1
|
Schuster J, Dreyhaupt J, Mönkemöller K, Dupuis L, Dieterlé S, Weishaupt JH, Kassubek J, Petri S, Meyer T, Grosskreutz J, Schrank B, Boentert M, Emmer A, Hermann A, Zeller D, Prudlo J, Winkler AS, Grehl T, Heneka MT, Johannesen S, Göricke B, Witzel S, Dorst J, Ludolph AC. In-depth analysis of data from the RAS-ALS study reveals new insights in rasagiline treatment for amyotrophic lateral sclerosis. Eur J Neurol 2024; 31:e16204. [PMID: 38240416 PMCID: PMC11235627 DOI: 10.1111/ene.16204] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/26/2023] [Accepted: 12/22/2023] [Indexed: 03/14/2024]
Abstract
BACKGROUND AND PURPOSE In 2016, we concluded a randomized controlled trial testing 1 mg rasagiline per day add-on to standard therapy in 252 amyotrophic lateral sclerosis (ALS) patients. This article aims at better characterizing ALS patients who could possibly benefit from rasagiline by reporting new subgroup analysis and genetic data. METHODS We performed further exploratory in-depth analyses of the study population and investigated the relevance of single nucleotide polymorphisms (SNPs) related to the dopaminergic system. RESULTS Placebo-treated patients with very slow disease progression (loss of Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised [ALSFRS-R] per month before randomization of ≤0.328 points) showed a per se survival probability after 24 months of 0.85 (95% confidence interval = 0.65-0.94). The large group of intermediate to fast progressing ALS patients showed a prolonged survival in the rasagiline group compared to placebo after 6 and 12 months (p = 0.02, p = 0.04), and a reduced decline of ALSFRS-R after 18 months (p = 0.049). SNP genotypes in the MAOB gene and DRD2 gene did not show clear associations with rasagiline treatment effects. CONCLUSIONS These results underline the need to consider individual disease progression at baseline in future ALS studies. Very slow disease progressors compromise the statistical power of studies with treatment durations of 12-18 months using clinical endpoints. Analysis of MAOB and DRD2 SNPs revealed no clear relationship to any outcome parameter. More insights are expected from future studies elucidating whether patients with DRD2CC genotype (Rs2283265) show a pronounced benefit from treatment with rasagiline, pointing to the opportunities precision medicine could open up for ALS patients in the future.
Collapse
Affiliation(s)
- Joachim Schuster
- Department of NeurologyUniversity of UlmUlmGermany
- German Center for Neurodegenerative DiseasesUlmGermany
| | - Jens Dreyhaupt
- Institute of Epidemiology and Medical BiometryUniversity of UlmUlmGermany
| | - Karla Mönkemöller
- Department of Clinical and Health Psychology, Institute of Education and PsychologyUniversity of UlmUlmGermany
| | - Luc Dupuis
- Université de StrasbourgInserm, UMR‐S1118, Centre de Recherches en biomédecine de StrasbourgStrasbourgFrance
| | - Stéphane Dieterlé
- Université de StrasbourgInserm, UMR‐S1118, Centre de Recherches en biomédecine de StrasbourgStrasbourgFrance
| | - Jochen H. Weishaupt
- Division of Neurodegeneration, Department of Neurology, Mannheim Center for Translational Neurosciences, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Jan Kassubek
- Department of NeurologyUniversity of UlmUlmGermany
- German Center for Neurodegenerative DiseasesUlmGermany
| | - Susanne Petri
- Department of NeurologyHannover Medical SchoolHannoverGermany
| | - Thomas Meyer
- Department of Neurology, Center for ALS and other Motor Neuron DisordersCharité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Julian Grosskreutz
- Department of NeurologyUniversity Clinic Schleswig‐Holstein, Campus LübeckLübeckGermany
| | - Berthold Schrank
- Department of NeurologyDKD HELIOS Klinik WiesbadenWiesbadenGermany
| | | | - Alexander Emmer
- Department of NeurologyUniversity Hospital HalleHalleGermany
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht Kossel,” Department of NeurologyUniversity Medical Center RostockRostockGermany
- German Center for Neurodegenerative Diseases, Rostock/GreifswaldRostockGermany
| | - Daniel Zeller
- Department of NeurologyUniversity of WürzburgWürzburgGermany
| | - Johannes Prudlo
- German Center for Neurodegenerative Diseases, Rostock/GreifswaldRostockGermany
- Department of NeurologyRostock University Medical CenterRostockGermany
| | | | - Torsten Grehl
- Department of NeurologyAlfried Krupp HospitalEssenGermany
| | - Michael T. Heneka
- Luxembourg Center for Systems BiomedicineUniversity of LuxembourgBelvalLuxembourg
| | | | - Bettina Göricke
- Department of NeurologyUniversity Hospital of GöttingenGöttingenGermany
| | - Simon Witzel
- Department of NeurologyUniversity of UlmUlmGermany
| | | | - Albert C. Ludolph
- Department of NeurologyUniversity of UlmUlmGermany
- German Center for Neurodegenerative DiseasesUlmGermany
| | | |
Collapse
|
2
|
Alborghetti M, Bianchini E, De Carolis L, Galli S, Pontieri FE, Rinaldi D. Type-B monoamine oxidase inhibitors in neurological diseases: clinical applications based on preclinical findings. Neural Regen Res 2024; 19:16-21. [PMID: 37488838 PMCID: PMC10479837 DOI: 10.4103/1673-5374.375299] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/06/2023] [Accepted: 05/04/2023] [Indexed: 07/26/2023] Open
Abstract
Type-B monoamine oxidase inhibitors, encompassing selegiline, rasagiline, and safinamide, are available to treat Parkinson's disease. These drugs ameliorate motor symptoms and improve motor fluctuation in the advanced stages of the disease. There is also evidence supporting the benefit of type-B monoamine oxidase inhibitors on non-motor symptoms of Parkinson's disease, such as mood deflection, cognitive impairment, sleep disturbances, and fatigue. Preclinical studies indicate that type-B monoamine oxidase inhibitors hold a strong neuroprotective potential in Parkinson's disease and other neurodegenerative diseases for reducing oxidative stress and stimulating the production and release of neurotrophic factors, particularly glial cell line-derived neurotrophic factor, which support dopaminergic neurons. Besides, safinamide may interfere with neurodegenerative mechanisms, counteracting excessive glutamate overdrive in basal ganglia motor circuit and reducing death from excitotoxicity. Due to the dual mechanism of action, the new generation of type-B monoamine oxidase inhibitors, including safinamide, is gaining interest in other neurological pathologies, and many supporting preclinical studies are now available. The potential fields of application concern epilepsy, Duchenne muscular dystrophy, multiple sclerosis, and above all, ischemic brain injury. The purpose of this review is to investigate the preclinical and clinical pharmacology of selegiline, rasagiline, and safinamide in Parkinson's disease and beyond, focusing on possible future therapeutic applications.
