1
|
Wang QR, Yu X, Li Y, Zhu MZ. Correlations among serum alpha-(1,6)-fucosyltransferase and early symptoms associated with Parkinson's disease: A cross-sectional retrospective study. Brain Res Bull 2024; 212:110959. [PMID: 38643887 DOI: 10.1016/j.brainresbull.2024.110959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/03/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Alpha-(1,6)-fucosyltransferase (FUT8) has been found to play a role in modulating the central immune system and inflammatory responses. Limited studies have assessed the correlations between serum FUT8 levels and various non-motor symptoms associated with early Parkinson's disease (PD). Therefore, our research aims to investigate the associations between serum FUT8 levels and symptoms such as smell dysfunction, sleep duration, sleep problems, and MMSE scores in PD patients. FUT8 and neurofilament light chain (NfL) levels were measured using enzyme-linked immunosorbent assays (ELISA). We analyzed the correlations between serum FUT8 levels, NfL, and early symptoms of PD using Spearman's correlation, multiple linear regression, and logistic regression models. The expression of FUT8 in CSF samples from PD patients was significantly upregulated, with its protein levels in CSF being positively associated with serum levels. Furthermore, there were significant positive associations between serum FUT8 levels with NfL levels, smell dysfunction, short sleep duration, and long sleep duration. However, a significant inverse relationship was observed between FUT8 levels and MMSE scores. Additionally, we explored gender and age differences in the correlations of FUT8 levels and early symptoms in patients. This study reveals that increased FUT8 levels are positively correlated with a higher risk of early PD-associated symptoms. These findings suggest that serum FUT8 could serve as a promising biomarker for the early detection of PD.
Collapse
Affiliation(s)
- Qi-Rong Wang
- Department of Neurology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, China
| | - Xue Yu
- Department of Neurology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, China
| | - Yang Li
- Department of Neurology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, China.
| | - Ming-Zhen Zhu
- Department of Neurology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, China.
| |
Collapse
|
2
|
Qi WY, Sun Y, Guo Y, Tan L. Associations of sleep disorders with serum neurofilament light chain levels in Parkinson's disease. BMC Neurol 2024; 24:147. [PMID: 38693483 PMCID: PMC11061948 DOI: 10.1186/s12883-024-03642-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Sleep disorders are a prevalent non-motor symptom of Parkinson's disease (PD), although reliable biological markers are presently lacking. OBJECTIVES To explore the associations between sleep disorders and serum neurofilament light chain (NfL) levels in individuals with prodromal and early PD. METHODS The study contained 1113 participants, including 585 early PD individuals, 353 prodromal PD individuals, and 175 healthy controls (HCs). The correlations between sleep disorders (including rapid eye movement sleep behavior disorder (RBD) and excessive daytime sleepiness (EDS)) and serum NfL levels were researched using multiple linear regression models and linear mixed-effects models. We further investigated the correlations between the rates of changes in daytime sleepiness and serum NfL levels using multiple linear regression models. RESULTS In baseline analysis, early and prodromal PD individuals who manifested specific behaviors of RBD showed significantly higher levels of serum NfL. Specifically, early PD individuals who experienced nocturnal dream behaviors (β = 0.033; P = 0.042) and movements of arms or legs during sleep (β = 0.027; P = 0.049) showed significantly higher serum NfL levels. For prodromal PD individuals, serum NfL levels were significantly higher in individuals suffering from disturbed sleep (β = 0.038; P = 0.026). Our longitudinal findings support these baseline associations. Serum NfL levels showed an upward trend in early PD individuals who had a higher total RBDSQ score (β = 0.002; P = 0.011) or who were considered as probable RBD (β = 0.012; P = 0.009) or who exhibited behaviors on several sub-items of the RBDSQ. In addition, early PD individuals who had a high total ESS score (β = 0.001; P = 0.012) or who were regarded to have EDS (β = 0.013; P = 0.007) or who exhibited daytime sleepiness in several conditions had a trend toward higher serum NfL levels. CONCLUSION Sleep disorders correlate with higher serum NfL, suggesting a link to PD neuronal damage. Early identification of sleep disorders and NfL monitoring are pivotal in detecting at-risk PD patients promptly, allowing for timely intervention. Regular monitoring of NfL levels holds promise for tracking both sleep disorders and disease progression, potentially emerging as a biomarker for evaluating treatment outcomes.
