1
|
Reck AM, Siderovski DP, Kinsey SG. The synthetic cannabinoid agonist WIN 55,212-2 reduces experimental pruritus via CB 2 receptor activation. Neuropharmacology 2025; 264:110216. [PMID: 39551242 DOI: 10.1016/j.neuropharm.2024.110216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/22/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
Pruritus (i.e., the experience that evokes a desire to scratch) is an adaptive process that can become maladaptive, leading to a persistent scratch-itch cycle that potentiates pruritus and increases the risk of infection. Cannabinoid drugs have been reported to decrease pruritus, but often at doses that also decrease locomotor activity, which confounds assessments of utility. To determine the utility of cannabinoids in treating pruritus without undesirable adverse effects, the current preclinical study investigated a range of doses of the synthetic cannabinoid agonist, WIN 55,212-2, and two minor Cannabis phytoconstituents, Δ8-tetrahydrocannabinol and β-caryophyllene, in experimentally induced pruritus in male and female C57BL/6J adult mice. WIN 55,212-2 reduced compound 48/80-induced scratching, and this antipruritic effect was prevented by either chemically blocking (via SR144528 antagonism) or genetically deleting the CB2 cannabinoid receptor. The CB2 receptor selective agonist, JWH-133, also attenuated compound 48/80-induced scratching, while the CB1 positive allosteric modulator, ZCZ011, had no effect. Similarly, the minor phytocannabinoid Δ8-tetrahydrocannabinol reduced scratching at doses that did not affect locomotor activity. In contrast, the sesquiterpene cannabis constituent β-caryophyllene induced scratching, acting as a pruritogen. These preclinical data support the continuing investigation of cannabinoid receptor modulation as a potential therapeutic strategy for pruritus.
Collapse
Affiliation(s)
- Antonio Matt Reck
- School of Nursing, University of Connecticut, Storrs, CT, USA; Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - David P Siderovski
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, USA
| | - Steven G Kinsey
- School of Nursing, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
2
|
Yoo EH, Lee JH. Cannabinoids and Their Receptors in Skin Diseases. Int J Mol Sci 2023; 24:16523. [PMID: 38003712 PMCID: PMC10672037 DOI: 10.3390/ijms242216523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The therapeutic application of cannabinoids has gained traction in recent years. Cannabinoids interact with the human endocannabinoid system in the skin. A large body of research indicates that cannabinoids could hold promise for the treatment of eczema, psoriasis, acne, pruritus, hair disorders, and skin cancer. However, most of the available data are at the preclinical stage. Comprehensive, large-scale, randomized, controlled clinical trials have not yet been fully conducted. In this article, we describe new findings in cannabinoid research and point out promising future research areas.
Collapse
Affiliation(s)
| | - Ji Hyun Lee
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, Catholic University of Korea, Seoul 06591, Republic of Korea;
| |
Collapse
|
3
|
Ge WQ, Zhan-Mu OY, Chen C, Zhang H, Wang XY, Liu X, Li L, Lan YY, Li CN, Sun JC, Shi RL, Dou ZY, Pan HL, Li HP, Jing XH, Li M. Electroacupuncture reduces chronic itch via cannabinoid CB1 receptors in the ventrolateral periaqueductal gray. Front Pharmacol 2022; 13:931600. [PMID: 36133809 PMCID: PMC9483028 DOI: 10.3389/fphar.2022.931600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic itch severely reduces the quality of life of patients. Electroacupuncture (EA) is widely used to treat chronic itch. However, the underlying mechanism of this therapeutic action of EA is largely unknown. Cannabinoid CB1 receptors in the ventrolateral periaqueductal gray (vlPAG) mediate the analgesic effect of EA. Using a dry skin-induced itch model in mice, we determined whether EA treatment reduces chronic itch via CB1 receptors in the vlPAG. We showed that the optimal inhibitory effect of EA on chronic itch was achieved at the high frequency and high intensity (100 Hz and 3 mA) at “Quchi” (LI11) and “Hegu” (LI14) acupoints, which are located in the same spinal dermatome as the cervical skin lesions. EA reversed the increased expression of CB1 receptors in the vlPAG and decreased the concentration of 5-hydroxytryptamine (5-HT) in the medulla oblongata and the expression of gastrin-releasing peptide receptors (GRPR) in the cervical spinal cord. Furthermore, knockout of CB1 receptors on GABAergic neurons in the vlPAG attenuated scratching behavior and the 5-HT concentration in the medulla oblongata. In contrast, knockout of CB1 receptors on glutamatergic neurons in the vlPAG blocked the antipruritic effects of EA and the inhibitory effect of EA on the 5-HT concentration in the medulla oblongata. Our findings suggest that EA treatment reduces chronic itch by activation of CB1 receptors on glutamatergic neurons and inhibition of CB1 receptors on GABAergic neurons in the vlPAG, thereby inhibiting the 5-HT release from the medulla oblongata to GRPR-expressing neurons in the spinal cord. Our findings suggest that EA attenuates chronic itch via activating CB1 receptors expressed on glutamatergic neurons and downregulating CB1 receptors on GABAergic neurons in the vlPAG, leading to the reduction in 5-HT release in the rostroventral medulla and GRPR signaling in the spinal cord. Our study not only advances our understanding of the mechanisms of the therapeutic effect of EA on chronic itch but also guides the selection of optimal parameters and acupoints of EA for treating chronic itch.
Collapse
Affiliation(s)
- Wen-Qiang Ge
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Ou-Yang Zhan-Mu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Chao Chen
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Hong Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Yu Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences (CACMS), Beijing, China
| | - Xin Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Li
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Ye Lan
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Chen-Nan Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Can Sun
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Run-Lin Shi
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Zi-Yue Dou
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Lin Pan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hong-Ping Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hong-Ping Li, ; Xiang-Hong Jing, ; Man Li,
| | - Xiang-Hong Jing
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences (CACMS), Beijing, China
- *Correspondence: Hong-Ping Li, ; Xiang-Hong Jing, ; Man Li,
| | - Man Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hong-Ping Li, ; Xiang-Hong Jing, ; Man Li,
| |
Collapse
|
4
|
Baswan SM, Klosner AE, Glynn K, Rajgopal A, Malik K, Yim S, Stern N. Therapeutic Potential of Cannabidiol (CBD) for Skin Health and Disorders. Clin Cosmet Investig Dermatol 2020; 13:927-942. [PMID: 33335413 PMCID: PMC7736837 DOI: 10.2147/ccid.s286411] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/15/2020] [Indexed: 12/17/2022]
Abstract
Though there is limited research confirming the purported topical benefits of cannabinoids, it is certain that cutaneous biology is modulated by the human endocannabinoid system (ECS). Receptors from the ECS have been identified in the skin and systemic abuse of synthetic cannabinoids, and their analogs, have also been associated with the manifestation of dermatological disorders, indicating the effects of the ECS on cutaneous biology. In particular, cannabidiol (CBD), a non-psychoactive compound from the cannabis plant, has garnered significant attention in recent years for its anecdotal therapeutic potential for various pathologies, including skin and cosmetic disorders. Though a body of preclinical evidence suggests topical application of CBD may be efficacious for some skin disorders, such as eczema, psoriasis, pruritis, and inflammatory conditions, confirmed clinical efficacy and elucidation of underlying molecular mechanisms have yet to be fully identified. This article provides an update on the advances in CBD research to date and the potential areas of future exploration.