Collapse
Affiliation(s)
- Marika Alborghetti
- Neurology Unit, NESMOS Department, Faculty of Medicine & Psychology, Sapienza—University of Rome, Sant’Andrea University Hospital, Rome, Italy
| | - Edoardo Bianchini
- Neurology Unit, NESMOS Department, Faculty of Medicine & Psychology, Sapienza—University of Rome, Sant’Andrea University Hospital, Rome, Italy
- Department of Clinical and Behavioral Neurology, IRCCS—Fondazione Santa Lucia, Rome, Italy
| | - Lanfranco De Carolis
- Neurology Unit, NESMOS Department, Faculty of Medicine & Psychology, Sapienza—University of Rome, Sant’Andrea University Hospital, Rome, Italy
| | - Silvia Galli
- Neurology Unit, NESMOS Department, Faculty of Medicine & Psychology, Sapienza—University of Rome, Sant’Andrea University Hospital, Rome, Italy
| | - Francesco E. Pontieri
- Neurology Unit, NESMOS Department, Faculty of Medicine & Psychology, Sapienza—University of Rome, Sant’Andrea University Hospital, Rome, Italy
- Department of Clinical and Behavioral Neurology, IRCCS—Fondazione Santa Lucia, Rome, Italy
| | - Domiziana Rinaldi
- Neurology Unit, NESMOS Department, Faculty of Medicine & Psychology, Sapienza—University of Rome, Sant’Andrea University Hospital, Rome, Italy
- Department of Clinical and Behavioral Neurology, IRCCS—Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
3
|
Arcone R, D’Errico A, Nasso R, Rullo R, Poli A, Di Donato P, Masullo M. Inhibition of Enzymes Involved in Neurodegenerative Disorders and A β1-40 Aggregation by Citrus limon Peel Polyphenol Extract. Molecules 2023; 28:6332. [PMID: 37687161 PMCID: PMC10489013 DOI: 10.3390/molecules28176332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Alzheimer's (AD) and Parkinson's diseases (PD) are multifactorial neurogenerative disorders of the Central Nervous System causing severe cognitive and motor deficits in elderly people. Because treatment of AD and PD by synthetic drugs alleviates the symptoms often inducing side effects, many studies have aimed to find neuroprotective properties of diet polyphenols, compounds known to act on different cell signaling pathways. In this article, we analyzed the effect of polyphenols obtained from the agro-food industry waste of Citrus limon peel (LPE) on key enzymes of cholinergic and aminergic neurotransmission, such as butyryl cholinesterase (BuChE) and monoamine oxidases (MAO)-A/B, on Aβ1-40 aggregation and on superoxide dismutase (SOD) 1/2 that affect oxidative stress. In our in vitro assays, LPE acts as an enzyme inhibitor on BuChE (IC50 ~ 73 µM), MAO-A/B (IC50 ~ 80 µM), SOD 1/2 (IC50 ~ 10-20 µM) and interferes with Aβ1-40 peptide aggregation (IC50 ~ 170 µM). These results demonstrate that LPE behaves as a multitargeting agent against key factors of AD and PD by inhibiting to various extents BuChE, MAOs, and SODs and reducing Aβ-fibril aggregation. Therefore, LPE is a promising candidate for the prevention and management of AD and PD symptoms in combination with pharmacological therapies.
Collapse
Affiliation(s)
- Rosaria Arcone
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli “Parthenope”, Via Medina, 40, 80133 Napoli, Italy; (R.A.); (A.D.); (R.N.)
| | - Antonio D’Errico
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli “Parthenope”, Via Medina, 40, 80133 Napoli, Italy; (R.A.); (A.D.); (R.N.)
| | - Rosarita Nasso
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli “Parthenope”, Via Medina, 40, 80133 Napoli, Italy; (R.A.); (A.D.); (R.N.)
| | - Rosario Rullo
- ISPAAM, Consiglio Nazionale delle Ricerche, Piazzale Enrico Fermi, 1, 80055 Portici, Italy;
| | - Annarita Poli
- ICB, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078 Pozzuoli, Italy; (A.P.); (P.D.D.)
| | - Paola Di Donato
- ICB, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078 Pozzuoli, Italy; (A.P.); (P.D.D.)
- Dipartimento di Scienze e Tecnologie, Università degli Studi di Napoli “Parthenope”, Centro Direzionale Isola C4, 80143 Napoli, Italy
| | - Mariorosario Masullo
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli “Parthenope”, Via Medina, 40, 80133 Napoli, Italy; (R.A.); (A.D.); (R.N.)
| |
Collapse
|
4
|
Zhang X, Jin M, Liu S, Zang M, Hu L, Du T, Zhang B. The roles and molecular mechanisms of long non-coding RNA WT1-AS in the maintenance and development of gastric cancer stem cells. Heliyon 2023; 9:e14655. [PMID: 37025896 PMCID: PMC10070604 DOI: 10.1016/j.heliyon.2023.e14655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
It has been proposed that cancer stem cells (CSCs) are responsible for almost all malignant phenotypes of tumors. Long non-coding RNA WT1 antisense RNA (WT1-AS) has been found to be implicated in lung cancer cell stemness. However, the roles and molecular mechanisms of WT1-AS in the development of gastric cancer stem cells (GCSCs) remain unknown. Our present study showed that WT1-AS negatively regulated WT1 expression in GCSCs. WT1-AS knockdown or Wilms' tumor 1 (WT1) overexpression improved GCSC proliferative and migratory capacities, inhibited GCSC apoptosis, potentiated the resistance of GCSCs to 5-FU, promoted GCSC EMT, induced HUVEC angiogenesis, enhanced GCSC stemness, and facilitated in-vitro 3D GCSC aggregate formation. WT1-AS overexpression exerted reverse effects. WT1-AS ameliorated the malignant phenotypes of GCSCs by down-regulating WT1 in vitro. WT1-AS inhibited tumor growth and metastasis, and reduced tumor stemness in GCSCs-derived (s.c., i.p., and i.v.) xenografts in vivo. Moreover, XBP1 was identified as an upstream regulator of WT1-AS in GCSCs. Also, 4 potential WT1-AS downstream targets (i.e. PSPH, GSTO2, FYN, and PHGDH) in GCSCs were identified. Additionally, CACNA2D1 was demonstrated to be a downstream target of the WT1-AS/WT axis. XBP1 or CACNA2D1 knockdown exerted an adverse effect on the maintenance of stem cell-like behaviors and characteristics of GCSCs. In conclusion, WT1-AS weakened the stem cell-like behaviors and characteristics of GCSCs in vitro and in vivo by down-regulating WT1. Investigations into the molecular mechanisms underlying the complex phenotypes of GCSCs might contribute to the better management of gastric cancer.