Collapse
Affiliation(s)
- Wan-Yi Qi
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, No.5 Donghai Middle Road, Qingdao, China
| | - Yan Sun
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yun Guo
- School of Clinical Medicine, Weifang Medical University, Weifang, 261053, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, No.5 Donghai Middle Road, Qingdao, China.
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| |
Collapse
|
3
|
Yin P, Niu X, Guan C, Zhang Z, Liu Y, Li J, Cui G, Zan K, Xu C. Relationship between increased serum neurofilament light chain and glial fibrillary acidic protein levels with non-motor symptoms in patients with Parkinson's disease. Psychogeriatrics 2024; 24:415-425. [PMID: 38339819 DOI: 10.1111/psyg.13088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/14/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND This study set out to investigate the relationship between serum neurofilament light chain (NFL), glial fibrillary acidic protein (GFAP), and various non-motor symptoms (NMSs) in patients with Parkinson's disease (PD). METHODS The study included 37 healthy controls (HCs) and 51 PD patients. Clinical assessments of PD symptoms were conducted for all PD patients. The NMSS was utilised to evaluate the NMS burden (NMSB) in individuals. Based on the severity of NMSB, we further categorised the PD group into two subgroups: mild-moderate NMSB group and severe-very severe NMSB group. The amounts of NFL and GFAP in the serum were measured using an extremely sensitive single molecule array (Simoa) method. Statistical analyses were performed on the collected data using SPSS 26.0 and R (version 3.6.3). RESULTS Serum GFAP and NFL levels in the PD group with severe-very severe NMSB were significantly higher than those in the mild-moderate NMSB group (GFAP: P < 0.007; NFL: P < 0.009). Serum NFL and GFAP levels had positive correlations with NMSS total scores (GFAP: r = 0.326, P = 0.020; NFL: r = 0.318, P = 0.023) and multiple subdomains. The relationship between the attention/memory domains of NMSS and NFL levels is significantly positive (r = 0.283, P = 0.044). Similarly, the mood/apathy domains of NMSS are also significantly positively correlated with GFAP levels (r = 0.441, P = 0.001). Patients with emotional problems or cognitive impairment had higher GFAP or NFL levels, respectively. Furthermore, it has been demonstrated that NMSs play a mediating role in the quality of life of patients with PD. Moreover, the combination of NFL and GFAP has proven to be more effective than using a single component in identifying PD patients with severe-very severe NMSB. CONCLUSIONS The severity of NMSs in PD patients, particularly cognitive and emotional symptoms, was found to be associated with the levels of serum NFL and GFAP. This study marks the first attempt to examine the connection between NMSs of PD and the simultaneous identification of NFL and GFAP levels.
Collapse
Affiliation(s)
- Peixiao Yin
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, China
| | - Xuebin Niu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, China
| | - Chenyang Guan
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, China
| | - Zixuan Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, China
| | - Yuning Liu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, China
| | - Jinyu Li
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, China
| | - Guiyun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, China
| | - Kun Zan
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, China
| | - Chuanying Xu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
4
|
Starmans NLP, Kappelle LJ, Muller M, Staals J, Teunissen CE, Biessels GJ, van der Flier WM, Wolters FJ. Blood Pressure Variability and Plasma Biomarkers of Neuronal Injury and Alzheimer's Disease: A Clinic-Based Study of Patients with Diseases Along the Heart-Brain Axis. J Alzheimers Dis 2024; 99:1207-1215. [PMID: 38788076 PMCID: PMC11191465 DOI: 10.3233/jad-240119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 05/26/2024]
Abstract
Higher blood pressure variability (BPV) predisposes to cognitive decline. To investigate underlying mechanisms, we measured 24-h ambulatory BPV, nocturnal dipping and orthostatic hypotension in 518 participants with vascular cognitive impairment, carotid occlusive disease, heart failure, or reference participants. We determined cross-sectional associations between BPV indices and plasma biomarkers of neuronal injury (neurofilament light chain) and Alzheimer's disease (phosphorylated-tau-181 and Aβ42/Aβ40). None of the BPV indices were significantly associated with any of the biomarkers. Hence, in patients with diseases along the heart-brain axis, we found no evidence for an association between BPV and selected markers of neuronal injury or Alzheimer's disease.
