1
|
Hsueh CS, Fasina O, Piñeyro P, Ruden R, El-Gazzar MM, Sato Y. Histopathologic Features and Viral Antigen Distribution of H5N1 Highly Pathogenic Avian Influenza Virus Clade 2.3.4.4b from the 2022-2023 Outbreak in Iowa Wild Birds. Avian Dis 2024; 68:272-281. [PMID: 39400223 DOI: 10.1637/aviandiseases-d-23-00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/03/2024] [Indexed: 10/15/2024]
Abstract
In 2022, a new epornitic of H5N1 highly pathogenic avian influenza (HPAI) virus clade 2.3.4.4b emerged in U.S. domestic poultry with high prevalence in wild bird populations. We describe pathological findings of HPAI H5N1 in nine wild birds encompassing eight different species, including Accipitriformes (red-tailed hawk, bald eagle), Cathartiforme (turkey vulture), Falconiforme (peregrine falcon), Strigiforme (one adult great-horned owl, one juvenile great-horned owl), Pelecaniforme (American white pelican), and Anseriformes (American green-winged teal, trumpeter swan). All these birds died naturally (found dead, or died in transit to or within a rehabilitation center), except for the bald eagle and American green-winged teal, which were euthanized. Gross lesions were subtle, characterized by meningeal congestion observed in the turkey vulture, bald eagle, and adult great-horned owl. Histologically, encephalitis was observed in all cases (9/9, 100%). Leukocytoclastic and fibrinoid vasculitis with necrotizing encephalitis was observed in the red-tailed hawk, great-horned owls, and American white pelican (5/9, 55.6%), and perivascular lymphohistiocytic encephalitis was seen in the turkey vulture, peregrine falcon, green-winged teal, and bald eagle (4/9, 44.4%). Coagulative necrosis or lymphohistiocytic/lymphoplasmacytic inflammation was identified in the kidney (6/8, 75%), liver (6/9, 66.7%), heart (5/9, 55.6%), and lung (2/9, 22.2%). Immunopositive signals against Influenza virus A nucleoprotein were predominantly detected within the brain (9/9, 100%), air sac (7/9, 77.8%), lung (7/9, 77.8%), kidney (6/8, 75%), heart (6/9, 66.7%), and liver (5/9, 55.6%). Additionally, other organs, such as the pancreas, spleen, intestines, gonads, and adrenals occasionally exhibited positive viral protein signals. In these organs, in addition to parenchymal cells, viral protein signals were often identified in endothelial cells. Our results suggest that the 2022-2023 HPAIV H5N1 clade 2.3.4.4b replicated systemically in all examined birds, with brain lesions being the most prevalent and associated with a subset of birds displaying clinical signs observed perimortem.
Collapse
Affiliation(s)
- Cheng-Shun Hsueh
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Olufemi Fasina
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Pablo Piñeyro
- Department of Veterinary Diagnostic & Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Rachel Ruden
- Department of Veterinary Diagnostic & Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
- Wildlife Bureau Iowa De artment of Natural Resources Ames IA 50011
| | - Mohamed Medhat El-Gazzar
- Department of Veterinary Diagnostic & Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Yuko Sato
- Department of Veterinary Diagnostic & Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011,
| |
Collapse
|
2
|
Jerry C, Stallknecht DE, Leyson C, Berghaus R, Jordan B, Pantin-Jackwood M, França MS. Age-Associated Changes in Recombinant H5 Highly Pathogenic and Low Pathogenic Avian Influenza Hemagglutinin Tissue Binding in Domestic Poultry Species. Animals (Basel) 2021; 11:ani11082223. [PMID: 34438681 PMCID: PMC8388419 DOI: 10.3390/ani11082223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/11/2021] [Accepted: 07/18/2021] [Indexed: 11/16/2022] Open
Abstract
The 2014 outbreak of clade 2.3.4.4A highly pathogenic avian influenza (HPAI) led to the culling of millions of commercial chickens and turkeys and death of various wild bird species. In this outbreak, older chickens and turkeys were commonly infected, and succumbed to clinical disease compared to younger aged birds such chicken broilers. Some experimental studies using waterfowl species have shown age-related differences in susceptibility to clinical disease with HPAI viruses. Here, we evaluate differences in H5 Hemagglutinin (HA) tissue binding across age groups, using recombinant H5 HA (rHA) proteins generated using gene sequences from low pathogenic (A/mallard/MN/410/2000(H5N2 (LPAIV)) and a HPAIV (A/Northern pintail/Washington/40964/2014(H5N2)) influenza A virus (IAV). Respiratory and intestinal tracts from chickens, ducks (Mallard, Pekin, Muscovy) and turkeys of different age groups were used to detect rHA binding with protein histochemistry, which was quantified as the median area of binding (MAB) used for statistical analysis. There were species and tissue specific differences in the rHA binding among the age groups; however, turkeys had significant differences in the HPAIV rHA binding in the respiratory tract, with younger turkeys having higher levels of binding in the lung compared to the older group. In addition, in the intestinal tract, younger turkeys had higher levels of binding compared to the older birds. Using LPAIV, similar species and tissues, specific differences were seen among the age groups; however, only turkeys had overall significant differences in the respiratory tract MAB, with the older birds having higher levels of binding compared to the younger group. No age-related differences were seen in the overall intestinal tract rHA binding. Age-related differences in rHA binding of the LPAIV and HPAIV demonstrated in this study may partially, but not completely, explain differences in host susceptibility to infection observed during avian influenza outbreaks and in experimental infection studies.
Collapse
Affiliation(s)
- Carmen Jerry
- California Animal Health and Food Safety Laboratory System, University of California, Davis, 1550 N. Soderquist Road, Turlock, CA 95380, USA
- Correspondence:
| | - David E. Stallknecht
- Southeastern Cooperative Wildlife Disease Study, 589 D.W. Brooks Drive, Athens, GA 30602, USA;
| | - Christina Leyson
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, Athens, GA 30602, USA; (C.L.); (M.P.-J.)
| | - Roy Berghaus
- Veterinary Medical Center, Department of Population Health, 2200 College Station Road, Athens, GA 30602, USA;
| | - Brian Jordan
- Poultry Diagnostic and Research Center, University of Georgia Athens, 953 College Station Road, Athens, GA 30602, USA; (B.J.); (M.S.F.)
| | - Mary Pantin-Jackwood
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, Athens, GA 30602, USA; (C.L.); (M.P.-J.)
| | - Monique S. França
- Poultry Diagnostic and Research Center, University of Georgia Athens, 953 College Station Road, Athens, GA 30602, USA; (B.J.); (M.S.F.)
| |
Collapse
|
3
|
Gupta SD, Hoque MA, Fournié G, Henning J. Patterns of Avian Influenza A (H5) and A (H9) virus infection in backyard, commercial broiler and layer chicken farms in Bangladesh. Transbound Emerg Dis 2021; 68:137-151. [PMID: 32639112 DOI: 10.1111/tbed.13657] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/31/2020] [Accepted: 05/23/2020] [Indexed: 12/20/2022]
Abstract
In order to control Highly Pathogenic Avian Influenza (HPAI) H5N1 and Low Pathogenic Avian Influenza (LPAI) H9N2 virus spread in endemically infected countries, a detailed understanding of infection patterns is required. We conducted cross-sectional studies in Bangladesh in 2016 and 2017, on 144 backyard, 106 broiler and 113 layer chicken farms. Although all sampled birds were negative for H5 virus by RT-PCR, H5 antibodies were detected in unvaccinated birds on all three farming systems. Higher H5 antibody prevalence was observed in ducks raised on backyard farms, 14.2% (95% CI: 10.0%-19.8%), compared to in-contact backyard chickens, 4.2% (95% CI: 2.8%-6.1%). The H5 antibody prevalence was lower in broiler chickens, 1.5% (95% CI: 0.9%-2.5%), compared to layer chickens, 7.8% (95% CI: 6.1%-9.8%). H9 viruses were detected by RT-PCR in 0.5% (95% CI: 0.2%-1.3%) and 0.6% (95% CI: 0.3%-1.5%) of broilers and layers, respectively, and in 0.2% (95% CI: 0.0%-1.2%) of backyard chickens. Backyard chickens and ducks showed similar H9 antibody prevalence, 16.0% (95% CI: 13.2%-19.2%) and 15.7% (95% CI: 11.3%-21.4%), which was higher compared to layers, 5.8% (95% CI: 4.3%-7.6%), and broilers, 1.5% (95% CI: 0.9%-2.5%). Over the course of a production cycle, H5 and H9 antibody prevalence increased with the age of backyard and layer chickens. Usually, multiple ducks within a flock were H5 antibody positive, in contrast to backyard chickens, broilers and layers where only individual birds within flocks developed H5 antibodies. Our findings highlight low virus circulation in healthy chickens of all production systems in Bangladesh, which is in contrast to high virus circulation reported from live bird markets. Data generated in this project can be used to adopt risk-based surveillance approaches in different chicken production systems in Bangladesh and to inform mathematical models exploring HPAI infection dynamics in poultry from the source of production.