Collapse
Affiliation(s)
- Xiaobei Zhang
- The Affiliated Hospital of Jining Medical University, Jining, 272000, China
| | - Meng Jin
- The Affiliated Hospital of Jining Medical University, Jining, 272000, China
| | - Shiqi Liu
- The Affiliated Hospital of Jining Medical University, Jining, 272000, China
| | - Mingde Zang
- Department of Gastric Cancer Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lei Hu
- Department of General Surgery, Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, People's Republic of China
| | - Tao Du
- Department of Gastrointestinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Corresponding author.
| | - Baogui Zhang
- The Affiliated Hospital of Jining Medical University, Jining, 272000, China
- Corresponding author.
| |
Collapse
|
5
|
Duque KR, Vizcarra JA, Hill EJ, Espay AJ. Disease-modifying vs symptomatic treatments: Splitting over lumping. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:187-209. [PMID: 36803811 DOI: 10.1016/b978-0-323-85555-6.00020-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Clinical trials of putative disease-modifying therapies in neurodegeneration have obeyed the century-old principle of convergence, or lumping, whereby any feature of a clinicopathologic disease entity is considered relevant to most of those affected. While this convergent approach has resulted in important successes in trials of symptomatic therapies, largely aimed at correcting common neurotransmitter deficiencies (e.g., cholinergic deficiency in Alzheimer's disease or dopaminergic deficiency in Parkinson's disease), it has been consistently futile in trials of neuroprotective or disease-modifying interventions. As individuals affected by the same neurodegenerative disorder do not share the same biological drivers, splitting such disease into small molecular/biological subtypes, to match people to therapies most likely to benefit them, is vital in the pursuit of disease modification. We here discuss three paths toward the splitting needed for future successes in precision medicine: (1) encourage the development of aging cohorts agnostic to phenotype in order to enact a biology-to-phenotype direction of biomarker development and validate divergence biomarkers (present in some, absent in most); (2) demand bioassay-based recruitment of subjects into disease-modifying trials of putative neuroprotective interventions in order to match the right therapies to the right recipients; and (3) evaluate promising epidemiologic leads of presumed pathogenetic potential using Mendelian randomization studies before designing the corresponding clinical trials. The reconfiguration of disease-modifying efforts for patients with neurodegenerative disorders will require a paradigm shift from lumping to splitting and from proteinopathy to proteinopenia.
Collapse
Affiliation(s)
- Kevin R Duque
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Joaquin A Vizcarra
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Emily J Hill
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Alberto J Espay
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States.
| |
Collapse
|
6
|
Naoi M, Maruyama W, Shamoto-Nagai M. Neuroprotective Function of Rasagiline and Selegiline, Inhibitors of Type B Monoamine Oxidase, and Role of Monoamine Oxidases in Synucleinopathies. Int J Mol Sci 2022; 23:ijms231911059. [PMID: 36232361 PMCID: PMC9570229 DOI: 10.3390/ijms231911059] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/27/2022] Open
Abstract
Synucleinopathies are a group of neurodegenerative disorders caused by the accumulation of toxic species of α-synuclein. The common clinical features are chronic progressive decline of motor, cognitive, behavioral, and autonomic functions. They include Parkinson’s disease, dementia with Lewy body, and multiple system atrophy. Their etiology has not been clarified and multiple pathogenic factors include oxidative stress, mitochondrial dysfunction, impaired protein degradation systems, and neuroinflammation. Current available therapy cannot prevent progressive neurodegeneration and “disease-modifying or neuroprotective” therapy has been proposed. This paper presents the molecular mechanisms of neuroprotection by the inhibitors of type B monoamine oxidase, rasagiline and selegiline. They prevent mitochondrial apoptosis, induce anti-apoptotic Bcl-2 protein family, and pro-survival brain- and glial cell line-derived neurotrophic factors. They also prevent toxic oligomerization and aggregation of α-synuclein. Monoamine oxidase is involved in neurodegeneration and neuroprotection, independently of the catalytic activity. Type A monoamine oxidases mediates rasagiline-activated signaling pathways to induce neuroprotective genes in neuronal cells. Multi-targeting propargylamine derivatives have been developed for therapy in various neurodegenerative diseases. Preclinical studies have presented neuroprotection of rasagiline and selegiline, but beneficial effects have been scarcely presented. Strategy to improve clinical trials is discussed to achieve disease-modification in synucleinopathies.
Collapse
Affiliation(s)
- Makoto Naoi
- Correspondence: ; Tel.: +81-05-6173-1111 (ext. 3494); Fax: +81-561-731-142
| | | | | |
Collapse
|
7
|
Uddin MS, Mamun AA, Rahman MM, Jeandet P, Alexiou A, Behl T, Sarwar MS, Sobarzo-Sánchez E, Ashraf GM, Sayed AA, Albadrani GM, Peluso I, Abdel-Daim MM. Natural Products for Neurodegeneration: Regulating Neurotrophic Signals. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8820406. [PMID: 34239696 PMCID: PMC8241508 DOI: 10.1155/2021/8820406] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 05/20/2021] [Indexed: 12/12/2022]
Abstract
Neurodegenerative disorders (NDs) are heterogeneous groups of ailments typically characterized by progressive damage of the nervous system. Several drugs are used to treat NDs but they have only symptomatic benefits with various side effects. Numerous researches have been performed to prove the advantages of phytochemicals for the treatment of NDs. Furthermore, phytochemicals such as polyphenols might play a pivotal role in rescue from neurodegeneration due to their various effects as anti-inflammatory, antioxidative, and antiamyloidogenic agents by controlling apoptotic factors, neurotrophic factors (NTFs), free radical scavenging system, and mitochondrial stress. On the other hand, neurotrophins (NTs) including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), NT4/5, and NT3 might have a crucial neuroprotective role, and their diminution triggers the development of the NDs. Polyphenols can interfere directly with intracellular signaling molecules to alter brain activity. Several natural products also improve the biosynthesis of endogenous genes encoding antiapoptotic Bcl-2 as well as NTFs such as glial cell and brain-derived NTFs. Various epidemiological studies have demonstrated that the initiation of these genes could play an essential role in the neuroprotective function of dietary compounds. Hence, targeting NTs might represent a promising approach for the management of NDs. In this review, we focus on the natural product-mediated neurotrophic signal-modulating cascades, which are involved in the neuroprotective effects.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Abdullah Al Mamun
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong
| | - Md Motiar Rahman
- Laboratory of Clinical Biochemistry and Nutritional Sciences (LCBNS), Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, USC INRAe 1488, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, P.O. Box 1039, CEDEX 2, 51687 Reims, France
| | - Athanasios Alexiou
- Novel Global Community Educational Foundation, 2770 Hebersham, Australia
- AFNP Med Austria, 1010 Wien, Austria
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Md Shahid Sarwar
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali 3814, Bangladesh
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, 8330507 Santiago, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amany A. Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Ilaria Peluso