Collapse
Affiliation(s)
| | - Laurens Jaap Kappelle
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Majon Muller
- Department of Internal Medicine, Geriatrics Section, Amsterdam Cardiovascular Science, Amsterdam University Medical Center (Amsterdam UMC), Amsterdam, The Netherlands
| | - Julie Staals
- Department of Neurology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Charlotte Elisabeth Teunissen
- Department of Clinical Chemistry, Neurochemistry Laboratory, Amsterdam Neuroscience, Amsterdam University Medical Center (Amsterdam UMC), Amsterdam, The Netherlands
| | - Geert Jan Biessels
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wiesje Maria van der Flier
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam University Medical Center (Amsterdam UMC), Amsterdam, The Netherlands
- Department of Epidemiology, Amsterdam University Medical Center (Amsterdam UMC), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Frank Johannes Wolters
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine and Alzheimer Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - on behalf of the Heart-Brain Connection Consortium
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Internal Medicine, Geriatrics Section, Amsterdam Cardiovascular Science, Amsterdam University Medical Center (Amsterdam UMC), Amsterdam, The Netherlands
- Department of Neurology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Clinical Chemistry, Neurochemistry Laboratory, Amsterdam Neuroscience, Amsterdam University Medical Center (Amsterdam UMC), Amsterdam, The Netherlands
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam University Medical Center (Amsterdam UMC), Amsterdam, The Netherlands
- Department of Epidemiology, Amsterdam University Medical Center (Amsterdam UMC), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine and Alzheimer Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
5
|
Wang X, Yang X, He W, Song X, Zhang G, Niu P, Chen T. The association of serum neurofilament light chains with early symptoms related to Parkinson's disease: A cross-sectional study. J Affect Disord 2023; 343:144-152. [PMID: 37805158 DOI: 10.1016/j.jad.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/02/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Neurofilament light chains (NfL), released with neural axon injury, is considered as a potential biomarker for Parkinson's disease (PD). The relationship between NfL and PD has been studied mainly in diagnosed patients. Few large-scale studies analyze the association between NfL levels and multiple non-motor symptoms linked to early PD in the general population. Therefore, this study aims to determine the association of NfL with early symptoms of PD, and effectively respond to the development of early symptoms of PD. We examined the relationship between serum NfL and early non-motor symptoms of PD (smell dysfunction, sleep problems, cognitive function) and serum Klotho levels in the general population using data from the 2013-2014 National Health and Nutrition Examination Survey (NHANES). The relationship between serum NfL and early symptoms of PD in 1125 participants was analyzed by multiple linear regression and logistic regression models. The results showed a significant association between serum NfL and early symptoms of PD. There was a significant positive correlation between NfL and smell dysfunction, short sleep and long sleep. There was a significant negative correlation between NfL and Klotho levels and cognitive function test results. Further, we observed gender and age differences in the association of NfL with early symptoms of PD. Our study demonstrate that elevated serum NfL levels are positively associated with an increased risk of early PD-related symptoms, suggesting that serum NfL can be a promising biomarker for early PD.
