1
|
Hamidizad Z, Kadkhodaee M, Kianian F, Ranjbaran M, Heidari F, Seifi B. Neuroprotective Effects of Sodium Nitroprusside on CKD-Induced Cognitive Dysfunction in Rats: Role of CBS and Nrf2/HO-1 Pathway. Neuromolecular Med 2025; 27:8. [PMID: 39775152 DOI: 10.1007/s12017-024-08828-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025]
Abstract
Chronic kidney disease (CKD) is a conceivable new risk factor for cognitive disorder and dementia. Uremic toxicity, oxidative stress, and peripheral-central inflammation have been considered important mediators of CKD-induced nervous disorders. Nitric oxide (NO) is a retrograde neurotransmitter in synapses, and has vital roles in intracellular signaling in neurons. This research aims to determine the effectiveness of NO in CKD-induced cognitive deficits by considering the nuclear factor-erythroid factor 2-related factor 2 (Nrf2)/ heme oxygenase-1 (HO-1) signaling pathway and the important roles of cystathionine beta-synthase (CBS, H2S producing enzyme). Forty rats were divided into four experimental groups: sham, five-sixth (5/6) nephrectomy (5/6Nx, CKD), CKD + NO donor (Sodium nitroprusside, SNP), CKD + SNP and a CBS inhibitor (amino-oxy acetic acid, AOAA). To assess the neurocognitive abilities, eleven weeks after 5/6Nx, behavioral tests (Novel object recognition test, Passive avoidance test, and Barnes maze test) were done. Twelfth week after 5/6Nx, blood urea nitrogen (BUN) and serum creatinine (sCr) levels, as well as the nuclear factor-erythroid factor 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) expression levels and neuronal injury in the hippocampus and prefrontal cortex were assessed. As predicted, the levels of BUN and sCr (both P < 0.001) and neuronal injury in the hippocampus (P < 0.001 for CA1; CA3; DG) and prefrontal cortex (P < 0.001) increased in CKD rats as well as 5/6Nx induced reduction of Nrf2 (both P < 0.001) /HO-1(P < 0.001; P < 0.01 respectively) pathway activity in the hippocampus and prefrontal cortex in CKD rats. Moreover, CKD leads to cognitive disorder and memory loss (Novel object recognition test (NOR) (P < 0.001), Passive avoidance test (PA) (P < 0.001) and Barnes maze (BA) (Escape latency (P < 0.001); Error (P < 0.001)). SNP treatment significantly improved Nrf2 (both P < 0.001) /HO-1 (P < 0.001; P < 0.05 respectively) pathways and neuronal injury (P < 0.001 for CA1; CA3; DG) in the hippocampus and prefrontal cortex in CKD rats as well as enhanced learning and memory ability in CKD rats. However, ameliorating effects of SNP on cognitive disorder (NOR (P < 0.05), PA (P < 0.001) and BA (Escape latency (P < 0.05); Error (P < 0.001)) and Nrf2 (P < 0.01; P < 0.001 in the hippocampus and prefrontal cortex respectively) /HO-1 (P < 0.05 in both) signaling pathway activity were nullified by CBS inhibitor and H2S reduction. In conclusion, this study demonstrated that NO improved CKD-induced cognitive impairment and neuronal death which is may be depended to CBS activity and endogenous H2S levels.
Collapse
Affiliation(s)
- Zeinab Hamidizad
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Mehri Kadkhodaee
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Poorsina Ave, Tehran, Iran
| | - Farzaneh Kianian
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Poorsina Ave, Tehran, Iran
| | - Mina Ranjbaran
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Poorsina Ave, Tehran, Iran
| | - Fatemeh Heidari
- Department of Anatomy, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Behjat Seifi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Poorsina Ave, Tehran, Iran.
| |
Collapse
|
2
|
Ibañez AM, Godoy Coto J, Martínez VR, Del Milagro Yeves A, Dolcetti FJC, Cervellini S, Echavarría L, Velez-Rueda JO, Lofeudo JM, Portiansky EL, Bellini MJ, Aiello EA, Ennis IL, De Giusti VC. Cardioprotection and neurobehavioral impact of swimming training in ovariectomized rats. GeroScience 2024:10.1007/s11357-024-01422-7. [PMID: 39527177 DOI: 10.1007/s11357-024-01422-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Cardiovascular (CV) disease is the major cause of mortality. Estrogens (E) exert multiple CV and neuroprotective effects. During menopause, CV and cognitive pathologies increase dramatically. At present, it is known that E exert many of their beneficial effects through the G protein-coupled estrogen receptor (GPER). Exercise reduces the risk of developing CV diseases. Sodium/proton exchanger (NHE-1) is overexpressed in ovariectomized (OVX) rats, probably due to the increase in reactive oxidative species (ROS). Insulin-like growth factor 1 (IGF-1), the main humoral mediator of exercise, inhibits the NHE-1. We aim to explore the subcellular mechanisms involved in the heart and brain impact of physiological exercise in OVX rats. We speculate that physical training, via IGF-1, prevents the increase in ROS, improving heart and brain physiological functions during menopause. Exercise diminished cardiac ROS production and increased catalase (CAT) activity in OVX rats. In concordance, IGF-1 treatment reduces brain ROS, surely contributing to the improvement in brain behavior. Moreover, the aerobic routine was able to prevent, and IGF-1 therapy to revert, NHE-1 hyperactivity in OVX rats. Finally, our results confirm the proposed signaling pathway as IGF-1/PI3K-AKT/NO. Surprisingly, GPER inhibitor (G36) was able to abolish the IGF-1 effect, suggesting that directly or indirectly GPER is part of the IGF-1 pathway. We propose that IGF-1 is the main responsible for the protective effect of aerobic training both in the heart and brain in OVX rats. Moreover, we showed that not only it is possible to prevent but also to revert the menopause-induced NHE-1 hyperactivity by exercise/IGF-1 cascade.
Collapse
Affiliation(s)
- Alejandro Martín Ibañez
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Joshua Godoy Coto
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Valeria Romina Martínez
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Alejandra Del Milagro Yeves
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Franco Juan Cruz Dolcetti
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"- Facultad de Ciencias Médicas, Universidad Nacionalde LaPlata-CONICET, La Plata, Argentina
| | - Sofía Cervellini
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"- Facultad de Ciencias Médicas, Universidad Nacionalde LaPlata-CONICET, La Plata, Argentina
| | - Lucía Echavarría
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"- Facultad de Ciencias Médicas, Universidad Nacionalde LaPlata-CONICET, La Plata, Argentina
| | - Jorge Omar Velez-Rueda
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Juan Manuel Lofeudo
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Enrique Leo Portiansky
- Cátedra de Patología General- Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata- CONICET, La Plata, Argentina
| | - María José Bellini
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"- Facultad de Ciencias Médicas, Universidad Nacionalde LaPlata-CONICET, La Plata, Argentina
| | - Ernesto Alejandro Aiello
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Irene Lucía Ennis
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Verónica Celeste De Giusti
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina.
| |
Collapse
|
3
|
Zahedi E, Sadr SS, Sanaeierad A, Hosseini M, Roghani M. Acetyl-l-carnitine alleviates valproate-induced autism-like behaviors through attenuation of hippocampal mitochondrial dysregulation. Neuroscience 2024; 558:92-104. [PMID: 39168175 DOI: 10.1016/j.neuroscience.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/11/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
This study aimed to evaluate the potential benefits of acetyl-L-carnitine (ALCAR) in the context of valproate-induced autism. After prenatal exposure to valproate (VPA; 600 mg/kg, i.p.) on embryonic day 12.5, followed by ALCAR treatment (300 mg/kg on postnatal days 21-49, p.o.), assessment of oxidative stress, mitochondrial membrane potential (MMP), mitochondrial biogenesis, parvalbumin interneurons, and hippocampal volume was conducted. These assessments were carried out subsequent to the evaluation of autism-like behaviors. Hippocampal analysis of oxidative factors (reactive oxygen species and malondialdehyde) and antioxidants (superoxide dismutase, catalase, and glutathione) revealed a burden of oxidative stress in VPA rats. Additionally, mitochondrial biogenesis and MMP were elevated, while the number of parvalbumin interneurons decreased. These changes were accompanied by autism-like behaviors observed in the three-chamber maze, marble burring test, and Y-maze, as well as a learning deficit in the Barnes maze. In contrast, administrating ALCAR attenuated behavioral deficits, reduced oxidative stress, improved parvalbumin-positive neuronal population, and properly modified MMP and mitochondrial biogenesis. Collectively, our results indicate that oral administration of ALCAR ameliorates autism-like behaviors, partly through its targeting oxidative stress and mitochondrial biogenesis. This suggests that ALCAR may have potential benefits ASD managing.
Collapse
Affiliation(s)
- Elham Zahedi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Shahabeddin Sadr
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ashkan Sanaeierad
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Marjan Hosseini
- Department of Physiology-Pharmacology-Medical Physic, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| |
Collapse
|
4
|
Peralta F, Vidal Escobedo AA, Hanotte JL, Avallone M, Björklund T, Reggiani PC, Pardo J. Preventive cognitive protection based on AAV9 overexpression of IGF1 in hippocampal astrocytes. Neurobiol Dis 2024; 200:106612. [PMID: 39032798 DOI: 10.1016/j.nbd.2024.106612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024] Open
Abstract
Astrocytes play key roles in the brain. When astrocyte support fails, neurological disorders follow, resulting in disrupted synaptic communication, neuronal degeneration, and cell death. We posit that astrocytes overexpressing neurotrophic factors, such as Insulin Like Growth Factor 1 (IGF1), prevent the onset of neurodegeneration. We overexpressed IGF1 and the reporter TdTomato (TOM) in hippocampal astrocytes with bicistronic Adeno-Associated Virus (AAV) harboring the Glial Fibrillary Acidic Protein (GFAP) promoter and afterwards induced neurodegeneration by the intracerebroventricular (ICV) injection of streptozotocin (STZ), a rat model of behavioral impairment, neuroinflammation and shortening of hippocampal astrocytes. We achieved a thorough transgene expression along the hippocampus with a single viral injection. Although species typical behavior was impaired, memory deficit was prevented by IGF1. STZ prompted astrocyte shortening, albeit the length of these cells in animals injected with GFP and IGF1 vectors did not statistically differ from the other groups. In STZ control animals, hippocampal microglial reactive cells increased dramatically, but this was alleviated in IGF1 rats. We conclude that overexpression of IGF1 in astrocytes prevents neurodegeneration onset. Hence, individuals with early neurotrophic exhaustion would be vulnerable to age-related neurodegeneration.