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), 00142 Rome, Italy
| | - Mohamed M. Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
8
|
Anwar F, Naqvi S, Al-Abbasi FA, Neelofar N, Kumar V, Sahoo A, Kamal MA. Targeting COVID-19 in Parkinson's Patients: Drugs Repurposed. Curr Med Chem 2021; 28:2392-2408. [PMID: 32881656 DOI: 10.2174/0929867327666200903115138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 01/18/2023]
Abstract
The last couple of months have witnessed the world in a state of virtual standstill. The SARS-CoV-2 virus has overtaken the globe to economic and social lockdown. Many patients with COVID-19 have compromised immunity, especially in an aged population suffering from Parkinson 's disease (PD). Alteration in dopaminergic neurons and deficiency of dopamine in PD patients are the most common symptoms affecting 1% population above the age of 60 years. The compromised immune system and inflammatory manifestation in PD patients make them an easy target. The most common drugs under trial for COVID-19 are remdesivir, favipiravir, chloroquine and hydroxychloroquine, azithromycin along with adjunct drugs like amantadine with some monoclonal antibodies. Presently, clinically US FDA approved drugs in PD include Levodopa, catechol-O-methyl transferase (COMT) inhibitors, (Entacapone and Tolcapone), dopamine agonists (Bromocriptine, Ropinirole, Pramipexole, and Rotigotine), monoamine oxidase B (MAO-B) inhibitors (Selegiline and Rasagiline), amantadine and antimuscarinic drugs. The drugs have established mechanisms of action on PD patients with known pharmacodynamics and pharmacokinetic properties along with dose and adverse effects. Conclusion and relevance of this review focus on the drugs that can be tried on PD patients with SAR CoV-2 infection, in particular, amantadine that has been approved by all the developed countries as a common drug possessing both antiviral properties by downregulation of CTSL, lysosomal pathway disturbance and change in pH necessary to uncoat the viral proteins and anti- Parkinson properties. To deal with the significant prognostic adverse effect of SARS-CoV-2 on PD, the present-day treatment options, clinical presentation and various mechanisms are the need of the hour.
Collapse
Affiliation(s)
- Firoz Anwar
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Salma Naqvi
- Department of Biomedical Sciences, Gulf Medical University, Ajman, United Arab Emirates
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nauroz Neelofar
- Shri Guru Ram Rai Institute of Medical and Health Sciences, Dehra Dun, Uttarakhand, India
| | - Vikas Kumar
- Natural Product Discovery Laboratory, Department of Pharmaceutical Sciences, Shalom Institute of Health and Allied Sciences, SHUATS, Naini, Prayagraj, India
| | - Ankit Sahoo
- Natural Product Discovery Laboratory, Department of Pharmaceutical Sciences, Shalom Institute of Health and Allied Sciences, SHUATS, Naini, Prayagraj, India
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
9
|
Annurca Apple Polyphenol Extract Affects Acetyl- Cholinesterase and Mono-Amine Oxidase In Vitro Enzyme Activity. Pharmaceuticals (Basel) 2021; 14:ph14010062. [PMID: 33466604 PMCID: PMC7828649 DOI: 10.3390/ph14010062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
In this study, we explored the ability of Annurca apple flesh polyphenol extract (AFPE) to affect the activity of key enzymes involved in neurodegenerative disorders—in particular, Acetyl- and Butirryl-cholinesterases, and type A and B monoamine oxidase. The effect of AFPE on enzyme activity was analyzed by in vitro enzyme assays, and the results showed concentration-dependent enzyme inhibition, with IC50 values corresponding to 859 ± 18 µM and 966 ± 72 µM for AChE and BuChE respectively, and IC50 corresponding to 145 ± 3 µM and 199 ± 7 µM for MAO-A and MAO-B, respectively, with a preference for MAO-A. Moreover, in this concentration range, AFPE did not affect the viability of human neuroblastoma SH-SY5Y and fibroblast BJ-5ta cell lines, as determined by an MTT assay. In conclusion, our results demonstrate that AFPE shows the new biological properties of inhibiting the activity of enzymes that are involved in brain functions, neurodegenerative disorders, and aging.
Collapse
|
10
|
Anastassova N, Aluani D, Kostadinov A, Rangelov M, Todorova N, Hristova-Avakumova N, Argirova M, Lumov N, Kondeva-Burdina M, Tzankova V, Yancheva D. Evaluation of the combined activity of benzimidazole arylhydrazones as new anti-Parkinsonian agents: monoamine oxidase-B inhibition, neuroprotection and oxidative stress modulation. Neural Regen Res 2021; 16:2299-2309. [PMID: 33818516 PMCID: PMC8354139 DOI: 10.4103/1673-5374.309843] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuroprotective drugs and selective monoamine oxidase inhibitors can slow down the progression and improve symptoms of Parkinson’s disease (PD). Since there is an implication of oxidative stress in the pathophysiological mechanisms of the disease, the compounds possessing an ability to reduce the oxidative stress are prime candidates for neuroprotection. Thereby our current study is focused on the development of new multi-target PD drugs capable of inhibiting the activity of monoamine oxidase-B while exerting neuroprotective and antioxidant properties. A small series of benzimidazole derivatives containing hydroxy and methoxy arylhydrazone fragments has been synthesized and the neurotoxicity of the compounds has been evaluated in vitro on neuroblastoma SH-SY5Y cells and on isolated rat brain synaptosomes by measuring the cell viability and the levels of reduced glutathione and a good safety profile has been shown. The 2-hydroxy-4-methoxy substituted arylhydrazone 7 was the least toxic on neuronal SH-SY5Y cells and showed the lowest neurotoxicity in rat brain synaptosomes. The neuroprotective properties of the test compounds were further assessed using two models: H2O2 -induced oxidative stress on SH-SY5Y cells and 6-hydroxydopamine-induced neurotoxicity in rat brain synaptosomes. Compound 7 showed more pronounced neuroprotective activity on SH-SY5Y cells, compared to the referent melatonin and rasagiline. It also preserved the synaptosomal viability and the reduced glutathione levels; the effects were stronger than those of rasagiline and comparable to melatonin. All the tested compounds were capable to inhibit human monoamine oxidase-B enzyme to a significant extent, however, compound 7 exerted the most prominent inhibitory activity, similar to selegiline and rasagiline. The carried out molecular docking studies revealed that the activity is related to the appropriate molecular structure enabling the ligand to enter deeper in the narrow and highly lipophylic active site pocket of the human monoamine oxidase-B and has a favoring interaction with the key amino acid residues Tyr326 and Cys172. Since much scientific evidence points out the implication of iron dyshomeostasis in PD, the compounds were tested to reduce the ferrous iron induced oxidative molecular damage on biologically important molecules in an in vitro lecithin containing model system. All the investigated compounds denoted protection effect, stronger than the one of the referent melatonin. In order to support the assignments of the significant neuroprotective and antioxidant pharmacological activities, the radical-scavenging mechanisms of the most promising compound 7 were evaluated using DFT methods. It was found that the most probable free radicals scavenging mechanism in nonpolar phase is the hydrogen atom transfer from the amide group of compound 7, while in polar medium the process is expected to occur by a proton transfer. The current study outlines a perspective leading structure, bearing the potential for a new anti-PD drug. All performed procedures were approved by the Institutional Animal Care Committee of the Medical University of Sofia (Bulgarian Agency for Food Safety with Permission № 190, approved on February 6, 2020).