Collapse
Affiliation(s)
- Suman Das Gupta
- School of Veterinary Science, University of Queensland, Gatton, Qld, Australia
| | - Md Ahasanul Hoque
- Chattogram (Previously Chittagong) Veterinary and Animal Sciences University, Chittagong, Bangladesh
| | - Guillaume Fournié
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, UK
| | - Joerg Henning
- School of Veterinary Science, University of Queensland, Gatton, Qld, Australia
| |
Collapse
|
4
|
Jang Y, Seo SH. Age-Dependent Lethality in Ducks Caused by Highly Pathogenic H5N6 Avian Influenza Virus. Viruses 2020; 12:v12060591. [PMID: 32485904 PMCID: PMC7354466 DOI: 10.3390/v12060591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/16/2020] [Accepted: 05/26/2020] [Indexed: 01/02/2023] Open
Abstract
Ducks show notably higher resistance to highly pathogenic avian influenza viruses as compared to chickens. Here, we studied the age-dependent susceptibility in ducks to the infections caused by highly pathogenic avian influenza viruses. We intranasally infected ducks aged 1, 2, 4, and 8 weeks with highly pathogenic H5N6 avian influenza viruses isolated in South Korea in 2016. All the 1-and 2-week-old ducks died after infection, 20% of 3-week-old ducks died, and from the ducks aged 4 and 8 weeks, all of them survived. We performed microarray analysis and quantitative real-time PCR using total RNA isolated from the lungs of infected 2- and 4-week-old ducks to determine the mechanism underlying the age-dependent susceptibility to highly pathogenic avian influenza virus. Limited genes were found to be differentially expressed between the lungs of 2- and 4-week-old ducks. Cell damage-related genes, such as CIDEA and ND2, and the immune response-related gene NR4A3 were notably induced in the lungs of infected 2-week-old ducks compared to those in the lungs of infected 4-week-old ducks.
Collapse
Affiliation(s)
- Yunyueng Jang
- Laboratory of Influenza Research and College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea;
- Institute of Influenza Virus, Chungnam National University, Daejeon 34134, Korea
| | - Sang Heui Seo
- Laboratory of Influenza Research and College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea;
- Institute of Influenza Virus, Chungnam National University, Daejeon 34134, Korea
- Correspondence: ; Tel.: +82-42-821-7819; Fax: +82-42-821-6762
| |
Collapse
|
5
|
Abstract
Immunohistochemical methods are commonly used for studying the pathogenesis of influenza A virus by allowing the identification of sites of replication of the virus in infected tissues and the correlation with the histopathological changes observed. In this chapter, the materials and procedures for performing immunohistochemical detection of influenza virus antigens in tissues using a biotin-streptavidin detection method are provided. The technique involves the following steps: heat-induced antigen retrieval, binding of a primary antibody to the virus antigen, antibody-antigen complex binding by a biotinylated secondary antibody, and binding of an enzyme-streptavidin conjugate. The enzyme is then visualized by application of the substrate chromogen solution to produce a colorimetric reaction with a product that can be visualized. Visualization of influenza virus antigen in tissues is based on chromogen deposition in the nucleus and cytoplasm of infected cells.