Collapse
Affiliation(s)
- Facundo Peralta
- Instituto de Investigaciones Bioquímicas de La Plata "Profesor Doctor Rodolfo R. Brenner". Facultad de Ciencias Médicas. Universidad Nacional de La Plata. Buenos Aires, Argentina
| | - Ana Abril Vidal Escobedo
- Instituto de Investigaciones Bioquímicas de La Plata "Profesor Doctor Rodolfo R. Brenner". Facultad de Ciencias Médicas. Universidad Nacional de La Plata. Buenos Aires, Argentina
| | - Juliette López Hanotte
- Instituto de Investigaciones Bioquímicas de La Plata "Profesor Doctor Rodolfo R. Brenner". Facultad de Ciencias Médicas. Universidad Nacional de La Plata. Buenos Aires, Argentina
| | - Martino Avallone
- Molecular Neuromodulation, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Tomas Björklund
- Molecular Neuromodulation, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Paula Cecilia Reggiani
- Instituto de Investigaciones Bioquímicas de La Plata "Profesor Doctor Rodolfo R. Brenner". Facultad de Ciencias Médicas. Universidad Nacional de La Plata. Buenos Aires, Argentina
| | - Joaquín Pardo
- Instituto de Investigaciones Bioquímicas de La Plata "Profesor Doctor Rodolfo R. Brenner". Facultad de Ciencias Médicas. Universidad Nacional de La Plata. Buenos Aires, Argentina; Molecular Neuromodulation, Wallenberg Neuroscience Center, Lund University, Lund, Sweden.
| |
Collapse
|
5
|
López Hanotte J, Peralta F, Reggiani PC, Zappa Villar MF. Investigating the Impact of Intracerebroventricular Streptozotocin on Female Rats with and without Ovaries: Implications for Alzheimer's Disease. Neurochem Res 2024; 49:2785-2802. [PMID: 38985243 DOI: 10.1007/s11064-024-04204-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024]
Abstract
To contribute to research on female models of Alzheimer's disease (AD), our aim was to study the effect of intracerebroventricular (ICV) injection of streptozotocin (STZ) in female rats, and to evaluate a potential neuroprotective action of ovarian steroids against STZ. Female rats were either ovariectomized (OVX) or kept with ovaries (Sham) two weeks before ICV injections. Animals were injected with either vehicle (artificial cerebrospinal fluid, aCSF) or STZ (3 mg/kg) and separated into four experimental groups: Sham + aCSF, Sham + STZ, OVX + aCSF and OVX + STZ. Nineteen days post-injection, we assessed different behavioral aspects: burying, anxiety and exploration, object recognition memory, spatial memory, and depressive-like behavior. Immunohistochemistry and Immunoblot analyses were performed in the hippocampus to examine changes in AD-related proteins and neuronal and microglial populations. STZ affected burying and exploratory behavior depending on ovarian status, and impaired recognition but not spatial memory. STZ and ovariectomy increased depressive-like behavior. Interestingly, STZ did not alter the expression of β-amyloid peptide or Tau phosphorylated forms. STZ affected the neuronal population from the Dentate Gyrus, where immature neurons were more vulnerable to STZ in OVX rats. Regarding microglia, STZ increased reactive cells, and the OVX + STZ group showed an increase in the total cell number. In sum, STZ partially affected female rats, compared to what was previously reported for males. Although AD is more frequent in women, reports about the effect of ICV-STZ in female rats are scarce. Our work highlights the need to deepen into the effects of STZ in the female brain and study possible sex differences.
Collapse
Affiliation(s)
- Juliette López Hanotte
- Instituto de Investigaciones Bioquímicas de La Plata "Profesor Doctor Rodolfo R. Brenner", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Facundo Peralta
- Instituto de Investigaciones Bioquímicas de La Plata "Profesor Doctor Rodolfo R. Brenner", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Paula Cecilia Reggiani
- Instituto de Investigaciones Bioquímicas de La Plata "Profesor Doctor Rodolfo R. Brenner", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina.
- Cátedra de Citología, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina.
| | - María Florencia Zappa Villar
- Instituto de Investigaciones Bioquímicas de La Plata "Profesor Doctor Rodolfo R. Brenner", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina.
| |
Collapse
|
6
|
de la Monte SM, Tong M. Dysregulated mTOR networks in experimental sporadic Alzheimer's disease. Front Cell Neurosci 2024; 18:1432359. [PMID: 39386180 PMCID: PMC11461251 DOI: 10.3389/fncel.2024.1432359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/29/2024] [Indexed: 10/12/2024] Open
Abstract
Background Beyond the signature amyloid-beta plaques and neurofibrillary tangles, Alzheimer's disease (AD) has been shown to exhibit dysregulated metabolic signaling through insulin and insulin-like growth factor (IGF) networks that crosstalk with the mechanistic target of rapamycin (mTOR). Its broad impact on brain structure and function suggests that mTOR is likely an important therapeutic target for AD. Objective This study characterizes temporal lobe (TL) mTOR signaling abnormalities in a rat model of sporadic AD neurodegeneration. Methods Long Evans rats were given intracerebroventricular injections of streptozotocin (ic-STZ) or saline (control), and 4 weeks later, they were administered neurobehavioral tests followed by terminal harvesting of the TLs for histopathological study and measurement of AD biomarkers, neuroinflammatory/oxidative stress markers, and total and phosphorylated insulin/IGF-1-Akt-mTOR pathway signaling molecules. Results Rats treated with ic-STZ exhibited significantly impaired performance on Rotarod (RR) and Morris Water Maze (MWM) tests, brain atrophy, TL and hippocampal neuronal and white matter degeneration, and elevated TL pTau, AβPP, Aβ, AChE, 4-HNE, and GAPDH and reduced ubiquitin, IL-2, IL-6, and IFN-γ immunoreactivities. In addition, ic-STZ reduced TL pY1135/1136-IGF-1R, Akt, PTEN, pS380-PTEN, pS2448-mTOR, p70S6K, pT412-p70S6K, p/T-pT412-p70S6K, p/T-Rictor, and p/T-Raptor. Conclusion Experimental ic-STZ-induced sporadic AD-type neurodegeneration with neurobehavioral dysfunctions associated with inhibition of mTOR signaling networks linked to energy metabolism, plasticity, and white matter integrity.
Collapse
Affiliation(s)
- Suzanne M. de la Monte
- Departments of Medicine, Pathology and Laboratory Medicine, Neurology, and Neurosurgery, Rhode Island Hospital, Women and Infants Hospital, The Alpert Medical School at Brown University, Providence, RI, United States
| | - Ming Tong
- Department of Medicine, Rhode Island Hospital, The Alpert Medical School at Brown University, Providence, RI, United States
| |
Collapse
|
7
|
Afshari M, Gharibzadeh S, Pouretemad H, Roghani M. Promising therapeutic effects of high-frequency repetitive transcranial magnetic stimulation (HF-rTMS) in addressing autism spectrum disorder induced by valproic acid. Front Neurosci 2024; 18:1385488. [PMID: 39238929 PMCID: PMC11374774 DOI: 10.3389/fnins.2024.1385488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/08/2024] [Indexed: 09/07/2024] Open
Abstract
Introduction Autism spectrum disorder (ASD) is a neurodevelopmental condition that affects various regions of the brain. Repetitive transcranial magnetic stimulation (rTMS) is a safe and non-invasive method utilized for stimulating different brain areas. Our objective is to alleviate ASD symptoms using high-frequency rTMS (HF-rTMS) in a rat model of ASD induced by valproic acid (VPA). Methods In this investigation, we applied HF-rTMS for ASD treatment, focusing on the hippocampus. Behavioral assessments encompassed core ASD behaviors, as well as memory and recognition tests, alongside evaluations of anxiety and stress coping strategies. Additionally, we analyzed oxidative stress and a related inflammation marker, as well as other biochemical components. We assessed brain-derived neurotrophic factor (BDNF), Microtubule-associated protein-2 (MAP-2), and synaptophysin (SYN). Finally, we examined dendritic spine density in the CA1 area of the hippocampus. Results The results demonstrated that HF-rTMS successfully mitigated ASD symptoms, reducing oxidative stress and improving various biochemical factors, along with an increase in dendritic spine density. Discussion Collectively, our data suggests that HF-rTMS may effectively alleviate ASD symptoms. These findings could be valuable in clinical research and contribute to a better understanding of the mechanisms underlying ASD.
Collapse
Affiliation(s)
- Masoud Afshari
- Department of Cognitive Psychology, Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Shahriar Gharibzadeh
- Department of Cognitive Psychology, Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Hamidreza Pouretemad
- Department of Cognitive Psychology, Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| |
Collapse
|
8
|
Ghaffari MK, Rafati A, Karbalaei N, Haghani M, Nemati M, Sefati N, Namavar MR. The effect of intra-nasal co-treatment with insulin and growth factor-rich serum on behavioral defects, hippocampal oxidative-nitrosative stress, and histological changes induced by icv-STZ in a rat model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4833-4849. [PMID: 38157024 DOI: 10.1007/s00210-023-02899-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/09/2023] [Indexed: 01/03/2024]
Abstract
Impaired insulin and growth factor functions are thought to drive many alterations in neurodegenerative diseases like dementia and seem to contribute to oxidative stress and inflammatory responses. Recent studies revealed that nasal growth factor therapy could induce neuronal and oligodendroglia protection in rodent brain damage induction models. Impairment of several growth factors signaling was reported in neurodegenerative diseases. So, in the present study, we examined the effects of intranasal co-treatment of insulin and a pool of growth factor-rich serum (GFRS) which separated from activated platelets on memory, and behavioral defects induced by intracerebroventricular streptozotocin (icv-STZ) rat model also investigated changes in the hippocampal oxidative-nitrosative state and histology. We found that icv-STZ injection (3 mg/kg bilaterally) impairs spatial learning and memory in Morris Water Maze, leads to anxiogenic-like behavior in the open field arena, and induces oxidative-nitrosative stress, neuroinflammation, and neuronal/oligodendroglia death in the hippocampus. GFRS (1µl/kg, each other day, 9 doses) and regular insulin (4 U/40 µl, daily, 18 doses) treatments improved learning, memory, and anxiogenic behaviors. The present study showed that co-treatment (GFRS + insulin with respective dose) has more robust protection against hippocampal oxidative-nitrosative stress, neuroinflammation, and neuronal/oligodendroglia survival in comparison with the single therapy. Memory and behavioral improvements in the co-treatment of insulin and GFRS could be attributed to their effects on neuronal/oligodendroglia survival and reduction of neuroinflammation in the hippocampus.
