1
|
Khalil RM, Shulman LM, Gruber-Baldini AL, Shakya S, Fenderson R, Van Hoven M, Hausdorff JM, von Coelln R, Cummings MP. Simplification of Mobility Tests and Data Processing to Increase Applicability of Wearable Sensors as Diagnostic Tools for Parkinson's Disease. SENSORS (BASEL, SWITZERLAND) 2024; 24:4983. [PMID: 39124030 PMCID: PMC11314738 DOI: 10.3390/s24154983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Quantitative mobility analysis using wearable sensors, while promising as a diagnostic tool for Parkinson's disease (PD), is not commonly applied in clinical settings. Major obstacles include uncertainty regarding the best protocol for instrumented mobility testing and subsequent data processing, as well as the added workload and complexity of this multi-step process. To simplify sensor-based mobility testing in diagnosing PD, we analyzed data from 262 PD participants and 50 controls performing several motor tasks wearing a sensor on their lower back containing a triaxial accelerometer and a triaxial gyroscope. Using ensembles of heterogeneous machine learning models incorporating a range of classifiers trained on a set of sensor features, we show that our models effectively differentiate between participants with PD and controls, both for mixed-stage PD (92.6% accuracy) and a group selected for mild PD only (89.4% accuracy). Omitting algorithmic segmentation of complex mobility tasks decreased the diagnostic accuracy of our models, as did the inclusion of kinesiological features. Feature importance analysis revealed that Timed Up and Go (TUG) tasks to contribute the highest-yield predictive features, with only minor decreases in accuracy for models based on cognitive TUG as a single mobility task. Our machine learning approach facilitates major simplification of instrumented mobility testing without compromising predictive performance.
Collapse
Affiliation(s)
- Rana M. Khalil
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA;
| | - Lisa M. Shulman
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (L.M.S.); (R.F.); (M.V.H.)
| | - Ann L. Gruber-Baldini
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.L.G.-B.); (S.S.)
| | - Sunita Shakya
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.L.G.-B.); (S.S.)
| | - Rebecca Fenderson
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (L.M.S.); (R.F.); (M.V.H.)
| | - Maxwell Van Hoven
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (L.M.S.); (R.F.); (M.V.H.)
| | - Jeffrey M. Hausdorff
- Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Medical Center, Tel Aviv 6492416, Israel;
- Department of Physical Therapy, Faculty of Medicine & Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Rainer von Coelln
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (L.M.S.); (R.F.); (M.V.H.)
| | - Michael P. Cummings
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA;
| |
Collapse
|
2
|
Shayne M, Molina LA, Hu B, Chomiak T. Implementing Gait Kinematic Trajectory Forecasting Models on an Embedded System. SENSORS (BASEL, SWITZERLAND) 2024; 24:2649. [PMID: 38676266 PMCID: PMC11055148 DOI: 10.3390/s24082649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/21/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Smart algorithms for gait kinematic motion prediction in wearable assistive devices including prostheses, bionics, and exoskeletons can ensure safer and more effective device functionality. Although embedded systems can support the use of smart algorithms, there are important limitations associated with computational load. This poses a tangible barrier for models with increased complexity that demand substantial computational resources for superior performance. Forecasting through Recurrent Topology (FReT) represents a computationally lightweight time-series data forecasting algorithm with the ability to update and adapt to the input data structure that can predict complex dynamics. Here, we deployed FReT on an embedded system and evaluated its accuracy, computational time, and precision to forecast gait kinematics from lower-limb motion sensor data from fifteen subjects. FReT was compared to pretrained hyperparameter-optimized NNET and deep-NNET (D-NNET) model architectures, both with static model weight parameters and iteratively updated model weight parameters to enable adaptability to evolving data structures. We found that FReT was not only more accurate than all the network models, reducing the normalized root-mean-square error by almost half on average, but that it also provided the best balance between accuracy, computational time, and precision when considering the combination of these performance variables. The proposed FReT framework on an embedded system, with its improved performance, represents an important step towards the development of new sensor-aided technologies for assistive ambulatory devices.