Collapse
|
6
|
Gao P, Fan L, Du H, Xiang B, Li Y, Sun M, Kang Y, Chen L, Xu C, Li Y, Ren T. Recombinant Duck Interferon Gamma Inhibits H5N1 Influenza Virus Replication In Vitro and In Vivo. J Interferon Cytokine Res 2019; 38:290-297. [PMID: 30016179 DOI: 10.1089/jir.2018.0034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The highly pathogenic H5N1 avian influenza virus (AIV) is widespread in waterfowl, causing enormous economic losses and posing a significant threat to public health. An increasing number of reagents have been identified to prevent the spread of influenza; however, there have been no reports on the anti-H5N1 effects of duck interferons, which exhibit antiviral activity against other viruses. Our aim was to investigate the antiviral effects of purified duck interferons. In this study, we successfully cloned and expressed duck interferon gamma (IFN-γ) in Escherichia coli. The antiviral effects of this recombinant duck IFN-γ (rDuIFN-γ) was assessed in vitro and in vivo. rDuIFN-γ displayed antiviral activity against vesicular stomatitis virus and AIV in duck embryo fibroblasts. Pretreating ducks with 3.4 × 104 U rDuIFN-γ also partially decreased mortality from 70% to 30% and delayed onset in 2-day-old Peking ducks. Virus titers in tissues and viral shedding decreased, and the expression of interferon-stimulated genes increased in brain and spleen in rDuIFN-γ-treated ducks. These results indicate that duck IFN-γ has the potential to inhibit viral replication in ducks.
Collapse
Affiliation(s)
- Pei Gao
- 1 College of Veterinary Medicine, South China Agricultural University , Guangzhou, China .,2 National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control , Guangzhou, China .,3 Key Laboratory of Animal Vaccine Development, Ministry of Agriculture , Guangzhou, China .,4 Key Laboratory of Zoonosis Prevention and Control of Guangdong Province , Guangzhou, China
| | - Lei Fan
- 1 College of Veterinary Medicine, South China Agricultural University , Guangzhou, China .,2 National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control , Guangzhou, China .,3 Key Laboratory of Animal Vaccine Development, Ministry of Agriculture , Guangzhou, China .,4 Key Laboratory of Zoonosis Prevention and Control of Guangdong Province , Guangzhou, China
| | - Haoyun Du
- 1 College of Veterinary Medicine, South China Agricultural University , Guangzhou, China .,2 National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control , Guangzhou, China .,3 Key Laboratory of Animal Vaccine Development, Ministry of Agriculture , Guangzhou, China .,4 Key Laboratory of Zoonosis Prevention and Control of Guangdong Province , Guangzhou, China
| | - Bin Xiang
- 1 College of Veterinary Medicine, South China Agricultural University , Guangzhou, China .,2 National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control , Guangzhou, China .,3 Key Laboratory of Animal Vaccine Development, Ministry of Agriculture , Guangzhou, China .,4 Key Laboratory of Zoonosis Prevention and Control of Guangdong Province , Guangzhou, China
| | - Yulian Li
- 1 College of Veterinary Medicine, South China Agricultural University , Guangzhou, China .,2 National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control , Guangzhou, China .,3 Key Laboratory of Animal Vaccine Development, Ministry of Agriculture , Guangzhou, China .,4 Key Laboratory of Zoonosis Prevention and Control of Guangdong Province , Guangzhou, China
| | - Minhua Sun
- 1 College of Veterinary Medicine, South China Agricultural University , Guangzhou, China .,2 National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control , Guangzhou, China .,3 Key Laboratory of Animal Vaccine Development, Ministry of Agriculture , Guangzhou, China .,4 Key Laboratory of Zoonosis Prevention and Control of Guangdong Province , Guangzhou, China
| | - Yinfeng Kang
- 1 College of Veterinary Medicine, South China Agricultural University , Guangzhou, China .,2 National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control , Guangzhou, China .,3 Key Laboratory of Animal Vaccine Development, Ministry of Agriculture , Guangzhou, China .,4 Key Laboratory of Zoonosis Prevention and Control of Guangdong Province , Guangzhou, China
| | - Libin Chen
- 1 College of Veterinary Medicine, South China Agricultural University , Guangzhou, China .,2 National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control , Guangzhou, China .,3 Key Laboratory of Animal Vaccine Development, Ministry of Agriculture , Guangzhou, China .,4 Key Laboratory of Zoonosis Prevention and Control of Guangdong Province , Guangzhou, China
| | - Chenggang Xu