Collapse
Affiliation(s)
- Mahdi Khorsand Ghaffari
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Rafati
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Karbalaei
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Haghani
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Nemati
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Niloofar Sefati
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Namavar
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
9
|
Tabanez M, Santos IR, Ikebara JM, Camargo MLM, Dos Santos BA, Freire BM, Batista BL, Takada SH, Squitti R, Kihara AH, Cerchiaro G. The Impact of Hydroxytyrosol on the Metallomic-Profile in an Animal Model of Alzheimer's Disease. Int J Mol Sci 2023; 24:14950. [PMID: 37834398 PMCID: PMC10573659 DOI: 10.3390/ijms241914950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
It is undeniable that as people get older, they become progressively more susceptible to neurodegenerative illnesses such as Alzheimer's disease (AD). Memory loss is a prominent symptom of this condition and can be exacerbated by uneven levels of certain metals. This study used inductively coupled plasma mass spectrometry (ICP-MS) to examine the levels of metals in the blood plasma, frontal cortex, and hippocampus of Wistar rats with AD induced by streptozotocin (STZ). It also tested the effects of the antioxidant hydroxytyrosol (HT) on metal levels. The Barnes maze behavior test was used, and the STZ group showed less certainty and greater distance when exploring the Barnes maze than the control group. The results also indicated that the control group and the STZ + HT group exhibited enhanced learning curves during the Barnes maze training as compared to the STZ group. The ICP-MS analysis showed that the STZ group had lower levels of cobalt in their blood plasma than the control group, while the calcium levels in the frontal cortex of the STZ + HT group were higher than in the control group. The most important finding was that copper levels in the frontal cortex from STZ-treated animals were higher than in the control group, and that the STZ + HT group returned to equivalent levels to the control group. The antioxidant HT can restore copper levels to their basal physiological state. This finding may help explain HT's potential beneficial effect in AD-patients.
Collapse
Affiliation(s)
- Miguel Tabanez
- Center for Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, SP, Brazil; (M.T.); (I.R.S.); (M.L.M.C.); (B.M.F.); (B.L.B.)
- Metal Biochemistry and Oxidative Stress Laboratory, Center for Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, SP, Brazil
| | - Ilma R. Santos
- Center for Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, SP, Brazil; (M.T.); (I.R.S.); (M.L.M.C.); (B.M.F.); (B.L.B.)
- Metal Biochemistry and Oxidative Stress Laboratory, Center for Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, SP, Brazil
| | - Juliane M. Ikebara
- Center for Mathematics, Computing and Cognition, Federal University of ABC, São Bernardo do Campo 09606-045, SP, Brazil; (J.M.I.); (B.A.D.S.); (S.H.T.); (A.H.K.)
| | - Mariana L. M. Camargo
- Center for Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, SP, Brazil; (M.T.); (I.R.S.); (M.L.M.C.); (B.M.F.); (B.L.B.)
- Metal Biochemistry and Oxidative Stress Laboratory, Center for Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, SP, Brazil
| | - Bianca A. Dos Santos
- Center for Mathematics, Computing and Cognition, Federal University of ABC, São Bernardo do Campo 09606-045, SP, Brazil; (J.M.I.); (B.A.D.S.); (S.H.T.); (A.H.K.)
| | - Bruna M. Freire
- Center for Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, SP, Brazil; (M.T.); (I.R.S.); (M.L.M.C.); (B.M.F.); (B.L.B.)
| | - Bruno L. Batista
- Center for Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, SP, Brazil; (M.T.); (I.R.S.); (M.L.M.C.); (B.M.F.); (B.L.B.)
| | - Silvia H. Takada
- Center for Mathematics, Computing and Cognition, Federal University of ABC, São Bernardo do Campo 09606-045, SP, Brazil; (J.M.I.); (B.A.D.S.); (S.H.T.); (A.H.K.)
| | - Rosanna Squitti
- Department of Laboratory Science, Ospedale Isola Tiberina—Gemelli Isola, 00186 Rome, Italy;
| | - Alexandre H. Kihara
- Center for Mathematics, Computing and Cognition, Federal University of ABC, São Bernardo do Campo 09606-045, SP, Brazil; (J.M.I.); (B.A.D.S.); (S.H.T.); (A.H.K.)
| | - Giselle Cerchiaro
- Center for Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, SP, Brazil; (M.T.); (I.R.S.); (M.L.M.C.); (B.M.F.); (B.L.B.)
- Metal Biochemistry and Oxidative Stress Laboratory, Center for Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, SP, Brazil
| |
Collapse
|
10
|
Chen K, Hu X. Intranasal creatine administration increases brain creatine level and improves Barnes maze performance in rats. Brain Res Bull 2023; 201:110703. [PMID: 37429386 DOI: 10.1016/j.brainresbull.2023.110703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
While skeletal muscle creatine levels can be enhanced by exogenous creatine supplementation, the elevation of brain creatine levels with oral creatine administration remains a challenge due to a lack of effective transportation of creatine through the blood-brain barrier. Intranasal administration can bypass the blood-brain barrier and deliver drugs directly to the brain. The purpose of this study was to assess the effect of intranasal administration of creatine on brain creatine level and cognitive performance. Rats were randomly assigned into three groups intranasal administration group, oral administration group, and control group. The intranasal group exhibited fewer errors and shorter primary latency compared to the control and oral groups, respectively, during the acquisition phase of the Barnes maze. The intranasal group spent a higher percentage of time in the target quadrant during the probe trial compared to the control group. Biochemical measurements showed that the concentration of creatine in the olfactory bulbs, medial prefrontal cortex, and hippocampus of the rats in the intranasal group was higher than in the oral, and control groups. These results indicate that intranasal administration of creatine hydrochloride increases the creatine level in the rat's brain's and improves their performance in the Barnes maze.
Collapse
Affiliation(s)
- Kaiqing Chen
- Department of Bioengineering, University of California, Riverside, USA
| | - Xiaoping Hu
- Department of Bioengineering, University of California, Riverside, USA.
| |
Collapse
|
11
|
Wang J, Deng X, Jiang J, Yao Z, Ju Y, Luo Y. Evaluation of electroacupuncture as a non-pharmacological therapy for astrocytic structural aberrations and behavioral deficits in a post-ischemic depression model in mice. Front Behav Neurosci 2023; 17:1239024. [PMID: 37700911 PMCID: PMC10493307 DOI: 10.3389/fnbeh.2023.1239024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Background Ascending clinical evidence supports that electroacupuncture (EA) is effective in treating post-ischemic depression (PID), but little is known about how it works at the cellular level. Astrocytes are exquisitely sensitive to their extracellular environment, and under stressful conditions, they may experience aberrant structural remodeling that can potentially cause neuroplastic disturbances and contribute to subsequent changes in mood or behavior. Objectives This study aimed to investigate the effect of EA on behavioral deficits associated with PID in mice and verify the hypothesis that astrocytic morphology may be involved in this impact. Methods We established a PID animal model induced by transient bilateral common carotid artery occlusion (BCCAO, 20 min) and chronic restraint stress (CRS, 21 days). EA treatment (GV20 + ST36) was performed for 3 weeks, from Monday to Friday each week. Depressive- and anxiety-like behaviors and sociability were evaluated using SPT, FST, EPM, and SIT. Immunohistochemistry combined with Sholl and cell morphological analysis was utilized to assess the process morphology of GFAP+ astrocytes in mood-related regions. The potential relationship between morphological changes in astrocytes and behavioral output was detected by correlation analysis. Results Behavioral assays demonstrated that EA treatment induced an overall reduction in behavioral deficits, as measured by the behavioral Z-score. Sholl and morphological analyses revealed that EA prevented the decline in cell complexity of astrocytes in the prefrontal cortex (PFC) and the CA1 region of the hippocampus, where astrocytes displayed evident deramification and atrophy of the branches. Eventually, the correlation analysis showed there was a relationship between behavioral emotionality and morphological changes. Conclusion Our findings imply that EA prevents both behavioral deficits and structural abnormalities in astrocytes in the PID model. The strong correlation between behavioral Z-scores and the observed morphological changes confirms the notion that the weakening of astrocytic processes may play a crucial role in depressive symptoms, and astrocytes could be a potential target of EA in the treatment of PID.
Collapse
Affiliation(s)
- Jingwen Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Deng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Jiang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhengyu Yao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yaxin Ju
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yong Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Alluri R, Kilari EK, Pasala PK, Kopalli SR, Koppula S. Repurposing Diltiazem for Its Neuroprotective Anti-Dementia Role against Intra-Cerebroventricular Streptozotocin-Induced Sporadic Alzheimer's Disease-Type Rat Model. Life (Basel) 2023; 13:1688. [PMID: 37629545 PMCID: PMC10455909 DOI: 10.3390/life13081688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related neuropsychiatric disorder and a common cause of progressive dementia. Diltiazem (DTZ), the non-dihydropyridine benzothiazepine class of calcium channel blocker (CCB), used clinically in angina and other cardiovascular disorders, has proven neurological benefits. In the present study, the neuroprotective anti-dementia effects of DTZ against intra-cerebroventricular-streptozotocin (ICV-STZ)-induced sporadic AD (SAD)-type rat model was investigated. ICV-STZ-induced cognitive impairments were measured via passive avoidance and Morris water maze tasks. Anti-oxidative enzyme status, pro-inflammatory markers, and amyloid-beta (Aβ) protein expression in rat brain tissues were measured using ELISA kits, Western blotting, and immunostaining techniques. The data revealed that ICV-STZ injection in rats significantly induced cognitive deficits and altered the levels of oxidative and pro-inflammatory markers (p < 0.05~p < 0.001). Treatment with DTZ (10 mg/kg, 20 mg/kg, and 40 mg/kg, p.o.) daily for twenty-one days, 1 h before a single ICV-STZ (3 mg/kg) injection, significantly improved cognitive impairments and ameliorated the ICV-STZ-induced altered nitrite, pro-inflammatory cytokines (TNF-α, and IL-1β) and anti-oxidative enzyme levels (superoxide dismutase, lipid peroxidation, and glutathione). Further, DTZ restored the increased Aβ protein expression in ICV-STZ-induced brain tissue. Considering the results obtained, DTZ might have a potential therapeutic role in treating and managing AD and related dementia pathologies due to its anti-dementia activity in SAD-type conditions in rats induced by ICV-STZ.