Collapse
Affiliation(s)
- Xueting Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xin Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Weifeng He
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xin Song
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Gaoman Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Piye Niu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Tian Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
6
|
Park DG, Kim JY, Kim MS, Kim MH, An YS, Chang J, Yoon JH. Neurofilament light chain and cardiac MIBG uptake as predictors for phenoconversion in isolated REM sleep behavior disorder. J Neurol 2023; 270:4393-4402. [PMID: 37233802 DOI: 10.1007/s00415-023-11785-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Isolated rapid-eye-movement (REM) sleep behavior disorder (iRBD) is considered as a prodromal stage of either multiple system atrophy (MSA) or Lewy body disease (LBD; Parkinson's disease and dementia with Lewy bodies). However, current knowledge is limited in predicting and differentiating the type of future phenoconversion in iRBD patients. We investigated the role of plasma neurofilament light chain (NfL) and cardiac metaiodobenzylguanidine (MIBG) uptake as predictors for phenoconversion. METHODS Forty patients with iRBD were enrolled between April 2018 and October 2019 and prospectively followed every 3 months to determine phenoconversion to either MSA or LBD. Plasma NfL levels were measured at enrollment. Cardiac MIBG uptake and striatal dopamine transporter uptake were assessed at baseline. RESULTS Patients were followed for a median of 2.92 years. Four patients converted to MSA and 7 to LBD. Plasma NfL level at baseline was significantly higher in future MSA-converters (median 23.2 pg/mL) when compared with the rest of the samples (median 14.1 pg/mL, p = 0.003). NfL level above 21.3 pg/mL predicted phenoconversion to MSA with the sensitivity of 100% and specificity of 94.3%. Baseline MIBG heart-to-mediastinum ratio of LBD-converters (median 1.10) was significantly lower when compared with the rest (median 2.00, p < 0.001). Heart-to-mediastinum ratio below 1.545 predicted phenoconversion to LBD with the sensitivity of 100% and specificity of 92.9%. CONCLUSIONS Plasma NfL and cardiac MIBG uptake may be useful biomarkers in predicting phenoconversion of iRBD. Elevated plasma NfL levels may suggest imminent phenoconversion to MSA, whereas low cardiac MIBG uptake suggests phenoconversion to LBD.
Collapse
Affiliation(s)
- Don Gueu Park
- Department of Neurology, Ajou University School of Medicine, 164, Worldcup-Ro, Songjae Hall, Suwon-Si, Gyeonggi-Do, 16499, South Korea
| | - Ju Yeong Kim
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon-Si, Republic of Korea
| | - Min Seung Kim
- Department of Neurology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, South Korea
| | - Mi Hee Kim
- Department of Neurology, Ajou University School of Medicine, 164, Worldcup-Ro, Songjae Hall, Suwon-Si, Gyeonggi-Do, 16499, South Korea
| | - Young-Sil An
- Department of Nuclear Medicine, Ajou University School of Medicine, Suwon-Si, Republic of Korea
| | - Jaerak Chang
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon-Si, Republic of Korea.
- Department of Brain Science, Ajou University School of Medicine, 164, Worldcup-Ro, Songjae Hall, Suwon-Si, Gyeonggi-Do, 16499, South Korea.
| | - Jung Han Yoon
- Department of Neurology, Ajou University School of Medicine, 164, Worldcup-Ro, Songjae Hall, Suwon-Si, Gyeonggi-Do, 16499, South Korea.
| |
Collapse
|
7
|
Buhmann C, Magnus T, Choe CU. Blood neurofilament light chain in Parkinson's disease. J Neural Transm (Vienna) 2023; 130:755-762. [PMID: 37067597 PMCID: PMC10199845 DOI: 10.1007/s00702-023-02632-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/01/2023] [Indexed: 04/18/2023]
Abstract
Blood neurofilament light chain (NfL) is an easily accessible, highly sensitive and reliable biomarker for neuroaxonal damage. Currently, its role in Parkinson's disease (PD) remains unclear. Here, we demonstrate that blood NfL can distinguish idiopathic PD from atypical parkinsonian syndromes (APS) with high sensitivity and specificity. In cross-sectional studies, some found significant correlations between blood NfL with motor and cognitive function, whereas others did not. In contrast, prospective studies reported very consistent associations between baseline blood NfL with motor progression and cognitive worsening. Amongst PD subtypes, especially postural instability and gait disorder (PIGD) subtype, symptoms and scores are reliably linked with blood NfL. Different non-motor PD comorbidities have also been associated with high blood NfL levels suggesting that the neuroaxonal damage of the autonomic nervous system as well as serotonergic, cholinergic and noradrenergic neurons is quantifiable. Numerous absolute NfL cutoff levels have been suggested in different cohort studies; however, validation across cohorts remains weak. However, age-adjusted percentiles and intra-individual blood NfL changes might represent more valid and consistent parameters compared with absolute NfL concentrations. In summary, blood NfL has the potential as biomarker in PD patients to be used in clinical practice for prediction of disease severity and especially progression.