Collapse
Affiliation(s)
- Madina Shayne
- Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Leonardo A. Molina
- CSM Optogenetics Platform, University of Calgary, 3330 Hospital Drive, Calgary, AB T2N 4N1, Canada;
| | - Bin Hu
- Division of Translational Neuroscience, Department of Clinical Neurosciences, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada;
| | - Taylor Chomiak
- CSM Optogenetics Platform, University of Calgary, 3330 Hospital Drive, Calgary, AB T2N 4N1, Canada;
- Division of Translational Neuroscience, Department of Clinical Neurosciences, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada;
| |
Collapse
|
3
|
Zhang W, Sun H, Huang D, Zhang Z, Li J, Wu C, Sun Y, Gong M, Wang Z, Sun C, Cui G, Guo Y, Chan P. Detection and prediction of freezing of gait with wearable sensors in Parkinson's disease. Neurol Sci 2024; 45:431-453. [PMID: 37843692 DOI: 10.1007/s10072-023-07017-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 08/06/2023] [Indexed: 10/17/2023]
Abstract
Freezing of gait (FoG) is one of the most distressing symptoms of Parkinson's Disease (PD), commonly occurring in patients at middle and late stages of the disease. Automatic and accurate FoG detection and prediction have emerged as a promising tool for long-term monitoring of PD and implementation of gait assistance systems. This paper reviews the recent development of FoG detection and prediction using wearable sensors, with attention on identifying knowledge gaps that need to be filled in future research. This review searched the PubMed and Web of Science databases to collect studies that detect or predict FoG with wearable sensors. After screening, 89 of 270 articles were included. The data description, extracted features, detection/prediction methods, and classification performance were extracted from the articles. As the number of papers of this area is increasing, the performance has been steadily improved. However, small datasets and inconsistent evaluation processes still hinder the application of FoG detection and prediction with wearable sensors in clinical practice.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Neurology, Suining County People's Hospital, Xuzhou, 221200, Jiangsu, China
- Department of Neurology, Neurobiology and Geriatrics, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Hong Sun
- Department of Neurology, Neurobiology and Geriatrics, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
- Clinical Center for Parkinson's Disease, Capital Medical University, Beijing, 100053, China
- National Clinical Research Center of Geriatric Disorders, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Parkinson Disease Center of Beijing Institute for Brain Disorders, Beijing, 100053, China
| | - Debin Huang
- Department of Automation Science and Electrical Engineering, Beihang University, Beijing, 100191, China
| | - Zixuan Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Jinyu Li
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Chan Wu
- Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing, 100029, China
| | - Yingying Sun
- Department of Neurology, Suining County People's Hospital, Xuzhou, 221200, Jiangsu, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Mengyi Gong
- Department of Neurology, Suining County People's Hospital, Xuzhou, 221200, Jiangsu, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Zhi Wang
- Department of Neurology, Suining County People's Hospital, Xuzhou, 221200, Jiangsu, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Chao Sun
- Department of Neurology, Suining County People's Hospital, Xuzhou, 221200, Jiangsu, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Guiyun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China.
| | - Yuzhu Guo
- Department of Automation Science and Electrical Engineering, Beihang University, Beijing, 100191, China.
| | - Piu Chan
- Department of Neurology, Neurobiology and Geriatrics, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.
- Clinical Center for Parkinson's Disease, Capital Medical University, Beijing, 100053, China.
- National Clinical Research Center of Geriatric Disorders, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Parkinson Disease Center of Beijing Institute for Brain Disorders, Beijing, 100053, China.