Collapse
Affiliation(s)
- Ramesh Alluri
- Cognitive Science Research Initiative Lab., Department of Pharmacology, Vishnu Institute of Pharmaceutical Education and Research, Medak Dist., Narsapur 502313, India
| | - Eswar Kumar Kilari
- Department of Pharmacology, University College of Pharmaceutical Sciences, Andhra University, Visakhapatnam 530003, India
| | - Praveen Kumar Pasala
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research, Jawaharlal Nehru Technological University Anantapur—JNTUA, Anantapur 515721, India
| | - Spandana Rajendra Kopalli
- Department of Integrated Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Sushruta Koppula
- College of Biomedical and Health Science, Konkuk University, Chungju-si 380-701, Republic of Korea
| |
Collapse
|
13
|
Andrade MK, Souza LC, Azevedo EM, Bail EL, Zanata SM, Andreatini R, Vital MABF. Melatonin reduces β-amyloid accumulation and improves short-term memory in streptozotocin-induced sporadic Alzheimer's disease model. IBRO Neurosci Rep 2023; 14:264-272. [PMID: 36926592 PMCID: PMC10011440 DOI: 10.1016/j.ibneur.2023.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
Melatonin is a hormone secreted by the pineal gland, it can be associated with circadian rhythms, aging and neuroprotection. Melatonin levels are decreased in sporadic Alzheimer's disease (sAD) patients, which suggests a relationship between the melatonergic system and sAD. Melatonin may reduce inflammation, oxidative stress, TAU protein hyperphosphorylation, and the formation of β-amyloid (Aβ) aggregates. Therefore, the objective of this work was to investigate the impact of treatment with 10 mg/kg of melatonin (i.p) in the animal model of sAD induced by the intracerebroventricular (ICV) infusion of 3 mg/kg of streptozotocin (STZ). ICV-STZ causes changes in the brain of rats similar to those found in patients with sAD. These changes include; progressive memory decline, the formation of neurofibrillary tangles, senile plaques, disturbances in glucose metabolism, insulin resistance and even reactive astrogliosis characterized by the upregulation of glucose levels and glial fibrillary acidic protein (GFAP). The results show that ICV-STZ caused short-term spatial memory impairment in rats after 30 days of STZ infusion without locomotor impairment which was evaluated on day 27 post-injury. Furthermore, we observed that a prolonged 30-day treatment with melatonin can improve the cognitive impairment of animals in the Y-maze test, but not in the object location test. Finally, we demonstrated that animals receiving ICV-STZ have high levels of Aβ and GFAP in the hippocampus and that treatment with melatonin reduces Aβ levels but does not reduce GFAP levels, concluding that melatonin may be useful to control the progression of amyloid pathology in the brain.
Collapse
Key Words
- AD, Alzheimer Disease
- APP, Amyloid precursor protein
- Alzheimer's disease
- Aβ, β-amyloid
- GFAP
- GFAP, Glial fibrillary acidic protein
- ICV-STZ, Intracerebroventricular injection of streptozotocin
- MEL, Melatonin
- MT1, Melatonin Receptor 1
- MT2, Melatonin Receptor 2
- Melatonin
- OLT, Object location test
- STZ, Streptozotocin
- Short-term memory
- Streptozotocin
- TNF-α, Tumor Necrosis factor alpha
- Y maze
- sAD, Sporadic Alzheimer disease
- β-amyloid
Collapse
Affiliation(s)
- Marcos K Andrade
- Department of Pharmacology, Federal University of Paraná, PR, Brazil
| | - Leonardo C Souza
- Department of Pharmacology, Federal University of Paraná, PR, Brazil
| | - Evellyn M Azevedo
- Department of Physiology, Federal University of Paraná, PR, Brazil.,Department of Basic Pathology, Federal University of Paraná, PR, Brazil
| | - Ellen L Bail
- Department of Physiology, Federal University of Paraná, PR, Brazil.,Department of Basic Pathology, Federal University of Paraná, PR, Brazil
| | - Silvio M Zanata
- Department of Basic Pathology, Federal University of Paraná, PR, Brazil
| | | | - Maria A B F Vital
- Department of Pharmacology, Federal University of Paraná, PR, Brazil
| |
Collapse
|
14
|
Neuroprotective effects of methylene blue in streptozotocin-induced model of Alzheimer's disease. Brain Res 2023; 1805:148290. [PMID: 36804486 DOI: 10.1016/j.brainres.2023.148290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
Methylene blue (MB) can be used as a multidirectional neuroprotector to stop the development of multiple cascades of neuron damage during neurodegenerative processes. This study assesses a protective effect of MB, using an experimental simulation of sporadic Alzheimer's disease by intracerebroventricular administration of streptozotocin (STZ) in rats. It was found that a STZ-induced impairment of memory can be partially mitigated with intravenous injections of MB after the administration of STZ. The treatment of animals with MB prevented the STZ-induced increase in the number and density of microglial and GFAP-positive cells in the brain cortex. In addition, it was shown that the expression of the LC3B protein, an indicator of autophagy, increases in the hippocampus of animals treated with STZ. In the hippocampus of animals treated with MB, an increase in the expression of the LC3B protein was prevented. Using the Griess reaction assay and immunocytochemical study was found that MB reduces lipopolysaccharide-induced NO-production and the expression of iNOS in cultured neurons. In conclusion, our data demonstrate that MB has neuroprotective and anti-inflammatory effects and is able to prevent autophagy. These effects have important therapeutic implications, so MB could potentially play a role in the treatment of neurodegenerative processes.
Collapse
|
15
|
Coria-Lucero C, Castro A, Ledezma C, Leporatti J, Ramirez D, Ghersi M, Delgado SM, Anzulovich AC, Navigatore-Fonzo L. An intracerebroventricular injection of AΒ (1-42) modifies temporal profiles of spatial memory performance and oxidative status in the temporal cortex rat. Brain Res 2023; 1804:148242. [PMID: 36646367 DOI: 10.1016/j.brainres.2023.148242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/26/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Alzheimer's dementia (AD) is a neurodegenerative disorder that causes memory loss and dementia in older adults. Intracellular accumulation of Aβ causes an imbalance in the oxidative status and cognitive dysfunctions. Besides oxidative stress and loss of memory, Alzheimer's patients show dysfunction of the circadian rhythms. The objective of this work was to evaluate the consequences of an intracerebroventricular injection of Aβ (1-42) on temporal patterns of cognitive performance, as well as on lipid peroxidation, protein oxidation and total antioxidant capacity levels, in the rat temporal cortex. Holtzman male rats from control and Aβ-injected groups were used in this study. We found that MDA, protein carbonyls and total antioxidant capacity levels displayed day-night oscillations in the rat temporal cortex and spatial memory performance also varied rhythmically. An intracerebroventricular injection of Aβ (1-42) modified temporal patterns of cognitive performance as well as daily profiles of parameters of oxidative stress. Thus, elevated levels of Aβ aggregates induces alterations in daily rhythmicity of parameters of oxidative stress and, consequently, would affect cellular clock activity, affecting the spatial memory performance in the AD.
Collapse
Affiliation(s)
- Cinthia Coria-Lucero
- Chronobiology Laboratory, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis. Multidisciplinary Institute of Biological Research of San Luis (IMIBIO-SL), CONICET, Ejército de Los Andes 950, CP D5700HHW San Luis, Argentina
| | - Andrea Castro
- Chronobiology Laboratory, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis. Multidisciplinary Institute of Biological Research of San Luis (IMIBIO-SL), CONICET, Ejército de Los Andes 950, CP D5700HHW San Luis, Argentina
| | - Carina Ledezma
- Chronobiology Laboratory, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis. Multidisciplinary Institute of Biological Research of San Luis (IMIBIO-SL), CONICET, Ejército de Los Andes 950, CP D5700HHW San Luis, Argentina
| | - Jorge Leporatti
- Faculty of Economic, Legal and Social Sciences, National University of San Luis, Campus Universitario, Ruta Prov. N° 55 (Ex. 148) Extremo Norte, D5700HHW San Luis, Argentina
| | - Darío Ramirez
- Laboratory of Experimental & Translational Medicine (LME&T), Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis. Multidisciplinary Institute of Biological Research of San Luis (IMIBIO-SL), CONICET, Ejército de Los Andes 950, CP D5700HHW San Luis, Argentina
| | - Marisa Ghersi
- Institute of Experimental Pharmacology of Córdoba, Faculty of Chemical Sciences, National University of Córdoba (IFEC), CONICET, Haya De La Torre y Medina Allende S/N, CP D5000HHW Córdoba, Argentina
| | - Silvia Marcela Delgado
- Chronobiology Laboratory, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis. Multidisciplinary Institute of Biological Research of San Luis (IMIBIO-SL), CONICET, Ejército de Los Andes 950, CP D5700HHW San Luis, Argentina.
| | - Ana Cecilia Anzulovich
- Chronobiology Laboratory, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis. Multidisciplinary Institute of Biological Research of San Luis (IMIBIO-SL), CONICET, Ejército de Los Andes 950, CP D5700HHW San Luis, Argentina.
| | - Lorena Navigatore-Fonzo
- Chronobiology Laboratory, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis. Multidisciplinary Institute of Biological Research of San Luis (IMIBIO-SL), CONICET, Ejército de Los Andes 950, CP D5700HHW San Luis, Argentina.
| |
Collapse
|
16
|
Jiang YK, Dong FY, Dong YB, Zhu XY, Pan LH, Hu LB, Xu L, Xu XF, Xu LM, Zhang XQ. Lateral septal nucleus, dorsal part, and dentate gyrus are necessary for spatial and object recognition memory, respectively, in mice. Front Behav Neurosci 2023; 17:1139737. [PMID: 37064302 PMCID: PMC10102498 DOI: 10.3389/fnbeh.2023.1139737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
IntroductionCognitive impairment includes the abnormality of learning, memory and judgment, resulting in severe learning and memory impairment and social activity impairment, which greatly affects the life quality of individuals. However, the specific mechanisms underlying cognitive impairment in different behavioral paradigms remain to be elucidated.MethodsThe study utilized two behavioral paradigms, novel location recognition (NLR) and novel object recognition (NOR), to investigate the brain regions involved in cognitive function. These tests comprised two phases: mice were presented with two identical objects for familiarization during the training phase, and a novel (experiment) or familiar (control) object/location was presented during testing. Immunostaining quantification of c-Fos, an immediate early gene used as a neuronal activity marker, was performed in eight different brain regions after the NLR or NOR test.ResultsThe number of c-Fos-positive cells was significantly higher in the dorsal part of the lateral septal nucleus (LSD) in the NLR and dentate gyrus (DG) in the NOR experiment group than in the control group. We further bilaterally lesioned these regions using excitotoxic ibotenic acid and replenished the damaged areas using an antisense oligonucleotide (ASO) strategy.DiscussionThese data reinforced the importance of LSD and DG in regulating spatial and object recognition memory, respectively. Thus, the study provides insight into the roles of these brain regions and suggests potential intervention targets for impaired spatial and object recognition memory.