Collapse
Affiliation(s)
- Sudhir M Baswan
- Innovation and Science, Amway Corporation, Ada, MI, 49355, USA
| | - Allison E Klosner
- Innovation and Science, Nutrilite Health Institute, Amway Corporation, Buena Park, CA, 90621, USA
| | - Kelly Glynn
- Innovation and Science, Amway Corporation, Ada, MI, 49355, USA
| | - Arun Rajgopal
- Innovation and Science, Amway Corporation, Ada, MI, 49355, USA
| | - Kausar Malik
- Innovation and Science, Amway Corporation, Ada, MI, 49355, USA
| | - Sunghan Yim
- Innovation and Science, Amway Corporation, Ada, MI, 49355, USA
| | - Nathan Stern
- Innovation and Science, Amway Corporation, Ada, MI, 49355, USA
| |
Collapse
|
5
|
Soeberdt M, Kilic A, Abels C. Current and emerging treatments targeting the neuroendocrine system for disorders of the skin and its appendages. Exp Dermatol 2020; 29:801-813. [DOI: 10.1111/exd.14145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 12/17/2022]
Affiliation(s)
| | - Ana Kilic
- Dr. August Wolff GmbH & Co. KG Arzneimittel Bielefeld Germany
| | - Christoph Abels
- Dr. August Wolff GmbH & Co. KG Arzneimittel Bielefeld Germany
| |
Collapse
|
6
|
Topuz RD, Gunduz O, Karadag CH, Dokmeci D, Ulugol A. Endocannabinoid and N-acylethanolamide levels in rat brain and spinal cord following systemic dipyrone and paracetamol administration. Can J Physiol Pharmacol 2019; 97:1035-1041. [DOI: 10.1139/cjpp-2019-0015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cannabinoid system has been suspected to play a role in the mechanisms of action of dipyrone and paracetamol. Our purpose was to measure the local endocannabinoid and N-acylethanolamide levels in the brain and spinal cord of rats following dipyrone and paracetamol administration. Nociception was assessed 1, 5, and 12 h following drug injections in Wistar rats, using tail-flick and hot-plate tests. The antinociceptive effects of dipyrone (150, 300, and 600 mg/kg, i.p.) and paracetamol (30, 100, and 300 mg/kg, i.p.) were observed. After administration of the highest doses of dipyrone and paracetamol, endocannabinoid (N-arachidonoylethanolamide (AEA), 2-arachidonoylglycerol (2-AG)) and N-acylethanolamide (palmitoylethanolamide (PEA), oleoylethanolamide (OEA)) levels were measured in the periaqueductal gray (PAG), rostral ventromedial medulla (RVM), and spinal cords of rats using tandem mass spectrometry with liquid chromatography. Increased 2-AG levels were observed in the PAG and the RVM 12 h after paracetamol injection; dipyrone exerted no action on 2-AG levels. Analgesic administrations led to a reduction in AEA levels in the RVM and spinal cord; similar decreases in PEA and OEA levels were observed in the RVM and the spinal cord. Dipyrone and paracetamol administrations appear to exert complicated effects on endocannabinoid and N-acylethanolamide levels in rats.
Collapse
Affiliation(s)
- Ruhan Deniz Topuz
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, 22030-Edirne, Turkey
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, 22030-Edirne, Turkey
| | - Ozgur Gunduz
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, 22030-Edirne, Turkey
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, 22030-Edirne, Turkey
| | - Cetin Hakan Karadag
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, 22030-Edirne, Turkey
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, 22030-Edirne, Turkey
| | - Dikmen Dokmeci
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, 22030-Edirne, Turkey
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, 22030-Edirne, Turkey
| | - Ahmet Ulugol
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, 22030-Edirne, Turkey
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, 22030-Edirne, Turkey
| |
Collapse
|
7
|
Tóth KF, Ádám D, Bíró T, Oláh A. Cannabinoid Signaling in the Skin: Therapeutic Potential of the "C(ut)annabinoid" System. Molecules 2019; 24:E918. [PMID: 30845666 PMCID: PMC6429381 DOI: 10.3390/molecules24050918] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 02/06/2023] Open
Abstract
The endocannabinoid system (ECS) has lately been proven to be an important, multifaceted homeostatic regulator, which influences a wide-variety of physiological processes all over the body. Its members, the endocannabinoids (eCBs; e.g., anandamide), the eCB-responsive receptors (e.g., CB₁, CB₂), as well as the complex enzyme and transporter apparatus involved in the metabolism of the ligands were shown to be expressed in several tissues, including the skin. Although the best studied functions over the ECS are related to the central nervous system and to immune processes, experimental efforts over the last two decades have unambiguously confirmed that cutaneous cannabinoid ("c[ut]annabinoid") signaling is deeply involved in the maintenance of skin homeostasis, barrier formation and regeneration, and its dysregulation was implicated to contribute to several highly prevalent diseases and disorders, e.g., atopic dermatitis, psoriasis, scleroderma, acne, hair growth and pigmentation disorders, keratin diseases, various tumors, and itch. The current review aims to give an overview of the available skin-relevant endo- and phytocannabinoid literature with a special emphasis on the putative translational potential, and to highlight promising future research directions as well as existing challenges.