| |
Collapse
|
4
|
Huang T, Li M, Huang J. Recent trends in wearable device used to detect freezing of gait and falls in people with Parkinson's disease: A systematic review. Front Aging Neurosci 2023; 15:1119956. [PMID: 36875701 PMCID: PMC9975590 DOI: 10.3389/fnagi.2023.1119956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/23/2023] [Indexed: 02/17/2023] Open
Abstract
Background The occurrence of freezing of gait (FOG) is often observed in moderate to last-stage Parkinson's disease (PD), leading to a high risk of falls. The emergence of the wearable device has offered the possibility of FOG detection and falls of patients with PD allowing high validation in a low-cost way. Objective This systematic review seeks to provide a comprehensive overview of existing literature to establish the forefront of sensors type, placement and algorithm to detect FOG and falls among patients with PD. Methods Two electronic databases were screened by title and abstract to summarize the state of art on FOG and fall detection with any wearable technology among patients with PD. To be eligible for inclusion, papers were required to be full-text articles published in English, and the last search was completed on September 26, 2022. Studies were excluded if they; (i) only examined cueing function for FOG, (ii) only used non-wearable devices to detect or predict FOG or falls, and (iii) did not provide sufficient details about the study design and results. A total of 1,748 articles were retrieved from two databases. However, only 75 articles were deemed to meet the inclusion criteria according to the title, abstract and full-text reviewed. Variable was extracted from chosen research, including authorship, details of the experimental object, type of sensor, device location, activities, year of publication, evaluation in real-time, the algorithm and detection performance. Results A total of 72 on FOG detection and 3 on fall detection were selected for data extraction. There were wide varieties of the studied population (from 1 to 131), type of sensor, placement and algorithm. The thigh and ankle were the most popular device location, and the combination of accelerometer and gyroscope was the most frequently used inertial measurement unit (IMU). Furthermore, 41.3% of the studies used the dataset as a resource to examine the validity of their algorithm. The results also showed that increasingly complex machine-learning algorithms had become the trend in FOG and fall detection. Conclusion These data support the application of the wearable device to access FOG and falls among patients with PD and controls. Machine learning algorithms and multiple types of sensors have become the recent trend in this field. Future work should consider an adequate sample size, and the experiment should be performed in a free-living environment. Moreover, a consensus on provoking FOG/fall, methods of assessing validity and algorithm are necessary.Systematic Review Registration: PROSPERO, identifier CRD42022370911.
Collapse
Affiliation(s)
- Tinghuai Huang
- Laboratory of Laser Sports Medicine, South China Normal University, Guangzhou, Guangdong, China
| | - Meng Li
- Laboratory of Laser Sports Medicine, South China Normal University, Guangzhou, Guangdong, China
| | - Jianwei Huang
- Department of Gastroenterology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Ramesh V, Bilal E. Detecting motor symptom fluctuations in Parkinson's disease with generative adversarial networks. NPJ Digit Med 2022; 5:138. [PMID: 36085350 PMCID: PMC9463161 DOI: 10.1038/s41746-022-00674-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 08/08/2022] [Indexed: 11/09/2022] Open
Abstract
Parkinson's disease is a neurodegenerative disorder characterized by several motor symptoms that develop gradually: tremor, bradykinesia, limb rigidity, and gait and balance problems. While there is no cure, levodopa therapy has been shown to mitigate symptoms. A patient on levodopa experiences cycles in the severity of their symptoms, characterized by an ON state-when the drug is active-and an OFF state-when symptoms worsen as the drug wears off. The longitudinal progression of the disease is monitored using episodic assessments performed by trained physicians in the clinic, such as the Unified Parkinson's Disease Rating Scale (UPDRS). Lately, there has been an effort in the field to develop continuous, objective measures of motor symptoms based on wearable sensors and other remote monitoring devices. In this work, we present an effort towards such a solution that uses a single wearable inertial sensor to automatically assess the postural instability and gait disorder (PIGD) of a Parkinson's disease patient. Sensor data was collected from two independent studies of subjects performing the UPDRS test and then used to train and validate a convolutional neural network model. Given the typical limited size of such studies we also employed the use of generative adversarial networks to improve the performance of deep-learning models that usually require larger amounts of data for training. We show that for a 2-min walk test, our method's predicted PIGD scores can be used to identify a patient's ON/OFF states better than a physician evaluated on the same criteria. This result paves the way for more reliable, continuous tracking of Parkinson's disease symptoms.