Collapse
Affiliation(s)
- Ying-Ke Jiang
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Fei-Yuan Dong
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Yi-Bei Dong
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Xin-Yi Zhu
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Lu-Hui Pan
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Lin-Bo Hu
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Le Xu
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Xiao-Fan Xu
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Li-Min Xu
- Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, China
- Li-Min Xu,
| | - Xiao-Qin Zhang
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
- *Correspondence: Xiao-Qin Zhang,
| |
Collapse
|
17
|
Humphrey CM, Hooker JW, Thapa M, Wilcox MJ, Ostrowski D, Ostrowski TD. Synaptic loss and gliosis in the nucleus tractus solitarii with streptozotocin-induced Alzheimer's disease. Brain Res 2023; 1801:148202. [PMID: 36521513 PMCID: PMC9840699 DOI: 10.1016/j.brainres.2022.148202] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/21/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Obstructive sleep apnea is highly prevalent in Alzheimer's disease (AD). However, brainstem centers controlling respiration have received little attention in AD research, and mechanisms behind respiratory dysfunction in AD are not understood. The nucleus tractus solitarii (nTS) is an important brainstem center for respiratory control and chemoreflex function. Alterations of nTS integrity, like those shown in AD patients, likely affect neuronal processing and adequate control of breathing. We used the streptozotocin-induced rat model of AD (STZ-AD) to analyze cellular changes in the nTS that corroborate previously documented respiratory dysfunction. We used 2 common dosages of STZ (2 and 3 mg/kg STZ) for model induction and evaluated the early impact on cell populations in the nTS. The hippocampus served as control region to identify site-specific effects of STZ. There was significant atrophy in the caudal nTS of the 3 mg/kg STZ-AD group only, an area known to integrate chemoafferent information. Also, the hippocampus had significant atrophy with the highest STZ dosage tested. Both STZ-AD groups showed respiratory dysfunction along with multiple indices for astroglial and microglial activation. These changes were primarily located in the caudal and intermediate nTS. While there was no change of astrocytes in the hippocampus, microglial activation was accompanied by a reduction in synaptic density. Together, our data demonstrate that STZ-AD induces site-specific effects on all major cell types, primarily in the caudal/intermediate nTS. Both STZ dosages used in this study produced a similar outcome and can be used for future studies examining the initial symptoms of STZ-AD.
Collapse
Affiliation(s)
- Chuma M Humphrey
- Department of Physiology, Kirksville College of Osteopathic Medicine, A.T. Still University, 800 W. Jefferson St., Kirksville, MO, USA
| | - John W Hooker
- Department of Physiology, Kirksville College of Osteopathic Medicine, A.T. Still University, 800 W. Jefferson St., Kirksville, MO, USA
| | - Mahima Thapa
- Department of Biology, Truman State University, 100 E. Normal Ave., Kirksville, MO, USA
| | - Mason J Wilcox
- Department of Biology, Truman State University, 100 E. Normal Ave., Kirksville, MO, USA
| | - Daniela Ostrowski
- Department of Biology, Truman State University, 100 E. Normal Ave., Kirksville, MO, USA
| | - Tim D Ostrowski
- Department of Physiology, Kirksville College of Osteopathic Medicine, A.T. Still University, 800 W. Jefferson St., Kirksville, MO, USA.
| |
Collapse
|
18
|
Silva SSL, Tureck LV, Souza LC, Mello-Hortega JV, Piumbini AL, Teixeira MD, Furtado-Alle L, Vital MABF, Souza RLR. Animal model of Alzheimer's disease induced by streptozotocin: New insights about cholinergic pathway. Brain Res 2023; 1799:148175. [PMID: 36436686 DOI: 10.1016/j.brainres.2022.148175] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Alzheimer's disease (AD) is of multifactorial origin, and still presents several gaps regarding its development and progression. Disorders of the cholinergic system are well known to be involved in the pathogenesis of AD, characterized by increased acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) and decreased acetyltransferase (ChAT) enzymatic activities. Late onset AD (LOAD) animal model induced by intracerebroventricular injection of streptozotocin (icv-STZ) showed promising results in this context, due to the similarity with the pathophysiology of human LOAD. Thus, this study aimed to assess the long-term effects of icv-STZ on the cholinergic system, through the measuring of AChE and BChE enzymatic activities in hippocampus, prefrontal cortex and liver of animals euthanized 30 and 120-days after the icv-STZ. Regarding the cholinergic response to icv-STZ, the 30-days and 120-days STZ-induced rats exhibit decreased AChE and BChE activities only in the hippocampus. The cognitive deficit was more consistent in the 30-days post icv-STZ animals, as was the weight loss. This is the first study to investigate the long-term effects (more than 60 days) of the icv-STZ on AChE and BChE activities, and our results, as well as those of a recent study, suggest that the cholinergic system may not be compromised by icv-STZ, at least in the long term, which means that this model may not be the best model for studying the cholinergic system in AD or that it is informative only for a short period.
Collapse
Affiliation(s)
- Saritha S L Silva
- Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Luciane V Tureck
- Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Leonardo C Souza
- Department of Pharmacology, Federal University of Paraná, Curitiba, Brazil
| | | | | | - Mayza D Teixeira
- Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Lupe Furtado-Alle
- Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Maria A B F Vital
- Department of Pharmacology, Federal University of Paraná, Curitiba, Brazil
| | - Ricardo L R Souza
- Department of Genetics, Federal University of Paraná, Curitiba, Brazil.
| |
Collapse
|
19
|
Therapeutic effects of CORM3 and NaHS in chronic kidney disease induced cognitive impairment via the interaction between carbon monoxide and hydrogen sulfide on Nrf2/HO-1 signaling pathway in rats. Chem Biol Interact 2022; 368:110217. [PMID: 36252702 DOI: 10.1016/j.cbi.2022.110217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/27/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022]
|
20
|
Performance of the intracerebroventricularly injected streptozotocin Alzheimer's disease model in a translationally relevant, aged and experienced rat population. Sci Rep 2022; 12:20247. [PMID: 36424423 PMCID: PMC9691696 DOI: 10.1038/s41598-022-24292-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
The intracerebroventricularly (icv) injected streptozotocin (STZ) induced brain state is a widely used model of sporadic Alzheimer-disease (AD). However, data have been generated in young, naive albino rats. We postulate that the translationally most relevant animal population of an AD model should be that of aged rats with substantial learning history. The objective of the study was thus to probe the model in old rats with knowledge in various cognitive domains. Long-Evans rats of 23 and 10 months age with acquired knowledge in five-choice serial reaction time task (5-CSRTT), a cooperation task, Morris water-maze (MWM) and "pot-jumping" exercise were treated with 3 × 1.5 mg/kg icv. STZ and their performance were followed for 3 months in the above and additional behavioral assays. Both STZ-treated age groups showed significant impairment in the MWM (spatial learning) and novel object recognition test (recognition memory) but not in passive avoidance and fear conditioning paradigms (fear memory). In young STZ treated rats, significant differences were also found in the 5CSRTT (attention) and pot jumping test (procedural learning) while in old rats a significant increase in hippocampal phospho-tau/tau protein ratio was observed. No significant difference was found in the cooperation (social cognition) and pairwise discrimination (visual memory) assays and hippocampal β-amyloid levels. STZ treated old animals showed impulsivity-like behavior in several tests. Our results partly coincide with partly deviate from those published on young, albino, unexperienced rats. Beside the age, strain and experience level of the animals differences can also be attributed to the increased dose of STZ, and the applied food restriction regime. The observed cognitive and non-cognitive activity pattern of icv. STZ in aged experienced rats call for more extensive studies with the STZ model to further strengthen and specify its translational validity.
Collapse
|
21
|
Souza LC, Andrade MK, Azevedo EM, Ramos DC, Bail EL, Vital MABF. Andrographolide Attenuates Short-Term Spatial and Recognition Memory Impairment and Neuroinflammation Induced by a Streptozotocin Rat Model of Alzheimer's Disease. Neurotox Res 2022; 40:1440-1454. [PMID: 36029454 DOI: 10.1007/s12640-022-00569-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder clinically manifested by a gradual cognitive decline. Intracerebroventricular injection (ICV) of streptozotocin (STZ), a model of sporadic AD (sAD), shows many aspects of sAD abnormalities (i.e., neuroinflammation, oxidative stress, protein aggregation), resulting in memory impairment. Andrographolide (ANDRO), a natural diterpene lactone, has numerous bioactivities including anti-inflammatory and antioxidant properties. Studies in rodents revealed that ANDRO has neuroprotective properties and restores cognitive impairment. In the present study, we investigated the effects of ANDRO in the ICV-STZ model relative to short-term spatial memory (object location test (OLT) and Y maze test), short-term recognition memory (object recognition test (ORT)), locomotor activity (open field test (OFT)), expression of amyloid precursor protein (APP), and activation of astrocytes (glial fibrillary acidic protein (GFAP) expression) and microglia (ionized calcium-binding adapter molecule-1 (Iba-1) immunohistochemistry) in the prefrontal cortex (PFC) and hippocampus (HIP). Wistar rats were injected ICV with STZ (3 mg/kg) or vehicle and treated with ANDRO (2 mg/kg, i.p.; three times per week). After four weeks, ANDRO attenuated the impairments of the Y maze and ORT performances, and the increase of astrocyte activation in the PFC induced by the ICV-STZ model. In addition, ANDRO decreased the number of activated microglia cells in the HIP of STZ-injected rats. The APP expression was not altered, neither by the STZ nor ANDRO. ANDRO showed a beneficial effect on memory impairment and neuroinflammation in the STZ model of AD.