Collapse
Affiliation(s)
- Kinga Fanni Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - Dorottya Ádám
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - Tamás Bíró
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
- HCEMM Nonprofit Ltd., 6720 Szeged, Hungary.
| | - Attila Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| |
Collapse
|
8
|
Clapper JR, Henry CL, Niphakis MJ, Knize AM, Coppola AR, Simon GM, Ngo N, Herbst RA, Herbst DM, Reed AW, Cisar JS, Weber OD, Viader A, Alexander JP, Cunningham ML, Jones TK, Fraser IP, Grice CA, Ezekowitz RAB, O’Neill GP, Blankman JL. Monoacylglycerol Lipase Inhibition in Human and Rodent Systems Supports Clinical Evaluation of Endocannabinoid Modulators. J Pharmacol Exp Ther 2018; 367:494-508. [DOI: 10.1124/jpet.118.252296] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/05/2018] [Indexed: 12/15/2022] Open
|
9
|
Bilir KA, Anli G, Ozkan E, Gunduz O, Ulugol A. Involvement of spinal cannabinoid receptors in the antipruritic effects of WIN 55,212-2, a cannabinoid receptor agonist. Clin Exp Dermatol 2018; 43:553-558. [DOI: 10.1111/ced.13398] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2017] [Indexed: 12/14/2022]
Affiliation(s)
- K. A. Bilir
- Department of Medical Pharmacology; Faculty of Medicine; Trakya University; Edirne Turkey
| | - G. Anli
- Department of Medical Pharmacology; Faculty of Medicine; Trakya University; Edirne Turkey
| | - E. Ozkan
- Department of Medical Pharmacology; Faculty of Medicine; Trakya University; Edirne Turkey
| | - O. Gunduz
- Department of Medical Pharmacology; Faculty of Medicine; Trakya University; Edirne Turkey
| | - A. Ulugol
- Department of Medical Pharmacology; Faculty of Medicine; Trakya University; Edirne Turkey
| |
Collapse
|
10
|
Tomas-Roig J, Piscitelli F, Gil V, Quintana E, Ramió-Torrentà LL, Del Río JA, Moore TP, Agbemenyah H, Salinas G, Pommerenke C, Lorenzen S, Beißbarth T, Hoyer-Fender S, Di Marzo V, Havemann-Reinecke U. Effects of repeated long-term psychosocial stress and acute cannabinoid exposure on mouse corticostriatal circuitries: Implications for neuropsychiatric disorders. CNS Neurosci Ther 2018; 24:528-538. [PMID: 29388323 PMCID: PMC5969305 DOI: 10.1111/cns.12810] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/02/2018] [Accepted: 01/04/2018] [Indexed: 01/04/2023] Open
Abstract
Introduction Vulnerability to psychiatric manifestations is achieved by the influence of genetic and environment including stress and cannabis consumption. Here, we used a psychosocial stress model based on resident‐intruder confrontations to study the brain corticostriatal‐function, since deregulation of corticostriatal circuitries has been reported in many psychiatric disorders. CB1 receptors are widely expressed in the central nervous system and particularly, in both cortex and striatum brain structures. Aims and methods The investigation presented here is addressed to assess the impact of repeated stress following acute cannabinoid exposure on behavior and corticostriatal brain physiology by assessing mice behavior, the concentration of endocannabinoid and endocannabinoid‐like molecules and changes in the transcriptome. Results Stressed animals urinated frequently; showed exacerbated scratching activity, lower striatal N‐arachidonylethanolamine (AEA) levels and higher cortical expression of cholinergic receptor nicotinic alpha 6. The cannabinoid agonist WIN55212.2 diminished locomotor activity while the inverse agonist increased the distance travelled in the center of the open field. Upon CB1 activation, N‐oleoylethanolamide and N‐palmitoylethanolamide, two AEA congeners that do not interact directly with cannabinoid receptors, were enhanced in the striatum. The co‐administration with both cannabinoids induced an up‐regulation of striatal FK506 binding protein 5. The inverse agonist in controls reversed the effects of WIN55212.2 on motor activity. When Rimonabant was injected under stress, the cortical levels of 2‐arachidonoylglycerol were maximum. The agonist and the antagonist influenced the cortical