Collapse
Affiliation(s)
- Vishwajith Ramesh
- Department of Biomedical Informatics, University of California, San Diego, CA, USA.
| | - Erhan Bilal
- T.J. Watson Research Center, IBM Research, Yorktown Heights, NY, USA
| |
Collapse
|
6
|
Tripathi S, Malhotra A, Qazi M, Chou J, Wang F, Barkan S, Hellmers N, Henchcliffe C, Sarva H. Clinical Review of Smartphone Applications in Parkinson's Disease. Neurologist 2022; 27:183-193. [PMID: 35051970 DOI: 10.1097/nrl.0000000000000413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is the second leading neurodegenerative disease worldwide. Important advances in monitoring and treatment have been made in recent years. This article reviews literature on utility of smartphone applications in monitoring PD symptoms that may ultimately facilitate improved patient care, and on movement modulation as a potential therapeutic. REVIEW SUMMARY Novel mobile phone applications can provide one-time and/or continuous data to monitor PD motor symptoms in person or remotely, that may support precise therapeutic adjustments and management decisions. Apps have also been developed for medication management and treatment. CONCLUSIONS Smartphone applications provide a wide array of platforms allowing for meaningful short-term and long-term data collection and are also being tested for intervention. However, the variability of the applications and the need to translate complicated sensor data may hinder immediate clinical applicability. Future studies should involve stake-holders early in the design process to promote usability and streamline the interface between patients, clinicians, and PD apps.
Collapse
Affiliation(s)
- Susmit Tripathi
- Department of Neurology, New York-Presbyterian Hospital/Weill Cornell Medical Center
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ashwin Malhotra
- Department of Neurology, New York-Presbyterian Hospital/Weill Cornell Medical Center
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Murtaza Qazi
- Weill Cornell Medicine Qatar, Education City, Qatar
| | - Jingyuan Chou
- Department of Neurology, New York-Presbyterian Hospital/Weill Cornell Medical Center
| | - Fei Wang
- Department of Neurology, New York-Presbyterian Hospital/Weill Cornell Medical Center
| | - Samantha Barkan
- Department of Neurology, New York-Presbyterian Hospital/Weill Cornell Medical Center
| | - Natalie Hellmers
- Department of Neurology, New York-Presbyterian Hospital/Weill Cornell Medical Center
| | - Claire Henchcliffe
- Department of Neurology, New York-Presbyterian Hospital/Weill Cornell Medical Center
- Department of Neurology, University of California, Irvine, Irvine, CA
| | - Harini Sarva
- Department of Neurology, New York-Presbyterian Hospital/Weill Cornell Medical Center
| |
Collapse
|
7
|
Salchow-Hömmen C, Skrobot M, Jochner MCE, Schauer T, Kühn AA, Wenger N. Review-Emerging Portable Technologies for Gait Analysis in Neurological Disorders. Front Hum Neurosci 2022; 16:768575. [PMID: 35185496 PMCID: PMC8850274 DOI: 10.3389/fnhum.2022.768575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/07/2022] [Indexed: 01/29/2023] Open
Abstract
The understanding of locomotion in neurological disorders requires technologies for quantitative gait analysis. Numerous modalities are available today to objectively capture spatiotemporal gait and postural control features. Nevertheless, many obstacles prevent the application of these technologies to their full potential in neurological research and especially clinical practice. These include the required expert knowledge, time for data collection, and missing standards for data analysis and reporting. Here, we provide a technological review of wearable and vision-based portable motion analysis tools that emerged in the last decade with recent applications in neurological disorders such as Parkinson's disease and Multiple Sclerosis. The goal is to enable the reader to understand the available technologies with their individual strengths and limitations in order to make an informed decision for own investigations and clinical applications. We foresee that ongoing developments toward user-friendly automated devices will allow for closed-loop applications, long-term monitoring, and telemedical consulting in real-life environments.