Collapse
Affiliation(s)
- Neda Anastassova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Denitsa Aluani
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Anton Kostadinov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Miroslav Rangelov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Nadezhda Todorova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Nadya Hristova-Avakumova
- Department of Medical Physics and Biophysics, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Maria Argirova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Nikolay Lumov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Magdalena Kondeva-Burdina
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Virginia Tzankova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Denitsa Yancheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
11
|
Parameters for Irreversible Inactivation of Monoamine Oxidase. Molecules 2020; 25:molecules25245908. [PMID: 33322203 PMCID: PMC7763263 DOI: 10.3390/molecules25245908] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/25/2022] Open
Abstract
The irreversible inhibitors of monoamine oxidases (MAO) slow neurotransmitter metabolism in depression and neurodegenerative diseases. After oxidation by MAO, hydrazines, cyclopropylamines and propargylamines form a covalent adduct with the flavin cofactor. To assist the design of new compounds to combat neurodegeneration, we have updated the kinetic parameters defining the interaction of these established drugs with human MAO-A and MAO-B and analyzed the required features. The Ki values for binding to MAO-A and molecular models show that selectivity is determined by the initial reversible binding. Common to all the irreversible inhibitor classes, the non-covalent 3D-chemical interactions depend on a H-bond donor and hydrophobic-aromatic features within 5.7 angstroms apart and an ionizable amine. Increasing hydrophobic interactions with the aromatic cage through aryl halogenation is important for stabilizing ligands in the binding site for transformation. Good and poor inactivators were investigated using visible spectroscopy and molecular dynamics. The initial binding, close and correctly oriented to the FAD, is important for the oxidation, specifically at the carbon adjacent to the propargyl group. The molecular dynamics study also provides evidence that retention of the allenyl imine product oriented towards FADH− influences the formation of the covalent adduct essential for effective inactivation of MAO.
Collapse
|
12
|
Sturchio A, Marsili L, Vizcarra JA, Dwivedi AK, Kauffman MA, Duker AP, Lu P, Pauciulo MW, Wissel BD, Hill EJ, Stecher B, Keeling EG, Vagal AS, Wang L, Haslam DB, Robson MJ, Tanner CM, Hagey DW, El Andaloussi S, Ezzat K, Fleming RMT, Lu LJ, Little MA, Espay AJ. Phenotype-Agnostic Molecular Subtyping of Neurodegenerative Disorders: The Cincinnati Cohort Biomarker Program (CCBP). Front Aging Neurosci 2020; 12:553635. [PMID: 33132895 PMCID: PMC7578373 DOI: 10.3389/fnagi.2020.553635] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 09/10/2020] [Indexed: 12/16/2022] Open
Abstract
Ongoing biomarker development programs have been designed to identify serologic or imaging signatures of clinico-pathologic entities, assuming distinct biological boundaries between them. Identified putative biomarkers have exhibited large variability and inconsistency between cohorts, and remain inadequate for selecting suitable recipients for potential disease-modifying interventions. We launched the Cincinnati Cohort Biomarker Program (CCBP) as a population-based, phenotype-agnostic longitudinal study. While patients affected by a wide range of neurodegenerative disorders will be deeply phenotyped using clinical, imaging, and mobile health technologies, analyses will not be anchored on phenotypic clusters but on bioassays of to-be-repurposed medications as well as on genomics, transcriptomics, proteomics, metabolomics, epigenomics, microbiomics, and pharmacogenomics analyses blinded to phenotypic data. Unique features of this cohort study include (1) a reverse biology-to-phenotype direction of biomarker development in which clinical, imaging, and mobile health technologies are subordinate to biological signals of interest; (2) hypothesis free, causally- and data driven-based analyses; (3) inclusive recruitment of patients with neurodegenerative disorders beyond clinical criteria-meeting patients with Parkinson's and Alzheimer's diseases, and (4) a large number of longitudinally followed participants. The parallel development of serum bioassays will be aimed at linking biologically suitable subjects to already available drugs with repurposing potential in future proof-of-concept adaptive clinical trials. Although many challenges are anticipated, including the unclear pathogenic relevance of identifiable biological signals and the possibility that some signals of importance may not yet be measurable with current technologies, this cohort study abandons the anchoring role of clinico-pathologic criteria in favor of biomarker-driven disease subtyping to facilitate future biosubtype-specific disease-modifying therapeutic efforts.