expression of cholinergic receptor nicotinic alpha 6 and serotonin transporter neurotransmitter type 4 in opposite directions, while their co‐administration tended to produce a null effect under stress. Conclusions The endocannabinoid system had a direct effect on serotoninergic neurotransmission and glucocorticoid signaling. Cholinergic receptor nicotinic alpha‐6 was shown to be deregulated in response to stress and following synthetic cannabinoid drugs thus could confer vulnerability to cannabis addiction and psychosis. Targeting the receptors of endocannabinoids and endocannabinoid‐like mediators might be a valuable option for treating stress‐related neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Jordi Tomas-Roig
- Department of Psychiatry and Psychotherapy, University of Göttingen, Göttingen, Germany.,Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.,Girona Neuroimmunology and Multiple Sclerosis Unit (UNIEMTG), Dr. Josep Trueta University Hospital and Neurodegeneration and Neuroinflammation Research Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Vanesa Gil
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Ester Quintana
- Girona Neuroimmunology and Multiple Sclerosis Unit (UNIEMTG), Dr. Josep Trueta University Hospital and Neurodegeneration and Neuroinflammation Research Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Lluís L Ramió-Torrentà
- Girona Neuroimmunology and Multiple Sclerosis Unit (UNIEMTG), Dr. Josep Trueta University Hospital and Neurodegeneration and Neuroinflammation Research Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Jose Antonio Del Río
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Timothy Patrick Moore
- Department of Psychiatry and Psychotherapy, University of Göttingen, Göttingen, Germany.,Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.,Department of Child and Adolescent Psychiatry, University Hospital Münster, Münster, Germany
| | - Hope Agbemenyah
- Laboratory for Aging and Cognitive Diseases, European Neuroscience Institute, Goettingen, Germany
| | - Gabriela Salinas
- Department of Developmental Biochemistry, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Claudia Pommerenke
- Department of Developmental Biochemistry, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Stephan Lorenzen
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany.,Department of Molecular Medicine, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Tim Beißbarth
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| | - Sigrid Hoyer-Fender
- Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Developmental Biology, Göttingen, Germany
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Ursula Havemann-Reinecke
- Department of Psychiatry and Psychotherapy, University of Göttingen, Göttingen, Germany.,Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| |
Collapse
|
11
|
Fatty acids and related lipid mediators in the regulation of cutaneous inflammation. Biochem Soc Trans 2018; 46:119-129. [PMID: 29330355 DOI: 10.1042/bst20160469] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/11/2017] [Accepted: 12/15/2017] [Indexed: 12/13/2022]
Abstract
Human skin has a distinct profile of fatty acids and related bioactive lipid mediators that regulate many aspects of epidermal and dermal homeostasis, including immune and inflammatory reactions. Sebum lipids act as effective antimicrobial agents, shape immune cell communications and contribute to the epidermal lipidome. The essential fatty acid linoleic acid is crucial for the structure of the epidermal barrier, while polyunsaturated fatty acids act as precursors to eicosanoids, octadecanoids and docosanoids through cyclooxygenase, lipoxygenase and cytochrome P450 monooxygenase-mediated reactions, and endocannabinoids and N-acyl ethanolamines. Cross-communication between these families of bioactive lipids suggests that their cutaneous activities should be considered as part of a wider metabolic network that can be targeted to maintain skin health, control inflammation and improve skin pathologies.
