiovascular Research, Amsterdam, Netherlands
- *Correspondence: Warner S. Simonides, Department of Physiology, VU University Medical Center, Institute for Cardiovascular Research, v.d. Boechorststraat 7, 1081 BT, Amsterdam, Netherlands e-mail:
| |
Collapse
|
26
|
Majeed ZR, Stacy A, Cooper RL. Pharmacological and genetic identification of serotonin receptor subtypes on Drosophila larval heart and aorta. J Comp Physiol B 2013; 184:205-19. [PMID: 24370737 DOI: 10.1007/s00360-013-0795-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 11/11/2013] [Accepted: 12/11/2013] [Indexed: 12/27/2022]
Abstract
Serotonin, 5-hydroxytryptamine (5-HT), plays various roles in the fruit fly, Drosophila melanogaster. Previous studies have shown that 5-HT modulates the heart rate in third instar larvae. However, the receptor subtypes that mediate 5-HT action in larval cardiac tissue had yet to be determined. In this study, various 5-HT agonists and antagonists were employed to determine which 5-HT receptor subtypes are responsible for the positive chronotropic effect by 5-HT. The pharmacological results demonstrate that a 5-HT2B agonist significantly increases the heart rate; however, 5-HT1A, 5-HT1B, and 5-HT7 agonists do not have a significant effect on the heart rate. Furthermore, 5-HT2 antagonist, ketanserin, markedly reduces the positive chronotropic effect of 5-HT in a dose-response manner. Furthermore, we employed genetic approaches to confirm the pharmacological results. For this purpose, we used RNA interference line to knock down 5-HT2ADro and also used 5-HT2ADro and 5-HT2BDro insertional mutation lines. The results show that 5-HT2ADro or 5-HT2BDro receptor mutations reduce the response of the heart to 5-HT. Given these results, we conclude that these 5-HT2 receptor subtypes are involved in the action of 5-HT on the heart rate in the larval stage.
Collapse
Affiliation(s)
- Zana R Majeed
- Department of Biology and Center for Muscle Biology, University of Kentucky, 675 Rose Street, Lexington, KY, 40506-0225, USA,
| | | | | |
Collapse
|
27
|
Majeed ZR, Nichols CD, Cooper RL. 5-HT stimulation of heart rate in Drosophila does not act through cAMP as revealed by pharmacogenetics. J Appl Physiol (1985) 2013; 115:1656-65. [PMID: 24092690 DOI: 10.1152/japplphysiol.00849.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The fruit fly, Drosophila melanogaster, is a good experimental organism to study the underlying mechanism of heart rate (HR) regulation. It is already known that many neuromodulators (serotonin, dopamine, octopamine, acetylcholine) change the HR in Drosophila melanogaster larvae. In this study, we investigated the role of cAMP-PKA signaling pathway in HR regulation and 5-HT positive chronotropic action. In order to obtain insight into the 5-HT mechanism of action in larvae cardiomyocytes, genetic and pharmacological approaches were used. We used transgenic flies that expressed the hM4Di receptor [designer receptors exclusively activated by designer drugs (DREADDs)] as one tool. Our previous results showed that activation of hM4Di receptors (modified muscarinic acetylcholine receptors) decreases or arrests the heart from beating. In this study, it was hypothesized that the positive chronotropic effect of serotonin [5-hydroxytryptamine (5-HT)] are mediated by serotonin receptors coupled to the adenylyl cyclase pathway and downstream cAMP and PKA activity. Activation of hM4Di by clozapine-N-oxide (CNO) was predicted to block the effects of serotonin by inhibiting adenylyl cyclase activity through Gαi pathway activation. Interestingly, we found here that manipulation of adenylyl cyclase activity and cAMP levels had no significant effect on HR. The ability of hM4Di receptor activation to slow or stop the heart is therefore likely mediated by activation of GIRK channels to produce hyperpolarization of cardiomyocytes, and not through inhibition of adenylyl cyclase.
Collapse
Affiliation(s)
- Zana R Majeed
- Department of Biology, University of Kentucky, Lexington, Kentucky
| | | | | |
Collapse
|
28
|
Lairez O, Lonjaret L, Ruiz S, Marchal P, Franchitto N, Calise D, Fourcade O, Mialet-Perez J, Parini A, Minville V. Anesthetic regimen for cardiac function evaluation by echocardiography in mice: comparison between ketamine, etomidate and isoflurane versus conscious state. Lab Anim 2013; 47:284-90. [PMID: 23864007 DOI: 10.1177/0023677213496236] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mice with genetic alterations are used in heart research for the extrapolation of human diseases. Echocardiography is an essential tool for evaluating cardiac and hemodynamic functions in small animals. The purpose of this study was to compare the effect of different anesthetic regimens and the conscious state on the evaluation of cardiac function by echocardiography. Mice were examined in the conscious state after three days of training, and then for a 7 min period after a single intraperitoneal injection of ketamine at 100 mg/kg, etomidate at 10, 20 or 30 mg/kg, or after inhalation of isoflurane at 1.5% with or without a short period of induction with isoflurane 3%. Intra- and inter-observer variabilities were assessed. The operator's comfort was also assessed. Heart rate, left ventricular end diastolic diameter, fraction shortening and cardiac output were measured using echocardiography. Ketamine at 5 and 7 min after induction and isoflurane at 3, 5 and 7 min after induction provided good anesthetic conditions and a quick awakening time, and did not influence cardiac performance, whereas the conscious state was associated with a non-physiological sympathetic activation and other anesthetic drugs induced a significant decrease in heart rate. Etomidate 10 mg/kg and 20 mg/kg were not enough to provide adequate anesthesia. Etomidate 30 mg/kg induced a good anesthetic condition but influenced cardiac performance and had a long awakening time. Our results indicate that ketamine and isoflurane with a short induction period are better anesthetic drugs than isoflurane without induction or etomidate for evaluating cardiac function in healthy mice.
Collapse
Affiliation(s)
- Olivier Lairez
- Department of Cardiology, Toulouse University Hospital, Toulouse, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|