Collapse
Affiliation(s)
- Christina Salchow-Hömmen
- Department of Neurology With Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Matej Skrobot
- Department of Neurology With Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Magdalena C E Jochner
- Department of Neurology With Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Schauer
- Control Systems Group, Technische Universität Berlin, Berlin, Germany
| | - Andrea A Kühn
- Department of Neurology With Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Charité-Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research Centre, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases, DZNE, Berlin, Germany
| | - Nikolaus Wenger
- Department of Neurology With Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
8
|
AIM in Neurodegenerative Diseases: Parkinson and Alzheimer. Artif Intell Med 2022. [DOI: 10.1007/978-3-030-64573-1_190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Xie Y, Lu L, Gao F, He SJ, Zhao HJ, Fang Y, Yang JM, An Y, Ye ZW, Dong Z. Integration of Artificial Intelligence, Blockchain, and Wearable Technology for Chronic Disease Management: A New Paradigm in Smart Healthcare. Curr Med Sci 2021; 41:1123-1133. [PMID: 34950987 PMCID: PMC8702375 DOI: 10.1007/s11596-021-2485-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/03/2021] [Indexed: 12/19/2022]
Abstract
Chronic diseases are a growing concern worldwide, with nearly 25% of adults suffering from one or more chronic health conditions, thus placing a heavy burden on individuals, families, and healthcare systems. With the advent of the "Smart Healthcare" era, a series of cutting-edge technologies has brought new experiences to the management of chronic diseases. Among them, smart wearable technology not only helps people pursue a healthier lifestyle but also provides a continuous flow of healthcare data for disease diagnosis and treatment by actively recording physiological parameters and tracking the metabolic state. However, how to organize and analyze the data to achieve the ultimate goal of improving chronic disease management, in terms of quality of life, patient outcomes, and privacy protection, is an urgent issue that needs to be addressed. Artificial intelligence (AI) can provide intelligent suggestions by analyzing a patient's physiological data from wearable devices for the diagnosis and treatment of diseases. In addition, blockchain can improve healthcare services by authorizing decentralized data sharing, protecting the privacy of users, providing data empowerment, and ensuring the reliability of data management. Integrating AI, blockchain, and wearable technology could optimize the existing chronic disease management models, with a shift from a hospital-centered model to a patient-centered one. In this paper, we conceptually demonstrate a patient-centric technical framework based on AI, blockchain, and wearable technology and further explore the application of these integrated technologies in chronic disease management. Finally, the shortcomings of this new paradigm and future research directions are also discussed.
Collapse
Affiliation(s)
- Yi Xie
- Department of Orthopedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Laboratory of Intelligent Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Lu
- Department of Orthopedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Laboratory of Intelligent Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fei Gao
- Department of Orthopedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Laboratory of Intelligent Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuang-Jiang He
- Laboratory of Intelligent Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hui-Juan Zhao
- Laboratory of Intelligent Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ying Fang
- Laboratory of Intelligent Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jia-Ming Yang
- Laboratory of Intelligent Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ying An
- Laboratory of Intelligent Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Wuhan Fourth Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, China
| | - Zhe-Wei Ye
- Department of Orthopedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Laboratory of Intelligent Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhe Dong
- School of Cyber Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
10
|
Chomiak T, Rasiah NP, Molina LA, Hu B, Bains JS, Füzesi T. A versatile computational algorithm for time-series data analysis and machine-learning models. NPJ PARKINSONS DISEASE 2021; 7:97. [PMID: 34753948 PMCID: PMC8578326 DOI: 10.1038/s41531-021-00240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/29/2021] [Indexed: 11/10/2022]
Abstract
Here we introduce Local Topological Recurrence Analysis (LoTRA), a simple computational approach for analyzing time-series data. Its versatility is elucidated using simulated data, Parkinsonian gait, and in vivo brain dynamics. We also show that this algorithm can be used to build a remarkably simple machine-learning model capable of outperforming deep-learning models in detecting Parkinson’s disease from a single digital handwriting test.