Collapse
Affiliation(s)
- Andrea Sturchio
- James J. and Joan A. Gardner Family Center for Parkinson’s disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Luca Marsili
- James J. and Joan A. Gardner Family Center for Parkinson’s disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Joaquin A. Vizcarra
- James J. and Joan A. Gardner Family Center for Parkinson’s disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Alok K. Dwivedi
- Division of Biostatistics and Epidemiology, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, United States
| | - Marcelo A. Kauffman
- Consultorio y Laboratorio de Neurogenética, Centro Universitario de Neurología “José María Ramos Mejía” y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Programa de Medicina de Precision y Genomica Clinica, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral– Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Pilar, Argentina
| | - Andrew P. Duker
- James J. and Joan A. Gardner Family Center for Parkinson’s disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Peixin Lu
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
- School of Information Management, Wuhan University, Wuhan, China
| | - Michael W. Pauciulo
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| | - Benjamin D. Wissel
- James J. and Joan A. Gardner Family Center for Parkinson’s disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| | - Emily J. Hill
- James J. and Joan A. Gardner Family Center for Parkinson’s disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Benjamin Stecher
- James J. and Joan A. Gardner Family Center for Parkinson’s disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Elizabeth G. Keeling
- James J. and Joan A. Gardner Family Center for Parkinson’s disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Achala S. Vagal
- Department of Radiology, University of Cincinnati Medical Center, Cincinnati, OH, United States
| | - Lily Wang
- Department of Radiology, University of Cincinnati Medical Center, Cincinnati, OH, United States
| | - David B. Haslam
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Matthew J. Robson
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Cincinnati, OH, United States
| | - Caroline M. Tanner
- Department of Neurology, Weill Institute for Neurosciences, Parkinson’s Disease Research Education and Clinical Center, San Francisco Veteran’s Affairs Medical Center, University of California, San Francisco, San Francisco, CA, United States
| | - Daniel W. Hagey
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
| | - Samir El Andaloussi
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
| | - Kariem Ezzat
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
| | - Ronan M. T. Fleming
- Analytical Biosciences, Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Long J. Lu
- Programa de Medicina de Precision y Genomica Clinica, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral– Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Pilar, Argentina
| | - Max A. Little
- School of Computer Science, University of Birmingham, Birmingham, United Kingdom
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Alberto J. Espay
- James J. and Joan A. Gardner Family Center for Parkinson’s disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
13
|
Xu Q, Jiang M, Gu S, Wang F, Yuan B. Early Life Stress Induced DNA Methylation of Monoamine Oxidases Leads to Depressive-Like Behavior. Front Cell Dev Biol 2020; 8:582247. [PMID: 33015076 PMCID: PMC7505948 DOI: 10.3389/fcell.2020.582247] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Major depressive disorder (MDD) is coming to be the regarded as one of the leading causes for human disabilities. Due to its complicated pathological process, the etiology is still unclear and the treatment is still targeting at the monoamine neurotransmitters. Early life stress has been known as a major cause for MDD, but how early life stress affects adult monoaminergic activity is not clear either. Recently, DNA methylation is considered to be the key mechanism of epigenetics and might play a role in early life stress induced mental illness. DNA methylation is an enzymatic covalent modification of DNA, has been one of the main epigenetic mechanisms investigated. The metabolic enzyme for the monoamine neurotransmitters, monoamine oxidases A/B (MAO A/MAO B) are the prime candidates for the investigation into the role of DNA methylation in mental disorders. In this review, we will review recent advances about the structure and physiological function of monoamine oxidases (MAO), brief narrative other factors include stress induced changes, early life stress, perinatal depression (PD) relationship with other epigenetic changes, such as DNA methylation, microRNA (miRNA). This review will shed light on the epigenetic changes involved in MDD, which may provide potential targets for future therapeutics in depression pathogenesis.
Collapse
Affiliation(s)
- Qiuyue Xu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingchen Jiang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Simeng Gu
- Department of Psychology, Jiangsu University Medical School, Zhenjiang, China
| | - Fushun Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Bin Yuan
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
14
|
The Antiproliferative Effects of Flavonoid MAO Inhibitors on Prostate Cancer Cells. Molecules 2020; 25:molecules25092257. [PMID: 32403270 PMCID: PMC7249060 DOI: 10.3390/molecules25092257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 04/30/2020] [Accepted: 05/07/2020] [Indexed: 01/23/2023] Open
Abstract
Prostate cancer (PCa) patients commonly experience clinical depression. Recent reports indicated that monoamine oxidase-A (MAO-A) levels elevate in PCa, and antidepressant MAO-Is show anti-PCa properties. In this work, we aimed to find potential drugs for PCa patients suffering from depression by establishing novel anti-PCa reversible monoamine oxidase-A inhibitors (MAO-AIs/RIMA); with an endeavor to understand their mechanism of action. In this investigation, twenty synthesized flavonoid derivatives, defined as KKR compounds were screened for their inhibitory potentials against human MAO-A and MAO-B isozymes. Meanwhile, the cytotoxic and antiproliferative effects were determined in three human PCa cell lines. MAO-A-kinetics, molecular docking, SAR, cell morphology, and cell migration were investigated for the most potent compounds. The screened KKRs inhibited MAO-A more potently than MAO-B, and non-toxically inhibited LNCaP cell proliferation more than the DU145 and PC3 cell lines, respectively. The results showed that the three top MAO-AI KKRs compounds (KKR11, KKR20, and KKR7 (IC50s 0.02-16 μM) overlapped with the top six antiproliferative KKRs against LNCaP (IC50s ~9.4 μM). While KKR21 (MAO-AI) and KKR2A (MAO-I) were ineffective against the PCa cells. Furthermore, KKR21 and KKR11 inhibited MAO-A competitively (Kis ≤ 7.4 nM). Molecular docking of the two compounds predicted shared hydrophobic and distinctive hydrophilic interactions-between the KKR molecule and MAO-A amino acid residues-to be responsible for their reversibility. The combined results and SAR observations indicated that the presence of specific active groups-such as chlorine and hydroxyl groups-are essential in certain MAO-AIs with anti-PCa effects. Additionally, MAO-A inhibition was found to be associated more with anti-PCa property than MAO-B. Distinctively, KKR11 [(E)-3-(3,4-dichlorophenyl)-1-(2-hydroxy-4,6-dimethoxyphenyl)prop-2-en-1-one] exhibited anti-metastatic effects on the DU145 cell line. The chlorine substitution groups might play vital roles in the KKR11 multiple actions. The obtained results indicated that the flavonoid derivative KKR11 could present a novel candidate for PCa patients with depression, through safe non-selective potent inhibition of MAOs.
Collapse
|
15
|
Jiang DQ, Li MX, Jiang LL, Chen XB, Zhou XW. Comparison of selegiline and levodopa combination therapy versus levodopa monotherapy in the treatment of Parkinson's disease: a meta-analysis. Aging Clin Exp Res 2020; 32:769-779. [PMID: 31175606 DOI: 10.1007/s40520-019-01232-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/23/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Selegiline or levodopa treatment has been suggested as a therapeutic method for Parkinson's disease (PD) in many clinical trial reports. However, the combined effects of two drugs still remain controversial. The aim of this report was to evaluate the clinical efficacy and safety of selegiline plus levodopa (S + L) combination therapy in the treatment of PD compared to that of L monotherapy, to provide a reference resource for rational drug use. METHODS Randomized controlled trials (RCTs) of S + L for PD published up to September, 2018 were searched. Mean difference (MD), odds ratio (OR), and 95% confidence interval (CI) were calculated and heterogeneity was assessed with the I2 test. Sensitivity analysis was also performed. The outcomes measured were as follows: the unified Parkinson's disease rating scale (UPDRS) scores, modified Webster score, adverse events and mortality. RESULTS Fourteen RCTs with 2008 participants were included. Compared with L monotherapy, the pooled effects of S + L combination therapy on UPDRS score were (eleven trials; MD - 7.00, 95% CI - 8.35 to - 5.65, P < 0.00001) for total UPDRS score (nine trials; MD - 5.74, 95% CI - 7.71 to - 3.77, P < 0.00001) for motor UPDRS score (seven trials; MD - 1.61, 95% CI - 2.18 to - 1.04, P < 0.00001) for activities of daily living UPDRS score (three trials; MD - 0.38, 95% CI - 0.61 to - 0.14, P = 0.002) for mental UPDRS score. The Webster score showed significant decrease in the S + L combination therapy compared to L monotherapy (four trials; MD - 5.71, 95% CI - 7.11 to - 4.32, P < 0.00001). Compared with L monotherapy, S + L combination therapy did not increase the number of any adverse events significantly in PD patients (ten trials; OR 1.58, 95% CI 0.83-3.00, P = 0.16). CONCLUSIONS S + L combination therapy is superior to L monotherapy for the improvement of clinical symptoms in PD patients. Moreover, the safety profile of S + L combination therapy is comparable with that of L monotherapy.