Collapse
|
12
|
Botanical Complementary and Alternative Medicine for Pruritus: a Systematic Review. CURRENT DERMATOLOGY REPORTS 2017. [DOI: 10.1007/s13671-017-0200-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Effects of a Nociceptin Receptor Antagonist on Experimentally Induced Scratching Behavior in Mice. NEUROPHYSIOLOGY+ 2017. [DOI: 10.1007/s11062-017-9641-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Descending serotonergic and noradrenergic systems do not regulate the antipruritic effects of cannabinoids. Acta Neuropsychiatr 2016; 28:321-326. [PMID: 27805543 DOI: 10.1017/neu.2016.16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND For centuries, cannabinoids have been known to be effective in pain states. Itch and pain are two sensations sharing a lot in common. OBJECTIVE The goal of this research was to observe whether the cannabinoid agonist WIN 55,212-2 reduces serotonin-induced scratching behaviour and whether neurotoxic destruction of descending serotonergic and noradrenergic pathways mediate the antipruritic effect of WIN 55,212-2. Material and methods Scratching behaviour was induced by intradermal injection of serotonin (50 µg/50 µl/mouse) to Balb/c mice. The neurotoxins 5,7-dihydroxytryptamine (5,7-DHT, 50 μg/mouse) and 6-hydroxydopamine (6-OHDA, 20 μg/mouse) are applied intrathecally to deplete serotonin and noradrenaline in the spinal cord. WIN 55,212-2 (1, 3, 10 mg/kg, i.p.) dose-dependently attenuated serotonin-induced scratches. Neurotoxic destruction of neither the serotonergic nor the noradrenergic systems by 5,7-DHT and 6-OHDA, respectively, had any effect on the antipruritic action of WIN 55,212-2. CONCLUSION Our findings indicate that cannabinoids dose-dependently reduce serotonin-induced scratching behaviour and neurotoxic destruction of descending inhibitory pathways does not mediate this antipruritic effect.
Collapse
|
15
|
Systemic and spinal administration of FAAH, MAGL inhibitors and dual FAAH/MAGL inhibitors produce antipruritic effect in mice. Arch Dermatol Res 2016; 308:335-45. [PMID: 27126057 DOI: 10.1007/s00403-016-1649-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 03/25/2016] [Accepted: 04/14/2016] [Indexed: 10/21/2022]
Abstract
The increase of endocannabinoid tonus by inhibiting fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MAGL) represents a promising therapeutic approach in a variety of disease to overcome serious central side effects of exocannabinoids. Recent studies reported that systemic administration of FAAH and MAGL inhibitors produce antipruritic action. Dual FAAH/MAGL inhibitors have also been described to get enhanced endocannabinoid therapeutic effect. In this study, we examined and compared dose-related antipruritic effects of systemic (intraperitoneal; ip) or intrathecal (it) administration of selective FAAH inhibitor PF-3845 (5, 10, and 20 mg/kg, i.p.; 1, 5, and 10 µg, i.t.), MAGL inhibitor JZL184 (4, 20, and 40 mg/kg, i.p.; 1, 5, and 10 µg, i.t.) and dual FAAH/MAGL inhibitor JZL195 (2, 5, and 20 mg/kg, i.p.; 1, 5, and 10 µg, i.t.) on serotonin (5-HT)-induced scratching model. Serotonin (25 μg) was injected intradermally in a volume of 50 μl into the rostral part of skin on the back of male Balb-C mice. Both systemic or intrathecal administration of PF-3845, JZL184 or JZL195 produced similar dose-dependent antipruritic effects. Our results suggest that endocannabinoid-degrading enzymes FAAH and MAGL are involved in pruritic process at spinal level. FAAH, MAGL or dual FAAH/MAGL inhibitors have promising antipruritic effects, at least, in part through spinal site of action.
Collapse
|
16
|
The Potential of Inhibitors of Endocannabinoid Metabolism for Drug Development: A Critical Review. Handb Exp Pharmacol 2015; 231:95-128. [PMID: 26408159 DOI: 10.1007/978-3-319-20825-1_4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The endocannabinoids anandamide and 2-arachidonoylglycerol are metabolised by both hydrolytic enzymes (primarily fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MGL)) and oxygenating enzymes (e.g. cyclooxygenase-2, COX-2). In the present article, the in vivo data for compounds inhibiting endocannabinoid metabolism have been reviewed, focussing on inflammation and pain. Potential reasons for the failure of an FAAH inhibitor in a clinical trial in patients with osteoarthritic pain are discussed. It is concluded that there is a continued potential for compounds inhibiting endocannabinoid metabolism in terms of drug development, but that it is wise not to be unrealistic in terms of expectations of success.
Collapse
|