Collapse
Affiliation(s)
- Leonardo C Souza
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil.
| | - Marcos K Andrade
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Evellyn M Azevedo
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Daniele C Ramos
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Ellen L Bail
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Maria A B F Vital
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| |
Collapse
|
22
|
Canatelli-Mallat M, Chiavellini P, Lehmann M, Goya RG, Morel GR. AGE-RELATED LOSS OF RECOGNITION MEMORY AND ITS CORRELATION WITH HIPPOCAMPAL AND PERIRHINAL CORTEX CHANGES IN FEMALE SPRAGUE-DAWLEY RATS. Behav Brain Res 2022; 435:114026. [DOI: 10.1016/j.bbr.2022.114026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 11/02/2022]
|
23
|
Pourmohammadi S, Roghani M, Kiasalari Z, Khalili M. Paeonol Ameliorates Cuprizone-Induced Hippocampal Demyelination and Cognitive Deficits through Inhibition of Oxidative and Inflammatory Events. J Mol Neurosci 2022; 72:748-758. [PMID: 35001353 DOI: 10.1007/s12031-021-01951-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/19/2021] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is a chronic and inflammatory disorder of the central nervous system with autoimmune nature that is typified by varying degrees of demyelination and axonal damage. Paeonol is an active ingredient in some medicinal plants with anti-inflammatory and neuroprotective property. This study was conducted to reveal whether paeonol can alleviate hippocampal demyelination and cognitive deficits in cuprizone-induced murine model of demyelination as a model of MS. C57BL/6 mice received oral cuprizone (400 mg/kg) for 6 weeks, and paeonol was administered p.o. at two doses of 25 or 100 mg/kg, starting from the second week post-cuprizone for 5 weeks. After assessment of learning and memory in different tasks, oxidative stress and inflammation were evaluated besides immunohistochemical assessment of hippocampal myelin basic protein (MBP). Paeonol (100 mg/kg) properly ameliorated cognitive deficits in Y maze, novel object discrimination (NOD) test, and Barnes maze with no significant improvement of performance in passive avoidance task. In addition, paeonol treatment at the higher dose was also associated with partial restoration of hippocampal level of oxidative stress and inflammatory markers including MDA, ROS, GSH, SOD, catalase, NF-kB, and TNF. Besides, paeonol improved MMP as an index of mitochondrial integrity and health and reduced MPO as a factor of neutrophil infiltration. Furthermore, paeonol treatment prevented hippocampal MBP immunoreactivity, indicating its prevention of demyelination. In conclusion, the current study showed the preventive effect of paeonol against cuprizone-induced demyelination and cognitive deficits through reversing most oxidative stress- and inflammation-related parameters in addition to its improvement of mitochondrial health.
Collapse
Affiliation(s)
- Soosan Pourmohammadi
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| | - Zahra Kiasalari
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| | - Mohsen Khalili
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| |
Collapse
|
24
|
OTHMAN MZ, HASSAN Z, CHE HAS AT. Morris water maze: a versatile and pertinent tool for assessing spatial learning and memory. Exp Anim 2022; 71:264-280. [PMID: 35314563 PMCID: PMC9388345 DOI: 10.1538/expanim.21-0120] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Since its development about 40 years ago (1981–2021), Morris water maze has turned into a very popular tool for assessing spatial learning and memory. Its many advantages have ensured its
pertinence to date. These include its effectiveness in evaluating hippocampal-dependent learning and memory, exemption from motivational differences across diverse experimental
manipulations, reliability in various cross-species studies, and adaptability to many experimental conditions with various test protocols. Nonetheless, throughout its establishment, several
experimental and analysis loopholes have galvanized researchers to assess ways in which it could be improved and adapted to fill this gap. Therefore, in this review, we briefly summarize
these developments since the early years of its establishment through to the most recent advancements in computerized analysis, offering more comprehensive analysis paradigms. In addition,
we discuss the adaptability of the Morris water maze across different test versions and analysis paradigms, providing suggestions with regard to the best paradigms for particular
experimental conditions. Hence, the proper selection of the experimental protocols, analysis paradigms, and consideration of the assay’s limitations should be carefully considered. Given
that appropriate measures are taken, with various adaptations made, the Morris water maze will likely remain a relevant tool to assess the mechanisms of spatial learning and memory.
Collapse
|
25
|
Tayanloo-Beik A, Kiasalari Z, Roghani M. Paeonol Ameliorates Cognitive Deficits in Streptozotocin Murine Model of Sporadic Alzheimer's Disease via Attenuation of Oxidative Stress, Inflammation, and Mitochondrial Dysfunction. J Mol Neurosci 2021; 72:336-348. [PMID: 34797511 DOI: 10.1007/s12031-021-01936-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022]
Abstract
Intracerebroventricular (ICV) microinjection of diabetogenic drug streptozotocin (STZ) in rodents consistently produces a model of sporadic Alzheimer's disease (sAD) which is characterized by tau pathology and concomitant cognitive decline, insulin resistance, neuroinflammation, oxidative stress, and mitochondrial malfunction. Paeonol is an active phenolic component in some medicinal plants like Cortex Moutan with neuroprotective efficacy via exerting anti-inflammatory and anti-oxidative effects. This study was conducted to assess beneficial effect of paeonol in amelioration of cognitive deficits in ICV STZ rat model of sAD. STZ (3 mg/kg) was microinjected into the lateral ventricles on days 0 and 2, and paeonol was given p.o. at two doses of 25 (low) or 100 (high) mg/kg from day 0 (post-surgery) till day 24 post-STZ. Cognitive performance was evaluated in different tasks, and oxidative stress- and inflammation-related parameters were measured in addition to immunohistochemical assessment of glial fibrillary acidic protein (GFAP) as a marker of astrocytes. Paeonol at the higher dose ameliorated cognitive deficits in Barnes maze, novel object recognition (NOR) task, Y maze, and passive avoidance test. In addition, paeonol partially reversed hippocampal malondialdehyde (MDA), reactive oxygen species (ROS), total antioxidant capacity (TAC), superoxide dismutase (SOD), catalase, glutathione reductase, tumor necrosis factor α (TNFα), interleukin 6 (IL-6), mitochondrial membrane potential (MMP), myeloperoxidase (MPO), and acetylcholinesterase (AChE) activity. Paeonol treatment was also associated with lower hippocampal immunoreactivity for GFAP. This study showed that paeonol can alleviate cognitive disturbances in ICV STZ rat model of sAD via ameliorating neuroinflammation, oxidative stress, mitochondrial dysfunction, and also through its attenuation of astrogliosis.
Collapse
Affiliation(s)
- Akram Tayanloo-Beik
- Department of Biology, School of Basic Sciences, Shahed University, Tehran, Iran
| | - Zahra Kiasalari
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| |
Collapse
|
26
|
Voronkov DN, Stavrovskaya AV, Gushchina AS, Olshansky AS. Alterations in tanycytes and related cell populations of arcuate nucleus in streptozotocin-induced Alzheimer disease model. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2021. [DOI: 10.24075/brsmu.2021.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is assumed that dysfunction of tanycytes could be one of the components of pathogenesis of both Alzheimer disease and type 2 diabetes mellitus. The study was aimed to assess alterations in the tanycyte morphology in the Alzheimer disease model. The 3 mg/kg streptozotocin dose was injected in the lateral ventricles of Wistar rats in order to model the Alzheimer disease. Alterations in hypothalamic tanycytes were assessed 2 weeks, 4 weeks, 3 months and 6 months after administration of the toxin. Immunohistochemistry was used to identify the protein markers of tanycytes (vimentin, nestin), astrocytes (GFAP, glutamine synthetase) and neurons (HuC/D), as well as to assess cell proliferation (with the use of Ki67 protein) and mitochondrial alterations (mitochondrial complex IV, PGC1a). Administration of streptozotocin lead to β-amyloid accumulation in hypothalamus and ventricular enlargement (p < 0.001). Streptozotocin damaged both α1/α2 tanycytes and β1 tanycytes. The intensity of vimentin staining in α1/α2 tanycytes decreased by week 4 (p = 0.003), and in β1 tanycytes it decreased in three months (p < 0.001). The same trend was observed for nestin. The number of Ki67+ nuclei decreased (p < 0.05), and the expression of proteins associated with mitochondria changed. The density of hypothalamic tanycytes decreased by week 4 after administration of the toxin. Moreover, astrocyte activation was revealed. However, no prominent damage to both astrocytes and neurons was observed within four weeks after administration of streptozotocin. The revealed high tanycyte vulnerability to streptozotocin is in line with the hypothesis of the role of damage to hypothalamic structures in both local and systemic metabolic disorders occurring in the Alzheimer disease models.
Collapse
Affiliation(s)
- DN Voronkov
- Research Center of Neurology, Moscow, Russia
| | | | | | | |
Collapse
|
27
|
Du Z, Song Y, Chen X, Zhang W, Zhang G, Li H, Chang L, Wu Y. Knockdown of astrocytic Grin2a aggravates β-amyloid-induced memory and cognitive deficits through regulating nerve growth factor. Aging Cell 2021; 20:e13437. [PMID: 34291567 PMCID: PMC8373273 DOI: 10.1111/acel.13437] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/14/2021] [Accepted: 07/03/2021] [Indexed: 12/14/2022] Open
Abstract
Synapse degeneration correlates strongly with cognitive impairments in Alzheimer's disease (AD) patients. Soluble Amyloid-beta (Aβ) oligomers are thought as the major trigger of synaptic malfunctions. Our earlier studies have demonstrated that Aβ oligomers interfere with synaptic function through N-methyl-D-aspartate receptors (NMDARs). Our recent in vitro study found the neuroprotective role of astrocytic GluN2A in the promotion of synapse survival and identified nerve growth factor (NGF) derived from astrocytes, as a likely mediator of astrocytic GluN2A buffering against Aβ synaptotoxicity. Our present in vivo study focused on exploring the precise mechanism of astrocytic GluN2A influencing Aβ synaptotoxicity through regulating NGF. We generated an adeno-associated virus (AAV) expressing an astrocytic promoter (GfaABC1D) shRNA targeted to Grin2a (the gene encoding GluN2A) to perform astrocyte-specific Grin2a knockdown in the hippocampal dentate gyrus, after 3 weeks of virus vector expression, Aβ were bilaterally injected into the intracerebral ventricle. Our results showed that astrocyte-specific knockdown of Grin2a and Aβ application both significantly impaired spatial memory and cognition, which associated with the reduced synaptic proteins PSD95, synaptophysin and compensatory increased NGF. The reduced astrocytic GluN2A can counteract Aβ-induced compensatory protective increase of NGF through regulating pNF-κB, Furin and VAMP3, which modulating the synthesis, mature and secretion of NGF respectively. Our present data reveal, for the first time, a novel mechanism of astrocytic GluN2A in exerting protective effects on synapses at the early stage of Aβ exposure, which may contribute to establish new targets for AD prevention and early therapy.