- 1 College of Veterinary Medicine, South China Agricultural University , Guangzhou, China .,2 National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control , Guangzhou, China .,3 Key Laboratory of Animal Vaccine Development, Ministry of Agriculture , Guangzhou, China .,4 Key Laboratory of Zoonosis Prevention and Control of Guangdong Province , Guangzhou, China
| | - Yaling Li
- 1 College of Veterinary Medicine, South China Agricultural University , Guangzhou, China .,2 National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control , Guangzhou, China .,3 Key Laboratory of Animal Vaccine Development, Ministry of Agriculture , Guangzhou, China .,4 Key Laboratory of Zoonosis Prevention and Control of Guangdong Province , Guangzhou, China .,5 College of Animal Science and Technology, Shihezi University , Shihezi, Xinjiang, China
| | - Tao Ren
- 1 College of Veterinary Medicine, South China Agricultural University , Guangzhou, China .,2 National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control , Guangzhou, China .,3 Key Laboratory of Animal Vaccine Development, Ministry of Agriculture , Guangzhou, China .,4 Key Laboratory of Zoonosis Prevention and Control of Guangdong Province , Guangzhou, China
| |
Collapse
|
7
|
Bertran K, Balzli C, Kwon YK, Tumpey TM, Clark A, Swayne DE. Airborne Transmission of Highly Pathogenic Influenza Virus during Processing of Infected Poultry. Emerg Infect Dis 2018; 23:1806-1814. [PMID: 29047426 PMCID: PMC5652435 DOI: 10.3201/eid2311.170672] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Exposure to infected poultry is a suspected cause of avian influenza (H5N1) virus infections in humans. We detected infectious droplets and aerosols during laboratory-simulated processing of asymptomatic chickens infected with human- (clades 1 and 2.2.1) and avian- (clades 1.1, 2.2, and 2.1) origin H5N1 viruses. We detected fewer airborne infectious particles in simulated processing of infected ducks. Influenza virus–naive chickens and ferrets exposed to the air space in which virus-infected chickens were processed became infected and died, suggesting that the slaughter of infected chickens is an efficient source of airborne virus that can infect birds and mammals. We did not detect consistent infections in ducks and ferrets exposed to the air space in which virus-infected ducks were processed. Our results support the hypothesis that airborne transmission of HPAI viruses can occur among poultry and from poultry to humans during home or live-poultry market slaughter of infected poultry.
Collapse
|
8
|
Gao P, Xiang B, Li Y, Li Y, Sun M, Kang Y, Xie P, Chen L, Lin Q, Liao M, Ren T. Therapeutic Effect of Duck Interferon-Alpha Against H5N1 Highly Pathogenic Avian Influenza Virus Infection in Peking Ducks. J Interferon Cytokine Res 2018; 38:145-152. [DOI: 10.1089/jir.2017.0116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Pei Gao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, People's Republic of China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, People's Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangdong, People's Republic of China
| | - Bin Xiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, People's Republic of China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, People's Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangdong, People's Republic of China
| | - Yulian Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, People's Republic of China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, People's Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangdong, People's Republic of China
| | - Yaling Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, People's Republic of China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, People's Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangdong, People's Republic of China
- College of Animal Science and Technology, Shihezi University, Shihezi, People's Republic of China
| | - Minhua Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, People's Republic of China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, People's Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangdong, People's Republic of China
| | - Yinfeng Kang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, People's Republic of China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, People's Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangdong, People's Republic of China
| | - Peng Xie
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, People's Republic of China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, People's Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangdong, People's Republic of China