Collapse
Affiliation(s)
- Taylor Chomiak
- Division of Translational Neuroscience, Department of Clinical Neurosciences, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada. .,CSM Optogenetics Facility, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada.
| | - Neilen P Rasiah
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Leonardo A Molina
- CSM Optogenetics Facility, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada
| | - Bin Hu
- Division of Translational Neuroscience, Department of Clinical Neurosciences, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada
| | - Jaideep S Bains
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Tamás Füzesi
- CSM Optogenetics Facility, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada. .,Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
11
|
Abou L, Peters J, Wong E, Akers R, Dossou MS, Sosnoff JJ, Rice LA. Gait and Balance Assessments using Smartphone Applications in Parkinson's Disease: A Systematic Review. J Med Syst 2021; 45:87. [PMID: 34392429 PMCID: PMC8364438 DOI: 10.1007/s10916-021-01760-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/04/2021] [Indexed: 01/21/2023]
Abstract
Gait dysfunctions and balance impairments are key fall risk factors and associated with reduced quality of life in individuals with Parkinson's Disease (PD). Smartphone-based assessments show potential to increase remote monitoring of the disease. This review aimed to summarize the validity, reliability, and discriminative abilities of smartphone applications to assess gait, balance, and falls in PD. Two independent reviewers screened articles systematically identified through PubMed, Web of Science, Scopus, CINAHL, and SportDiscuss. Studies that used smartphone-based gait, balance, or fall applications in PD were retrieved. The validity, reliability, and discriminative abilities of the smartphone applications were summarized and qualitatively discussed. Methodological quality appraisal of the studies was performed using the quality assessment tool for observational cohort and cross-sectional studies. Thirty-one articles were included in this review. The studies present mostly with low risk of bias. In total, 52% of the studies reported validity, 22% reported reliability, and 55% reported discriminative abilities of smartphone applications to evaluate gait, balance, and falls in PD. Those studies reported strong validity, good to excellent reliability, and good discriminative properties of smartphone applications. Only 19% of the studies formally evaluated the usability of their smartphone applications. The current evidence supports the use of smartphone to assess gait and balance, and detect freezing of gait in PD. More studies are needed to explore the use of smartphone to predict falls in this population. Further studies are also warranted to evaluate the usability of smartphone applications to improve remote monitoring in this population.Registration: PROSPERO CRD 42020198510.
Collapse
Affiliation(s)
- Libak Abou
- Department of Kinesiology and Community Health, College of Applied Health Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Joseph Peters
- Department of Kinesiology and Community Health, College of Applied Health Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ellyce Wong
- Department of Kinesiology and Community Health, College of Applied Health Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rebecca Akers
- Department of Rehabilitation Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Mauricette Sènan Dossou
- Centre National Hospitalier et Universitaire de Pneumo-Phtisiologie, Cotonou, Littoral, Benin
| | - Jacob J Sosnoff
- Department of Physical Therapy and Rehabilitation Science, School of Health Professions, Medical Center, University of Kansas, Kansas City, KS, USA
| | - Laura A Rice
- Department of Kinesiology and Community Health, College of Applied Health Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
12
|
Park DJ, Lee JW, Lee MJ, Ahn SJ, Kim J, Kim GL, Ra YJ, Cho YN, Jeong WB. Evaluation for Parkinsonian Bradykinesia by deep learning modeling of kinematic parameters. J Neural Transm (Vienna) 2021; 128:181-189. [PMID: 33507401 DOI: 10.1007/s00702-021-02301-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/05/2021] [Indexed: 01/20/2023]
Abstract
A wearable sensor system is available for monitoring of bradykinesia in patients with Parkinson's disease (PD), however, it remains unclear whether kinematic parameters would reflect clinical severity of PD, or would help clinical diagnosis of physicians. The present study investigated whether the classification model using kinematic parameters from the wearable sensor may show accordance with clinical rating and diagnosis in PD patients. Using the Inertial Measurement Units (IMU) sensor, we measured the movement of finger tapping (FT), hand movements (HM), and rapid alternating movements (RA) in 25 PD patients and 21 healthy controls. Through the analysis of the measured signal, 11 objective features were derived. In addition, a clinician who specializes in movement disorders viewed the test video and evaluated each of the Unified Parkinson's Disease Rating Scale (UPDRS) scores. In all items of FT, HM, RA, the correlation between the linear regression score obtained through objective features (angle, period, coefficient variances for angle and period, change rates of angle and period, angular velocity, total angle, frequency, magnitude, and frequency × magnitude) and the clinician's UPDRS score was analyzed, and there was a significant correlation (rho > 0.7, p < 0.001). PD patients and controls were classified by deep learning using objective features. As a result, it showed a high performance with an area under the curve (AUC) about as high as 0.9 (FT Total = 0.950, HM Total = 0.889, RA Total = 0.888, ALL Total = 0.926. This showed similar performance to the classification result of binary logistic regression and neurologist, and significantly higher than that of family medicine specialists. Our results suggest that the deep learning model using objective features from the IMU sensor can be usefully used to identify and evaluate bradykinesia, especially for general physicians not specializing in neurology.