Collapse
Affiliation(s)
- Carsten Buhmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Experimental Research in Stroke and Inflammation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Chi-Un Choe
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Experimental Research in Stroke and Inflammation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Department of Neurology, Klinikum Itzehoe, Robert-Koch-Straße 2, 25524, Itzehoe, Germany.
| |
Collapse
|
8
|
Ruiz Barrio I, Miki Y, Jaunmuktane ZT, Warner T, De Pablo-Fernandez E. Association Between Orthostatic Hypotension and Dementia in Patients With Parkinson Disease and Multiple System Atrophy. Neurology 2023; 100:e998-e1008. [PMID: 36526431 PMCID: PMC9990860 DOI: 10.1212/wnl.0000000000201659] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/21/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Orthostatic hypotension (OH) increases dementia risk in patients with Parkinson disease (PD), although the underlying mechanisms and whether a similar association between OH and cognitive impairment exists in other synucleinopathies remain unknown. The aim is to evaluate the association between OH and dementia risk in patients with PD, and cognitive impairment risk in patients with multiple system atrophy (MSA), and to explore relevant clinical and neuropathologic factors to understand underlying pathogenic mechanisms. METHODS This is a retrospective cohort study. Medical records throughout the entire disease course of consecutive patients with neuropathology-confirmed PD and MSA from the Queen Square Brain Bank were systematically reviewed. Time of onset and severity of OH-related symptoms were documented, and their association with other clinical and neuropathologic variables was evaluated. Dementia risk for patients with PD and cognitive impairment risk for patients with MSA were estimated using multivariable hazard regression. RESULTS One hundred thirty-two patients with PD and 137 with MSA were included. Patients with MSA developed OH more frequently, earlier in the disease course and with more severe symptoms. Cumulative dementia prevalence was higher in patients with PD. Multivariable adjusted regression models showed that early OH, but not its symptom severity, increased dementia risk in patients with PD by 14% per year (hazard ratio [HR] = 0.86; 95% CI, 0.80-0.93) and cognitive impairment risk in patients with MSA by 41% per year (HR = 0.59; 95% CI, 0.42-0.83). Early OH was not associated with increased α-synuclein, β-amyloid, tau, Alzheimer, or cerebrovascular pathologies. No significant associations were found between severity of OH symptoms and other clinical or neuropathologic variables. DISCUSSION Early OH, but not its symptom severity, increases the risk of cognitive impairment in patients with PD and MSA. OH is not associated with more extensive Lewy, β-amyloid, tau, Alzheimer, or cerebrovascular pathologies. It is likely that OH contributes to cognitive impairment in patients with PD and MSA by hypoxia-induced nonspecific neurodegeneration. Further research should evaluate whether improving brain perfusion by treating OH may modify the risk of dementia in these conditions.
Collapse
Affiliation(s)
- Iñigo Ruiz Barrio
- From the Queen Square Brain Bank for Neurological Disorders, (I.R.B., Y.M., Z.T.J., T.W., E.d.P-F.), and Reta Lila Weston Institute of Neurological Studies (T.W., E.d.P-F.), Department of Clinical and Movement Neurosciences UCL Queen Square Institute of Neurology, London, United Kingdom; Movement Disorders Unit, (I.R.B.), Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; and Department of Neuropathology (Y.M.), Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yasuo Miki