| | - Libin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, People's Republic of China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, People's Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangdong, People's Republic of China
| | - Qiuyan Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, People's Republic of China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, People's Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangdong, People's Republic of China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, People's Republic of China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, People's Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangdong, People's Republic of China
| | - Tao Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, People's Republic of China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, People's Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangdong, People's Republic of China
| |
Collapse
|
9
|
Samir M, Hamed M, Abdallah F, Kinh Nguyen V, Hernandez-Vargas EA, Seehusen F, Baumgärtner W, Hussein A, Ali AAH, Pessler F. An Egyptian HPAI H5N1 isolate from clade 2.2.1.2 is highly pathogenic in an experimentally infected domestic duck breed (Sudani duck). Transbound Emerg Dis 2018; 65:859-873. [PMID: 29363279 DOI: 10.1111/tbed.12816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Indexed: 01/26/2023]
Abstract
The highly pathogenic avian influenza (HPAI) H5N1 viruses continue to cause major problems in poultry and can, although rarely, cause human infection. Being enzootic in domestic poultry, Egyptian isolates are continuously evolving, and novel clades vary in their pathogenicity in avian hosts. Considering the importance of domestic ducks as natural hosts of HPAI H5N1 viruses and their likelihood of physical contact with other avian hosts and humans, it is of utmost importance to characterize the pathogenicity of newly emerged HPAI strains in the domestic duck. The most recently identified Egyptian clade 2.2.1.2 HPAI H5N1 viruses have been isolated from naturally infected pigeons, turkeys and humans. However, essentially nothing is known about their pathogenicity in domestic ducks. We therefore characterized the pathogenicity of an Egyptian HPAI H5N1 isolate A/chicken/Faquos/amn12/2011 (clade 2.2.1.2) in Sudani duck, a domestic duck breed commonly reared in Egypt. While viral transcription (HA mRNA) was highest in lung, heart and kidney peaking between 40 and 48 hpi, lower levels were detected in brain. Weight loss of infected ducks started at 16 hpi and persisted until 120 hpi. The first severe clinical signs were noted by 32 hpi and peaked in severity at 72 and 96 hpi. Haematological analyses showed a decline in total leucocytes, granulocytes, platelets and granulocyte/lymphocyte ratio, but lymphocytosis. Upon necropsy, lesions were obvious in heart, liver, spleen and pancreas and consisted mainly of necrosis and petechial haemorrhage. Histologically, lungs were the most severely affected organs, whereas brain only showed mild neuronal degeneration and gliosis at 48 hpi despite obvious neurological clinical signs. Taken together, our results provide first evidence that this HPAI H5N1 isolate (clade 2.2.1.2) is highly pathogenic to Sudani ducks and highlight the importance of this breed as potential reservoir and disseminator of HPAI strains from this clade.
Collapse
Affiliation(s)
- M Samir
- TWINCORE, Center for Experimental and Clinical Infection Research, Hannover, Germany.,Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - M Hamed
- Marsa matrouh branch, Animal Health Research Institute, Dokki, Giza, Egypt
| | - F Abdallah
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - V Kinh Nguyen
- Systems Medicine of Infectious Diseases, Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - E A Hernandez-Vargas
- Systems Medicine of Infectious Diseases, Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - F Seehusen
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - W Baumgärtner
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - A Hussein
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - A A H Ali
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - F Pessler
- TWINCORE, Center for Experimental and Clinical Infection Research, Hannover, Germany.,Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
10
|
Structural Definition of Duck Major Histocompatibility Complex Class I Molecules That Might Explain Efficient Cytotoxic T Lymphocyte Immunity to Influenza A Virus. J Virol 2017; 91:JVI.02511-16. [PMID: 28490583 PMCID: PMC5487541 DOI: 10.1128/jvi.02511-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/26/2017] [Indexed: 01/16/2023] Open
Abstract