Collapse
Affiliation(s)
- Dong Jun Park
- School of Mechanical Engineering, Pusan National University, Busan, Republic of Korea
| | - Jun Woo Lee
- Division of Energy and Electric Engineering, Uiduk University, Gyeongju, Republic of Korea
| | - Myung Jun Lee
- Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, Gudeok-ro 179, Seo-gu, Busan, 49241, Republic of Korea.
| | - Se Jin Ahn
- Division of Energy and Electric Engineering, Uiduk University, Gyeongju, Republic of Korea
| | - Jiyoung Kim
- Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, Gudeok-ro 179, Seo-gu, Busan, 49241, Republic of Korea
| | - Gyu Lee Kim
- Department of Family Medicine, Pusan National University Hospital, Busan, Republic of Korea
| | - Young Jin Ra
- Department of Family Medicine, Pusan National University Hospital, Busan, Republic of Korea
| | - Yu Na Cho
- Department of Neurology, Haeundae Bumin Hospital, Busan, Republic of Korea
| | - Weui Bong Jeong
- School of Mechanical Engineering, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
13
|
Davids J, Ashrafian H. AIM in Neurodegenerative Diseases: Parkinson and Alzheimer. Artif Intell Med 2021. [DOI: 10.1007/978-3-030-58080-3_190-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Use of Wearable Sensor Technology in Gait, Balance, and Range of Motion Analysis. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app10010234] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
More than 8.6 million people suffer from neurological disorders that affect their gait and balance. Physical therapists provide interventions to improve patient’s functional outcomes, yet balance and gait are often evaluated in a subjective and observational manner. The use of quantitative methods allows for assessment and tracking of patient progress during and after rehabilitation or for early diagnosis of movement disorders. This paper surveys the state-of-the-art in wearable sensor technology in gait, balance, and range of motion research. It serves as a point of reference for future research, describing current solutions and challenges in the field. A two-level taxonomy of rehabilitation assessment is introduced with evaluation metrics and common algorithms utilized in wearable sensor systems.
Collapse
|
15
|
|
16
|
Hu B, Chomiak T. Wearable technological platform for multidomain diagnostic and exercise interventions in Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 147:75-93. [PMID: 31607363 DOI: 10.1016/bs.irn.2019.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Physical activity and exercise have become a central component of medical management of chronic illness, particular for the elderly who suffer from neurodegenerative disorders that impair their cognition and mobility. This chapter summarizes our recent research showing that a new generation of wearable technology can be adopted as diagnostic and rehabilitation tools for people living with Parkinson's disease. For example, wearable device-enabled 6-min walking test can be automated to eliminate human supervision and many other technical factors that confound the results with conventional testing. With reduced cost and increased test standardization, the technology can be adopted for population-based screening of cardiovascular fitness and gait rehabilitation training efficacy associated with many medical conditions. The Ambulosono platform for multidomain exercise intervention, in particular, has the potential to deliver lasting clinical benefits in slowing PD progression. The platform, through the integration of brisk walking with behavioral shaping strategies such as contingency reinforcement, anticipatory motor control and musical motivational stimulation, creates a home exercise regime that can transform monotonous walking into a pleasurable daily activity and habit.
Collapse
Affiliation(s)
- Bin Hu
- Division of Translational Neuroscience, Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Taylor Chomiak
- Division of Translational Neuroscience, Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|