Collapse
Affiliation(s)
- De-Qi Jiang
- Department of Biology and Pharmacy, Yulin Normal University, Jiaoyudong Road No.1303, Yuzhou District, Yulin, 537000, Guangxi, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin, 537000, China
| | - Ming-Xing Li
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Li-Lin Jiang
- Department of Biology and Pharmacy, Yulin Normal University, Jiaoyudong Road No.1303, Yuzhou District, Yulin, 537000, Guangxi, China
| | - Xiao-Bai Chen
- Department of Biology and Pharmacy, Yulin Normal University, Jiaoyudong Road No.1303, Yuzhou District, Yulin, 537000, Guangxi, China
| | - Xing-Wen Zhou
- Department of Biology and Pharmacy, Yulin Normal University, Jiaoyudong Road No.1303, Yuzhou District, Yulin, 537000, Guangxi, China.
| |
Collapse
|
16
|
Rasagiline and selegiline modulate mitochondrial homeostasis, intervene apoptosis system and mitigate α-synuclein cytotoxicity in disease-modifying therapy for Parkinson's disease. J Neural Transm (Vienna) 2020; 127:131-147. [PMID: 31993732 DOI: 10.1007/s00702-020-02150-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/21/2020] [Indexed: 12/16/2022]
Abstract
Parkinson's disease has been considered as a motor neuron disease with dopamine (DA) deficit caused by neuronal loss in the substantia nigra, but now proposed as a multi-system disorder associated with α-synuclein accumulation in neuronal and non-neuronal systems. Neuroprotection in Parkinson's disease has intended to halt or reverse cell death of nigro-striatal DA neurons and prevent the disease progression, but clinical studies have not presented enough beneficial results, except the trial of rasagiline by delayed start design at low dose of 1 mg/day only. Now strategy of disease-modifying therapy should be reconsidered taking consideration of accumulation and toxicity of α-synuclein preceding the manifest of motor symptoms. Hitherto neuroprotective therapy has been aimed to mitigate non-specific risk factors; oxidative stress, mitochondrial dysfunction, apoptosis, deficits of neurotrophic factors (NTFs), inflammation and accumulation of pathogenic protein. Future disease-modify therapy should target more specified pathogenic factors, including deregulated mitochondrial homeostasis, deficit of NTFs and α-synuclein toxicity. Selegiline and rasagiline, inhibitors of type B monoamine oxidase, have been proved to exhibit potent neuroprotective function: regulation of mitochondrial apoptosis system, maintenance of mitochondrial function, increased expression of genes coding antioxidant enzymes, anti-apoptotic Bcl-2 and pro-survival NTFs, and suppression of oligomerization and aggregation of α-synuclein and the toxicity in cellular and animal experiments. However, the present available pharmacological therapy starts too late to reverse disease progression, and future disease-modifying therapy should include also non-pharmacological complementary therapy during the prodromal stage.
Collapse
|
17
|
Varešlija D, Tipton KF, Davey GP, McDonald AG. 6-Hydroxydopamine: a far from simple neurotoxin. J Neural Transm (Vienna) 2020; 127:213-230. [DOI: 10.1007/s00702-019-02133-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/21/2019] [Indexed: 12/13/2022]
|
18
|
Alborghetti M, Nicoletti F. Different Generations of Type-B Monoamine Oxidase Inhibitors in Parkinson's Disease: From Bench to Bedside. Curr Neuropharmacol 2019; 17:861-873. [PMID: 30160213 PMCID: PMC7052841 DOI: 10.2174/1570159x16666180830100754] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/06/2018] [Accepted: 08/29/2018] [Indexed: 12/21/2022] Open
Abstract
Three inhibitors of type-B monoamine oxidase (MAOB), selegiline, rasagiline, and safinamide, are used for the treatment of Parkinson's disease (PD). All three drugs improve motor signs of PD, and are effective in reducing motor fluctuations in patients undergoing long-term L-DOPA treatment. The effect of MAOB inhibitors on non-motor symptoms is not uniform and may not be class-related. Selegiline and rasagiline are irreversible inhibitors forming a covalent bond within the active site of MAOB. In contrast, safinamide is a reversible MAOB inhibitor, and also inhibits voltage- sensitive sodium channels and glutamate release. Safinamide is the prototype of a new generation of multi-active MAOB inhibitors, which includes the antiepileptic drug, zonisamide. Inhibition of MAOB-mediated dopamine metabolism largely accounts for the antiparkinsonian effect of the three drugs. Dopamine metabolism by MAOB generates reactive oxygen species, which contribute to nigro-striatal degeneration. Among all antiparkinsonian agents, MAOB inhibitors are those with the greatest neuroprotective potential because of inhibition of dopamine metabolism, induction of neurotrophic factors, and, in the case of safinamide, inhibition of glutamate release. The recent development of new experimental animal models that more closely mimic the progressive neurodegeneration associated with PD will allow to test the hypothesis that MAOB inhibitors may slow the progression of PD.