A single dominantly expressed allele of major histocompatibility complex class I (MHC I) may be responsible for the duck's high tolerance to highly pathogenic influenza A virus (HP-IAV) compared to the chicken's lower tolerance. In this study, the crystal structures of duck MHC I (Anpl-UAA*01) and duck β2-microglobulin (β2m) with two peptides from the H5N1 strains were determined. Two remarkable features were found to distinguish the Anpl-UAA*01 complex from other known MHC I structures. A disulfide bond formed by Cys95 and Cys112 and connecting the β5 and β6 sheets at the bottom of peptide binding groove (PBG) in Anpl-UAA*01 complex, which can enhance IAV peptide binding, was identified. Moreover, the interface area between duck MHC I and β2m was found to be larger than in other species. In addition, the two IAV peptides that display distinctive conformations in the PBG, B, and F pockets act as the primary anchor sites. Thirty-one IAV peptides were used to verify the peptide binding motif of Anpl-UAA*01, and the results confirmed that the peptide binding motif is similar to that of HLA-A*0201. Based on this motif, approximately 600 peptides from the IAV strains were partially verified as the candidate epitope peptides for Anpl-UAA*01, which is a far greater number than those for chicken BF2*2101 and BF2*0401 molecules. Extensive IAV peptide binding should allow for ducks with this Anpl-UAA*01 haplotype to resist IAV infection. IMPORTANCE Ducks are natural reservoirs of influenza A virus (IAV) and are more resistant to the IAV than chickens. Both ducks and chickens express only one dominant MHC I locus providing resistance to the virus. To investigate how MHC I provides IAV resistance, crystal structures of the dominantly expressed duck MHC class I (pAnpl-UAA*01) with two IAV peptides were determined. A disulfide bond was identified in the peptide binding groove that can facilitate Anpl-UAA*01 binding to IAV peptides. Anpl-UAA*01 has a much wider recognition spectrum of IAV epitope peptides than do chickens. The IAV peptides bound by Anpl-UAA*01 display distinctive conformations that can help induce an extensive cytotoxic T lymphocyte (CTL) response. In addition, the interface area between the duck MHC I and β2m is larger than in other species. These results indicate that HP-IAV resistance in ducks is due to extensive CTL responses induced by MHC I.
Collapse
|
11
|
THE PATHOGENESIS OF CLADE 2.3.4.4 H5 HIGHLY PATHOGENIC AVIAN INFLUENZA VIRUSES IN RUDDY DUCK (OXYURA JAMAICENSIS) AND LESSER SCAUP (AYTHYA AFFINIS). J Wildl Dis 2017; 53:832-842. [PMID: 28513330 DOI: 10.7589/2017-01-003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Waterfowl are the natural hosts of avian influenza virus (AIV) and disseminate the virus worldwide through migration. Historically, surveillance and research efforts for AIV in waterfowl have focused on dabbling ducks. The role of diving ducks in AIV ecology has not been well characterized. In this study, we examined the relative susceptibility and pathogenicity of clade 2.3.4.4 H5 highly pathogenic AIV (HPAIV) in two species of diving ducks. Juvenile and adult Ruddy Duck (Oxyura jamaicensis) and juvenile Lesser Scaup (Aythya affinis) were intranasally inoculated with A/Northern Pintail/WA/40964/2014 H5N2 HPAIV. Additional groups of juvenile Lesser Scaups were inoculated with A/Gyrfalcon/WA/41088/2014 H5N8 HPAIV. The approximate 50% bird infectious doses (BID50) of the H5N2 isolate for adult Ruddy Ducks was <102 50% egg infectious doses (EID50) and for the juvenile Lesser Scaups it was <104 EID50. There were insufficient juvenile Ruddy Ducks to calculate the BID50. The BID50 for the juvenile Lesser Scaups inoculated with the H5N8 isolate was 103 EID50. Clinical disease was not observed in any group; however, mortality occurred in the juvenile Ruddy Ducks inoculated with the H5N2 virus (three of five ducks), and staining for AIV antigen was observed in numerous tissues from these ducks. One adult Ruddy Duck also died and although it was infected with AIV (the duck was positive for virus shedding and AIV antigen was detected in tissues), it was also infected with coccidiosis. The proportion of ducks shedding virus was related to the dose administered, but the titers were similar among dose groups. The group with the fewest ducks shedding virus was the adult Ruddy Ducks. There was a trend for the Lesser Scaups to shed higher titers of virus than the Ruddy Ducks. No virus shedding was detected after 7 d postinoculation in any group. Similar to dabbling ducks, Lesser Scaups and Ruddy Ducks are susceptible to infection with this H5 HPAIV lineage, although they excrete lower titers of virus.