Collapse
Affiliation(s)
- Zunshu Du
- Beijing Key Laboratory of Neural Regeneration and Repair Department of Anatomy School of Basic Medical Sciences Beijing Institute of Brain Disorders Capital Medical University Beijing China
| | - Yizhi Song
- Beijing Key Laboratory of Neural Regeneration and Repair Department of Anatomy School of Basic Medical Sciences Beijing Institute of Brain Disorders Capital Medical University Beijing China
| | - Xinyue Chen
- Beijing Key Laboratory of Neural Regeneration and Repair Department of Anatomy School of Basic Medical Sciences Beijing Institute of Brain Disorders Capital Medical University Beijing China
| | - Wanning Zhang
- Beijing Key Laboratory of Neural Regeneration and Repair Department of Anatomy School of Basic Medical Sciences Beijing Institute of Brain Disorders Capital Medical University Beijing China
| | - Guitao Zhang
- Beijing Key Laboratory of Neural Regeneration and Repair Department of Anatomy School of Basic Medical Sciences Beijing Institute of Brain Disorders Capital Medical University Beijing China
| | - Hui Li
- Beijing Key Laboratory of Neural Regeneration and Repair Department of Anatomy School of Basic Medical Sciences Beijing Institute of Brain Disorders Capital Medical University Beijing China
| | - Lirong Chang
- Beijing Key Laboratory of Neural Regeneration and Repair Department of Anatomy School of Basic Medical Sciences Beijing Institute of Brain Disorders Capital Medical University Beijing China
| | - Yan Wu
- Beijing Key Laboratory of Neural Regeneration and Repair Department of Anatomy School of Basic Medical Sciences Beijing Institute of Brain Disorders Capital Medical University Beijing China
| |
Collapse
|
28
|
Zappa Villar MF, López Hanotte J, Crespo R, Pardo J, Reggiani PC. Insulin-like growth factor 1 gene transfer for sporadic Alzheimer's disease: New evidence for trophic factor mediated hippocampal neuronal and synaptic recovery-based behavior improvement. Hippocampus 2021; 31:1137-1153. [PMID: 34324234 DOI: 10.1002/hipo.23379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/04/2021] [Accepted: 07/19/2021] [Indexed: 12/23/2022]
Abstract
Sporadic Alzheimer's disease (sAD) is the most prevalent neurodegenerative disorder with no cure. Patients typically suffer from cognitive impairment imprinted by irreversible neocortex and hippocampal degeneration with overt synaptic and neuron dysfunction. Insulin-like growth factor 1 (IGF1) has proven to be a potent neuroprotective molecule in animal models of age-related neurodegeneration. In this regard, adenoviral gene transfer aiming at IGF1 brain overexpression has been hitherto an underexplored approach for the sAD treatment. We postulated enhanced IGF1 signaling in the brain as a restorative means in the diseased brain to revert cognitive deficit and restore hippocampal function. We implemented recombinant adenovirus mediated intracerebroventricular IGF1 gene transfer on the streptozotocin (STZ) induced sAD rat model, using 3-month-old male Sprague Dawley rats. This approach enhanced IGF1 signaling in the hippocampus and dampened sAD phosphorylated Tau. We found a remarkable short-term improvement in species-typical behavior, recognition memory, spatial memory, and depressive-like behavior. Histological analysis revealed a significant recovery of immature hippocampal neurons. We additionally recorded an increase in hippocampal microglial cells, which we suggest to exert anti-inflammatory effects. Finally, we found decreased levels of pre- and postsynaptic proteins in the hippocampus of STZ animals. Interestingly, IGF1 gene transfer increased the levels of PSD95 and GAD65/67 synaptic markers, indicating that the treatment enhanced the synaptic plasticity. We conclude that exogenous activation of IGF1 signaling pathway, 1 week after intracerebroventricular STZ administration, protects hippocampal immature neurons, dampens phosphorylated Tau levels, improves synaptic function and therefore performs therapeutically on the sAD STZ model. Hence, this study provides strong evidence for the use of this trophic factor to treat AD and age-related neurodegeneration.
Collapse
Affiliation(s)
- María Florencia Zappa Villar
- Institute for Biochemical Research (INIBIOLP)-National Scientific and Technical Research Council (CONICET)-School of Medical Sciences, National University of La Plata (UNLP), La Plata, Argentina
| | - Juliette López Hanotte
- Institute for Biochemical Research (INIBIOLP)-National Scientific and Technical Research Council (CONICET)-School of Medical Sciences, National University of La Plata (UNLP), La Plata, Argentina
| | - Rosana Crespo
- Institute of Experimental Pharmacology of Córdoba (IFEC-CONICET), Department of Pharmacology, School of Chemical Sciences, National University of Córdoba, Córdoba, Argentina
| | - Joaquín Pardo
- Institute for Biochemical Research (INIBIOLP)-National Scientific and Technical Research Council (CONICET)-School of Medical Sciences, National University of La Plata (UNLP), La Plata, Argentina.,Molecular Neuromodulation, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Paula Cecilia Reggiani
- Institute for Biochemical Research (INIBIOLP)-National Scientific and Technical Research Council (CONICET)-School of Medical Sciences, National University of La Plata (UNLP), La Plata, Argentina.,Department of Cytology, Histology and Embryology B, School of Medical Sciences, UNLP, La Plata, Argentina
| |
Collapse
|
29
|
Ahmed HA, Ismael S, Mirzahosseini G, Ishrat T. Verapamil Prevents Development of Cognitive Impairment in an Aged Mouse Model of Sporadic Alzheimer's Disease. Mol Neurobiol 2021; 58:3374-3387. [PMID: 33704677 DOI: 10.1007/s12035-021-02350-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/04/2021] [Indexed: 12/20/2022]
Abstract
Currently, dementia is the only leading cause of death that is still on the rise, with total costs already exceeding those of cancer and heart disease and projected to increase even further in the coming years. Unfortunately, there are no satisfactory treatments and attempts to develop novel, more effective treatments have been extremely costly, albeit unsuccessful thus far. This has led us to investigate the use of established drugs, licensed for other therapeutic indications, for their potential application in cognitive disorders. This strategy, referred to as "drug repositioning," has been successful in many other areas including cancer and cardiovascular diseases. To our knowledge, this is the first study to investigate the effects of long-term treatment with verapamil, a calcium channel blocker commonly prescribed for various cardiovascular conditions and recently applied for prevention of cluster headaches, on the development of cognitive impairment in aged animals. Verapamil was studied at a low dose (1mg/kg/d) in a mouse model of sporadic Alzheimer's disease (sAD). Oral treatment with verapamil or vehicle was started, 24 h post-intracerebroventricular (ICV) streptozotocin/(STZ), in 12-month-old animals and continued for 3 months. Cognitive function was assessed using established tests for spatial learning, short-term/working memory, and long-term/reference memory. Our findings demonstrate that long-term low-dose verapamil effectively prevents development of ICV/STZ-induced cognitive impairment. It mitigates the astrogliosis and synaptic toxicity otherwise induced by ICV/STZ in the hippocampus of aged animals. These findings indicate that long-term, low-dose verapamil may delay progression of sAD in susceptible subjects of advanced age.
Collapse
Affiliation(s)
- Heba A Ahmed
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Saifudeen Ismael
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Golnoush Mirzahosseini
- Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
- Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
- College of Medicine, Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, 875 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA.
| |
Collapse
|
30
|
Gáspár A, Hutka B, Ernyey AJ, Tajti BT, Varga BT, Zádori ZS, Gyertyán I. Intracerebroventricularly Injected Streptozotocin Exerts Subtle Effects on the Cognitive Performance of Long-Evans Rats. Front Pharmacol 2021; 12:662173. [PMID: 34025423 PMCID: PMC8138205 DOI: 10.3389/fphar.2021.662173] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/26/2021] [Indexed: 01/24/2023] Open
Abstract
Intracerebroventricularly injected streptozotocin (STZ)-induced learning impairment has been an increasingly used rat model of Alzheimer disease. The evoked pathological changes involve many symptoms of the human disease (cognitive decline, increase in β-amyloid and phospho-tau level, amyloid plaque-like deposits). However, the model has predominantly been used with Wistar rats in the literature. The objective of the current study was to transfer it to Long-Evans rats with the ulterior aim to integrate it in a complex cognitive test battery where we use this strain because of its superior cognitive capabilities. We performed two experiments (EXP1, EXP2) with three months old male animals. At EXP1, rats were treated with 2 × 1.5 mg/kg STZ (based on the literature) or citrate buffer vehicle injected bilaterally into the lateral ventricles on days 1 and 3. At EXP2 animals were treated with 3 × 1.5 mg/kg STZ or citrate buffer vehicle injected in the same way as in EXP1 at days 1, 3, and 5. Learning and memory capabilities of the rats were then tested in the following paradigms: five choice serial reaction time test (daily training, started from week 2 or 8 post surgery in Exp1 or Exp2, respectively, and lasting until the end of the experiment); novel object recognition (NOR) test (at week 8 or 14), passive avoidance (at week 11 or 6) and Morris water-maze (at week 14 or 6). 15 or 14 weeks after the STZ treatment animals were sacrificed and brain phospho-tau/tau protein ratio and β -amyloid level were determined by western blot technique. In EXP1 we could not find any significant difference between the treated and the control groups in any of the assays. In EXP2 we found significant impairment in the NOR test and elevated β-amyloid level in the STZ treated group in addition to slower learning of the five-choice paradigm and a trend for increased phospho-tau/tau ratio. Altogether our findings suggest that the Long-Evans strain may be less sensitive to the STZ treatment than the Wistar rats and higher doses may be needed to trigger pathological changes in these animals. The results also highlight the importance of strain diversity in modelling human diseases.
Collapse
|
31
|
Dattilo MA, Benzo Y, Herrera LM, Prada JG, Lopez PF, Caruso CM, Lasaga M, García CI, Paz C, Maloberti PM. Regulation and role of Acyl-CoA synthetase 4 in glial cells. J Steroid Biochem Mol Biol 2021; 208:105792. [PMID: 33246155 DOI: 10.1016/j.jsbmb.2020.105792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/23/2020] [Accepted: 11/14/2020] [Indexed: 10/22/2022]
Abstract
Acyl-CoA synthetase 4 (Acsl4), an enzyme involved in arachidonic acid (AA) metabolism, participates in physiological and pathological processes such as steroidogenesis and cancer. The role of Acsl4 in neurons and in nervous system development has also been documented but little is known regarding its functionality in glial cells. In turn, several processes in glial cells, including neurosteroidogenesis, stellation and AA uptake, are regulated by cyclic adenosine monophosphate (cAMP) signal. In this context, the aim of this work was to analyze the expression and functional role of Acsl4 in primary rat astrocyte cultures and in the C6 glioma cell line by chemical inhibition and stable silencing, respectively. Results show that Acsl4 expression was regulated by cAMP in both models and that cAMP stimulation of steroidogenic acute regulatory protein mRNA levels was reduced by Acsl4 inhibition or silencing. Also, Acsl4 inhibition reduced progesterone synthesis stimulated by cAMP and also affected cAMP-induced astrocyte stellation, decreasing process elongation and increasing branching complexity. Similar effects were observed for Acsl4 silencing on cAMP-induced C6 cell morphological shift. Moreover, Acsl4 inhibition and silencing reduced proliferation and migration of both cell types. Acsl4 silencing in C6 cells reduced the capacity for colony proliferation and neurosphere formation, the latter ability also being abolished by Acsl4 inhibition. In sum, this work presents novel evidence of Acsl4 involvement in neurosteroidogenesis and the morphological changes of glial cells promoted by cAMP. Furthermore, Acsl4 participates in migration and proliferation, also affecting cell self-renewal. Altogether, these findings provide insights into Acsl4 functions in glial cells.