- From the Queen Square Brain Bank for Neurological Disorders, (I.R.B., Y.M., Z.T.J., T.W., E.d.P-F.), and Reta Lila Weston Institute of Neurological Studies (T.W., E.d.P-F.), Department of Clinical and Movement Neurosciences UCL Queen Square Institute of Neurology, London, United Kingdom; Movement Disorders Unit, (I.R.B.), Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; and Department of Neuropathology (Y.M.), Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Zane T Jaunmuktane
- From the Queen Square Brain Bank for Neurological Disorders, (I.R.B., Y.M., Z.T.J., T.W., E.d.P-F.), and Reta Lila Weston Institute of Neurological Studies (T.W., E.d.P-F.), Department of Clinical and Movement Neurosciences UCL Queen Square Institute of Neurology, London, United Kingdom; Movement Disorders Unit, (I.R.B.), Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; and Department of Neuropathology (Y.M.), Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Thomas Warner
- From the Queen Square Brain Bank for Neurological Disorders, (I.R.B., Y.M., Z.T.J., T.W., E.d.P-F.), and Reta Lila Weston Institute of Neurological Studies (T.W., E.d.P-F.), Department of Clinical and Movement Neurosciences UCL Queen Square Institute of Neurology, London, United Kingdom; Movement Disorders Unit, (I.R.B.), Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; and Department of Neuropathology (Y.M.), Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Eduardo De Pablo-Fernandez
- From the Queen Square Brain Bank for Neurological Disorders, (I.R.B., Y.M., Z.T.J., T.W., E.d.P-F.), and Reta Lila Weston Institute of Neurological Studies (T.W., E.d.P-F.), Department of Clinical and Movement Neurosciences UCL Queen Square Institute of Neurology, London, United Kingdom; Movement Disorders Unit, (I.R.B.), Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; and Department of Neuropathology (Y.M.), Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
| |
Collapse
|
9
|
Kim MS, Park DG, An YS, Yoon JH. Dual-phase 18 F-FP-CIT positron emission tomography and cardiac 123 I-MIBG scintigraphy of Parkinson's disease patients with GBA mutations: evidence of the body-first type? Eur J Neurol 2023; 30:344-352. [PMID: 36288409 DOI: 10.1111/ene.15615] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND PURPOSE Parkinson's disease (PD) with glucocerebrosidase (GBA) gene mutation (GBA-PD) is known to show more rapid clinical progression than sporadic PD without GBA mutation (sPD). This study was performed to delineate the specific patterns of cortical hypoperfusion, dopamine transporter uptake and cardiac meta-iodobenzylguanidine (MIBG) uptake of GBA-PD in comparison to sPD. METHODS Through next-generation sequencing analysis targeting 41 genes, a total of 16 GBA-PD and 24 sPD patients (sex, age matched) were enrolled in the study, and the clinical, dual-phase [18 F]-N-(3-fluoropropyl)-2β-carboxymethoxy-3β-(4-iodophenyl) nortropane (1 8 F-FP-CIT) positron emission tomography (PET) and cardiac 123 I-MIBG scintigraphy results were compared between the two groups. RESULTS The GBA-PD group had higher rates of rapid eye movement sleep behavior disorder, orthostatic hypotension and neuropsychiatric symptoms than the sPD group. Early-phase 18 F-FP-CIT PET showed significantly lower standard uptake value ratio on bilateral posterior parietal cortex (0.94 ± 0.05 vs. 1.02 ± 0.04, p = 0.011) and part of the occipital cortex (p < 0.05) in the GBA-PD group than the sPD group. In striatal dopamine transporter uptake, the regional standard uptake value ratio, asymmetry index and caudate-to-putamen ratio were similar between the two groups. The GBA-PD group had a lower heart-to-mediastinum uptake ratio in 123 I-MIBG scintigraphy than the sPD group. CONCLUSIONS The GBA-PD patients showed decreased regional perfusion in the bilateral posterior parietal and occipital cortex. Cardiac sympathetic denervation and non-motor symptoms (orthostatic hypotension, rapid eye movement sleep behavior disorder) were more common in GBA-PD than sPD. These findings suggest that GBA-PD patients have more widespread peripheral (extranigral) α-synuclein accumulation, representing a body-first PD subtype.