Collapse
Affiliation(s)
| | - Ferdinando Nicoletti
- Address correspondence to this author at the Department of Physiology and Pharmacology, University Sapienza of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy; Tel: 39-3662816464; E-mail:
| |
Collapse
|
19
|
Quartey MO, Nyarko JNK, Pennington PR, Heistad RM, Klassen PC, Baker GB, Mousseau DD. Alzheimer Disease and Selected Risk Factors Disrupt a Co-regulation of Monoamine Oxidase-A/B in the Hippocampus, but Not in the Cortex. Front Neurosci 2018; 12:419. [PMID: 29997470 PMCID: PMC6029266 DOI: 10.3389/fnins.2018.00419] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/01/2018] [Indexed: 01/09/2023] Open
Abstract
Monoamine oxidase-A (MAO-A) and MAO-B have both been implicated in the pathology of Alzheimer disease (AD). We examined 60 autopsied control and AD donor brain samples to determine how well MAO function aligned with two major risk factors for AD, namely sex and APOE ε4 status. MAO-A activity was increased in AD cortical, but not hippocampal, samples. In contrast, MAO-B activity was increased in both regions (with a strong input from female donors) whether sample means were compared based on: (a) diagnosis alone; (b) diagnosis-by-APOE ε4 status (i.e., carriers vs. non-carriers of the ε4 allele); or (c) APOE ε4 status alone (i.e., ignoring ‘diagnosis’ as a variable). Sample means strictly based on the donor’s sex did not reveal any difference in either MAO-A or MAO-B activity. Unexpectedly, we found that cortical MAO-A and MAO-B activities were highly correlated in both males and females (if focussing strictly on the donor’s sex), while in the hippocampus, any correlation was lost in female samples. Stratifying for sex-by-APOE ε4 status revealed a strong correlation between cortical MAO-A and MAO-B activities in both non-carriers and carriers of the allele, but any correlation in hippocampal samples was lost in carriers of the allele. A diagnosis of AD disrupted the correlation between MAO-A and MAO-B activities in the hippocampus, but not the cortex. We observed a novel region-dependent co-regulation of MAO-A and MAO-B mRNAs (but not proteins), while a lack of correlation between MAO activities and the respective proteins corroborated previous reports. Overexpression of human APOE4 increased MAO activity (but not mRNA/protein) in C6 and in HT-22 cell cultures. We identified a novel co-regulation of MAO-A and MAO-B activities that is spared from any influence of risk factors for AD or AD itself in the cortex, but vulnerable to these same factors in the hippocampus. Sex- and region-dependent abilities to buffer influences on brain MAO activities could have significant bearing on ambiguous outcomes when monoaminergic systems are targeted in clinical populations.
Collapse
Affiliation(s)
- Maa O Quartey
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jennifer N K Nyarko
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Paul R Pennington
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ryan M Heistad
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Paula C Klassen
- The Pharmacology-Physiology Honours Program, University of Saskatchewan, Saskatoon, SK, Canada
| | - Glen B Baker
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Darrell D Mousseau
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada.,The Pharmacology-Physiology Honours Program, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
20
|
Naoi M, Maruyama W, Shamoto-Nagai M. Type A and B monoamine oxidases distinctly modulate signal transduction pathway and gene expression to regulate brain function and survival of neurons. J Neural Transm (Vienna) 2017; 125:1635-1650. [DOI: 10.1007/s00702-017-1832-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/18/2017] [Indexed: 02/01/2023]
|
21
|
Hussain ASM, Renno WM, Sadek HL, Kayali NM, Al-Salem A, Rao MS, Khan KM. Monoamine oxidase-B inhibitor protects degenerating spinal neurons, enhances nerve regeneration and functional recovery in sciatic nerve crush injury model. Neuropharmacology 2017; 128:231-243. [PMID: 29054367 DOI: 10.1016/j.neuropharm.2017.10.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/28/2017] [Accepted: 10/15/2017] [Indexed: 12/29/2022]
Abstract
Monoamine oxidase-B (MAOB), a flavin adenine dinucleotide (FAD), is an enzyme which catalyzes the oxidation of amines. MAOB is proposed to play a major role in the pathogenesis of neurodegeneration through the production of reactive oxygen species (ROS) and neurotoxins. The present study was designed to outline the effects of the MAOB inhibitor (MAOB-I) on neuroprotection of spinal neurons, regeneration of sciatic nerve fibers, and recovery of sensory-motor functions in the sciatic nerve crush injury model. Male Wistar rats (4-months-old) were assigned to i) Naïve (N), ii) Sham (S), iii) Sciatic nerve crush and treated with saline (CRUSH + SALINE) and iv) Sciatic nerve crush and treated with MAOB inhibitor (CRUSH + MAOB-I) groups (n = 10/group). In groups iii and iv, the crush injury was produced by crushing the sciatic nerve followed by treatment with saline or MAOB-I (Selegiline® 2.5 mg/kg) intraperitoneally for 10 days. Behavioral tests were conducted from week 1 to week 6. At the end of the study, sciatic nerve and lumbar spinal cord were examined by immunohistochemistry, light and electron microscopy. MAOB-I treatment showed significant improvement in sensory and motor functions compared to saline treatment (p < 0.05-0.001) in injured nerves. The morphological study showed a significantly increased number of nerve fibers in sciatic nerve distal to the site of injury (p < 0.05), with better myelination pattern in CRUSH + MAOB-I treated group compared to CRUSH + SALINE group. Spinal cord ventral horns showed a significant increase in the number of NeuN-immunoreactive neurons in the MAOB-I treated group compared to Saline treated group (p < 0.01). MAOB-I has a significant potential for protecting the degenerating spinal cord neurons and enhancing the regeneration of injured sciatic nerve fibers following crush injury.
Collapse
Affiliation(s)
| | - Waleed M Renno
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait.
| | - Hanaa L Sadek
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait
| | - Noura M Kayali
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait
| | - Aseel Al-Salem
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait
| | - Muddanna S Rao
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait
| | - Khalid M Khan
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait
| |
Collapse
|
22
|
Neurotrophic function of phytochemicals for neuroprotection in aging and neurodegenerative disorders: modulation of intracellular signaling and gene expression. J Neural Transm (Vienna) 2017; 124:1515-1527. [PMID: 29030688 DOI: 10.1007/s00702-017-1797-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/05/2017] [Indexed: 02/07/2023]
Abstract
Bioactive compounds in food and beverages have been reported to promote health and prevent age-associated decline in cognitive, motor and sensory activities, and emotional function. Phytochemicals, a ubiquitous class of plant secondary metabolites, protect neuronal cells by interaction with cellular activities, in addition to the antioxidant and anti-inflammatory function. In aging and age-associated neurodegenerative disorders, phytochemicals protect neuronal cells by neurotrophic factor-mimic activity, in addition to suppression of apoptosis signaling in mitochondria. This review presents the cellular mechanisms underlying anti-apoptotic function and neurotrophic function of phytochemicals in the brain. Phytochemicals bind to receptors of neurotrophic factors, and also receptors for γ-aminobutyric acid, acetylcholine, serotonin, and glutamate and estrogen, and activate downstream signal pathways. Phytochemicals also directly intervene intracellular signaling molecules to modify the brain function. Finally, phytochemicals enhance the endogenous biosynthesis of genes coding anti-apoptotic Bcl-2 and neurotrophic factors, such as brain-derived and glial cell line-derived neurotrophic factor. The gene induction may play a major role in the neuroprotective function of dietary compounds shown by epidemiological studies. Quantitative measurement of neurotrophic factors induced by phytochemicals in the serum, cerebrospinal fluid, and other clinical samples is proposed as a surrogate assay method to evaluate the neuroprotective potency. Development of novel neuroprotective compounds is expected among compounds chemically synthesized from the brain-permeable basic structure of phytochemicals.
Collapse
|