Collapse
Affiliation(s)
- Melina A Dattilo
- Universidad de Buenos Aires-CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
| | - Yanina Benzo
- Universidad de Buenos Aires-CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
| | - Lucia M Herrera
- Universidad de Buenos Aires-CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Jesica G Prada
- Universidad de Buenos Aires-CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Paula F Lopez
- Universidad de Buenos Aires-CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Carla M Caruso
- Universidad de Buenos Aires-CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular e Histología, Buenos Aires, Argentina
| | - Mercedes Lasaga
- Universidad de Buenos Aires-CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular e Histología, Buenos Aires, Argentina
| | - Corina I García
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina; Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Cristina Paz
- Universidad de Buenos Aires-CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
| | - Paula M Maloberti
- Universidad de Buenos Aires-CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina.
| |
Collapse
|
32
|
Sharma Y, Garabadu D. Intracerebroventricular streptozotocin administration impairs mitochondrial calcium homeostasis and bioenergetics in memory-sensitive rat brain regions. Exp Brain Res 2020; 238:2293-2306. [PMID: 32728854 DOI: 10.1007/s00221-020-05896-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with cardinal manifestation of cognitive dysfunction. The limitation to avail a successful drug candidate encourages researchers to establish an appropriate animal model in the novel anti-AD drug discovery process. In this context, the mechanism of mitochondrial dysfunction in cognitive deficit animals is yet to be established for intracerebroventricular injection of streptozotocin (ICV-STZ). Experimental dementia was induced in male rats by ICV-STZ on day-1 (D-1) of the experimental protocol at a sub-diabetogenic dose (3 mg/kg) twice at an interval of 48 h into both rat lateral ventricles. ICV-STZ caused cognitive decline in terms of increase in the escape latency on D-14 to D-17 and, decrease in the time spent and percentage of distance travelled in the target quadrant during Morris water maze and decrease in the spontaneous alteration behavior during Y-maze tests in rats. Further, ICV-STZ decreased the level of acetylcholine and activity of choline acetyltransferase and increased the activity of acetylcholinesterase in rat hippocampus, pre-frontal cortex and amygdala. Interestingly, ICV-STZ increased the mitochondrial calcium in addition to decrease in the mitochondrial function, integrity and bioenergetics in all rat brain regions. Further, ICV-STZ enhanced the levels of expression of NR1 subunit of N-methyl-D-aspartate receptor, mitochondrial calcium uniporter and sodium-calcium exchanger in these rat brain regions. Thus, NR1-dependent mitochondrial calcium accumulation could be considered as a major attribute to the animal model of ICV-STZ-induced AD-like manifestations. Further, drugs targeting to manage mitochondrial calcium homeostasis could best be studied in this animal model.
Collapse
Affiliation(s)
- Yati Sharma
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, 281 406, India
| | - Debapriya Garabadu
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, 281 406, India.
| |
Collapse
|
33
|
Sharma Y, Garabadu D. Ruthenium red, mitochondrial calcium uniporter inhibitor, attenuates cognitive deficits in STZ-ICV challenged experimental animals. Brain Res Bull 2020; 164:121-135. [PMID: 32858127 DOI: 10.1016/j.brainresbull.2020.08.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with cardinal features of cognitive dysfunction in an individual. Recently, the blockade of mitochondrial calcium uniporter (MCU) exhibits neuroprotective activity in experimental animals. However, the therapeutic potential of MCU has not yet been established in the management of AD. Therefore, the present study explored the therapeutic potential of either Ruthenium red (RR), a MCU blocker, or Spermine, a MCU opener, on the extent of mitochondrial calcium accumulation, function, integrity and bioenergetics in hippocampus, pre-frontal cortex and amygdale of ICV-STZ challenged rats. Experimental AD was induced in male rats by intracerebroventricular injection of streptozotocin (ICV-STZ) on day-1 (D-1) of the experimental protocol at a sub-diabetogenic dose (3 mg/kg) twice at an interval of 48 h into both rat lateral ventricles. RR attenuated ICV-STZ-induced memory-related behavioral abnormalities in Morris water maze and Y-maze tests. RR also attenuated ICV-STZ-induced decrease in the level of acetylcholine and activity of choline acetyltransferase and, increase in the activity of acetylcholinestarase in memory-sensitive rat brain regions. Further, RR attenuated mitochondrial toxicity in terms of reducing mitochondrial calcium accumulation and improving the mitochondrial function, integrity and bioenergetics in memory-sensitive brain regions of ICV-STZ challenged rats. Furthermore, RR attenuated the percentage of apoptotic cells in ICV-STZ challenged rat brain regions. However, Spermine did not alter ICV-STZ-induced behavioral, biochemical and molecular observations in any of the brain regions. These observations indicate the fact that the MCU blockage could be a potential therapeutic option in the management of sporadic type of AD.
Collapse
Affiliation(s)
- Yati Sharma
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | - Debapriya Garabadu
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India.
| |
Collapse
|
34
|
Olesen MA, Torres AK, Jara C, Murphy MP, Tapia-Rojas C. Premature synaptic mitochondrial dysfunction in the hippocampus during aging contributes to memory loss. Redox Biol 2020; 34:101558. [PMID: 32447261 PMCID: PMC7248293 DOI: 10.1016/j.redox.2020.101558] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022] Open
Abstract
Aging is a process characterized by cognitive impairment and mitochondrial dysfunction. In neurons, these organelles are classified as synaptic and non-synaptic mitochondria depending on their localization. Interestingly, synaptic mitochondria from the cerebral cortex accumulate more damage and are more sensitive to swelling than non-synaptic mitochondria. The hippocampus is fundamental for learning and memory, synaptic processes with high energy demand. However, it is unknown if functional differences are found in synaptic and non-synaptic hippocampal mitochondria; and whether this could contribute to memory loss during aging. In this study, we used 3, 6, 12 and 18 month-old (mo) mice to evaluate hippocampal memory and the function of both synaptic and non-synaptic mitochondria. Our results indicate that recognition memory is impaired from 12mo, whereas spatial memory is impaired at 18mo. This was accompanied by a differential function of synaptic and non-synaptic mitochondria. Interestingly, we observed premature dysfunction of synaptic mitochondria at 12mo, indicated by increased ROS generation, reduced ATP production and higher sensitivity to calcium overload, an effect that is not observed in non-synaptic mitochondria. In addition, at 18mo both mitochondrial populations showed bioenergetic defects, but synaptic mitochondria were prone to swelling than non-synaptic mitochondria. Finally, we treated 2, 11, and 17mo mice with MitoQ or Curcumin (Cc) for 5 weeks, to determine if the prevention of synaptic mitochondrial dysfunction could attenuate memory loss. Our results indicate that reducing synaptic mitochondrial dysfunction is sufficient to decrease age-associated cognitive impairment. In conclusion, our results indicate that age-related alterations in ATP produced by synaptic mitochondria are correlated with decreases in spatial and object recognition memory and propose that the maintenance of functional synaptic mitochondria is critical to prevent memory loss during aging. Hippocampus-dependent learning and memory are impaired with age, which correlated with synaptic mitochondrial dysfunction. Synaptic mitochondria fail before non-synaptic mitochondria, indicating premature synaptic mitochondrial damage in aging. Reducing synaptic mitochondrial dysfunction, with MitoQ or Curcumin, decrease age-associated hippocampal memory impairment. Age-related changes in ATP production of synaptic mitochondria correlated with decreased hippocampal memory. Maintenance of functional synaptic mitochondria is critical to prevent memory loss during aging.
Collapse
Affiliation(s)
- Margrethe A Olesen
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Chile
| | - Angie K Torres
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Chile
| | - Claudia Jara
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Chile
| | - Michael P Murphy
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Chile.
| |
Collapse
|
35
|
Effects of circadian rhythm disorder on the hippocampus of SHR and WKY rats. Neurobiol Learn Mem 2019; 168:107141. [PMID: 31857218 DOI: 10.1016/j.nlm.2019.107141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 01/25/2023]
Abstract
The present study investigated the effects of circadian rhythm disorder (CRD) on the hippocampus of SHR and WKY rats. Male SHR rats (n = 27) and WKY rats (n = 27) were randomly divided into six groups: SHR and WKY normal (N)CR, SHR and WKY CRD 16/8 (CRD16/8), and SHR and WKY CRD 12/12 (CRD12/12). Activity patterns were adjusted using different photoperiods over 90 days and any changes were recorded. Rats were tested in the Morris water maze and in a novel object recognition experiment; serologic analysis, magnetic resonance imaging (diffusion tensor imaging + arterial spin labeling), hippocampal Nissl staining, Fluoro-Jade B staining, and immunohistochemistry were also performed. The results showed that both types of inverted photoperiod reduced CR amplitude and prolonged the circadian period. CRD and hypertension reduced memory performance and novel object recognition and preference. The decreases in memory and preference indices were greater in rats in the CRD12/12 group compared to the CRD16/8 group. CRD and hypertension decreased fractional anisotropy values, the number of neurons and astrocytes in the hippocampus, and the expression of brain-derived neurotrophic factor and synapsin 1; it also enhanced the degeneration of neurons and microglia and reduced blood flow in the hippocampus, and increased nuclear factor κB, caspase, neuron-specific enolase, and interleukin-6 levels. These findings reveal a biological basis for the link between CRD and cognitive decline, which has implications for CRD caused by shift work and other factors.
Collapse
|
36
|
Mesenchymal Stem Cells Therapy Improved the Streptozotocin-Induced Behavioral and Hippocampal Impairment in Rats. Mol Neurobiol 2019; 57:600-615. [DOI: 10.1007/s12035-019-01729-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/31/2019] [Indexed: 12/20/2022]
|