Collapse
Affiliation(s)
- Min Seung Kim
- Department of Neurology, Parkinson Center, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Neurology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Republic of Korea
| | - Don Gueu Park
- Department of Neurology, Parkinson Center, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Young-Sil An
- Department of Nuclear Medicine, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jung Han Yoon
- Department of Neurology, Parkinson Center, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
10
|
Sheng ZH, Ma LZ, Liu JY, Ou YN, Zhao B, Ma YH, Tan L. Cerebrospinal fluid neurofilament dynamic profiles predict cognitive progression in individuals with de novo Parkinson's disease. Front Aging Neurosci 2022; 14:1061096. [PMID: 36589544 PMCID: PMC9802677 DOI: 10.3389/fnagi.2022.1061096] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
Background Neurofilament light chain protein (NfL) in cerebrospinal fluid (CSF) reflects the severity of neurodegeneration, with its altered concentrations discovered in Parkinson's disease (PD) and Parkinson's disease dementia (PD-D). Objective To determine whether CSF NfL, a promising biomarker of neuronal/axonal damage, can be used to monitor cognitive progression in de novo Parkinson's disease and predict future cognitive decline. Methods A total of 259 people were recruited in this study, including 85 healthy controls (HC) and 174 neonatal PD patients from the Parkinson's Progression Markers Initiative (PPMI). Multiple linear regression and linear mixed effects models were used to examine the associations of baseline/longitudinal CSF NfL with cognitive decline and other CSF biomarkers. Kaplan-Meier analysis and log-rank test were used to compare the cumulative probability risk of cognition progression during the follow-up. Multivariate cox regression was used to detect cognitive progression in de novo PD. Results We found PD patients with mild cognitive impairment (PD-MCI) was higher than with normal cognition (PD-NC) in terms of CSF NfL baseline levels (p = 0.003) and longitudinal increase rate (p = 0.034). Both baseline CSF NfL and its rate of change predicted measurable cognitive decline in de novo PD (MoCA, β = -0.010, p = 0.011; β = -0.0002, p < 0.001, respectively). The predictive effects in de novo PD patients aged >65, male, ill-educated (<13 years) and without carrying Apolipoprotein E ε4 (APOE ε4) seemed to be more obvious and reflected in more domains investigated. We also observed that CSF NfL levels predicted progression in de novo PD patients with different cognitive diagnosis and amyloid status. After an average follow-up of 6.66 ± 2.54 years, higher concentration above the median of baseline CSF NfL was associated with a future high risk of PD with dementia (adjusted HR 2.82, 95% CI: 1.11-7.20, p = 0.030). Conclusion Our results indicated that CSF NfL is a promising prognostic predictor of PD, and its concentration and dynamics can monitor the severity and progression of cognitive decline in de novo PD patients.
Collapse
|
11
|
Park DG, Kang J, An YS, Chang J, Yoon JH. Association of plasma α-synuclein with cardiac 123I-MIBG scintigraphy in early Parkinson’s disease. Neurosci Lett 2022; 770:136399. [DOI: 10.1016/j.neulet.2021.136399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 10/06/2021] [Accepted: 12/13/2021] [Indexed: 01/28/2023]
|
12
|
Factors associated with motor severity in vascular parkinsonism with normal dopamine transporter imaging. Parkinsonism Relat Disord 2021; 94:99-103. [PMID: 34906916 DOI: 10.1016/j.parkreldis.2021.11.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 11/21/2022]
Abstract
INTRODUCTION To delineate the determinants of motor severity in vascular parkinsonism (VaP), we investigated the impact of regional white matter intensity (WMH) burden and co-morbidities on the motor score in the patients with VaP and normal dopamine transporter (DAT) imaging. METHODS In this multicenter, retrospective study, we reviewed the records of 63 patients diagnosed with VaP and normal DAT imaging on 18F-FP-CIT PET. Signal hyperintensities in deep white matter (DWMH), periventricular (PVH), basal ganglia (BG) regions, and infratentorial foci (ITF) were rated according to Scheltens scale, a semi-quantitative visual rating system. Motor severity was assessed with Unified Parkinson's Disease Rating Scale (UPDRS) motor score. Regional hyperintensity scores, patients' demographics, and co-morbidities such as type 2 diabetes, hypertension, dyslipidemia, and previous stroke history were used as starting variables, and stepwise regression analysis was performed to select independent predictors of motor severity. RESULTS PVH (R = 0.33, p = 0.008) and DWMH score (R = 0.31, p = 0.015) correlated with the motor severity, while BG and ITF scores did not. Diabetic patients had significantly higher motor scores compared with non-diabetics (34.7 (13.0) vs. 27.5 (12.4), p = 0.008). Other factors such as sex, BMI, hypertension, dyslipidemia, and previous history of stroke did not impact motor severity. In multivariate analysis, PVH scores and diabetes significantly correlated with motor severity. CONCLUSION PVH burden and diabetes were independent factors associated with motor severity in VaP with normal DAT imaging. Our results suggest that diabetes, along with white matter hyperintensities, may have a significant role in the development of motor symptoms in VaP.
Collapse
|