Collapse
|
12
|
Mishra A, Vijayakumar P, Raut AA. Emerging avian influenza infections: Current understanding of innate immune response and molecular pathogenesis. Int Rev Immunol 2017; 36:89-107. [PMID: 28272907 DOI: 10.1080/08830185.2017.1291640] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The highly pathogenic avian influenza viruses (HPAIVs) cause severe disease in gallinaceous poultry species, domestic ducks, various aquatic and terrestrial wild bird species as well as humans. The outcome of the disease is determined by complex interactions of multiple components of the host, the virus, and the environment. While the host-innate immune response plays an important role for clearance of infection, excessive inflammatory immune response (cytokine storm) may contribute to morbidity and mortality of the host. Therefore, innate immunity response in avian influenza infection has two distinct roles. However, the viral pathogenic mechanism varies widely in different avian species, which are not completely understood. In this review, we summarized the current understanding and gaps in host-pathogen interaction of avian influenza infection in birds. In first part of this article, we summarized influenza viral pathogenesis of gallinaceous and non-gallinaceous avian species. Then we discussed innate immune response against influenza infection, cytokine storm, differential host immune responses against different pathotypes, and response in different avian species. Finally, we reviewed the systems biology approach to study host-pathogen interaction in avian species for better characterization of molecular pathogenesis of the disease. Wild aquatic birds act as natural reservoir of AIVs. Better understanding of host-pathogen interaction in natural reservoir is fundamental to understand the properties of AIV infection and development of improved vaccine and therapeutic strategies against influenza.
Collapse
Affiliation(s)
- Anamika Mishra
- a Pathogenomics Laboratory , OIE Reference Laboratory for Avian Influenza, ICAR-National Institute of High Security Animal Diseases , Bhopal , Madhya Pradesh , India
| | - Periyasamy Vijayakumar
- a Pathogenomics Laboratory , OIE Reference Laboratory for Avian Influenza, ICAR-National Institute of High Security Animal Diseases , Bhopal , Madhya Pradesh , India
| | - Ashwin Ashok Raut
- a Pathogenomics Laboratory , OIE Reference Laboratory for Avian Influenza, ICAR-National Institute of High Security Animal Diseases , Bhopal , Madhya Pradesh , India
| |
Collapse
|
13
|
Śmietanka K, Bocian Ł, Meissner W, Ziętek-Barszcz A, Żółkoś K. Assessment of the Potential Distance of Dispersal of High Pathogenicity Avian Influenza Virus by Wild Mallards. Avian Dis 2016; 60:316-21. [DOI: 10.1637/11080-040715-regr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Wellehan • JF, Lierz • M, Phalen • D, Raidal • S, Styles • DK, Crosta • L, Melillo • A, Schnitzer • P, Lennox • A, Lumeij JT. Infectious disease. CURRENT THERAPY IN AVIAN MEDICINE AND SURGERY 2016. [PMCID: PMC7158187 DOI: 10.1016/b978-1-4557-4671-2.00011-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
15
|
Experimental infection of highly and low pathogenic avian influenza viruses to chickens, ducks, tree sparrows, jungle crows, and black rats for the evaluation of their roles in virus transmission. Vet Microbiol 2015; 182:108-15. [PMID: 26711036 DOI: 10.1016/j.vetmic.2015.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/09/2015] [Accepted: 11/12/2015] [Indexed: 11/22/2022]
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) have spread in both poultry and wild birds. Determining transmission routes of these viruses during an outbreak is essential for the control of avian influenza. It has been widely postulated that migratory ducks play crucial roles in the widespread dissemination of HPAIVs in poultry by carrying viruses along with their migrations; however close contacts between wild migratory ducks and poultry are less likely in modern industrial poultry farming settings. Therefore, we conducted experimental infections of HPAIVs and low pathogenic avian influenza viruses (LPAIVs) to chickens, domestic ducks, tree sparrows, jungle crows, and black rats to evaluate their roles in virus transmission. The results showed that chickens, ducks, sparrows, and crows were highly susceptible to HPAIV infection. Significant titers of virus were recovered from the sparrows and crows infected with HPAIVs, which suggests that they potentially play roles of transmission of HPAIVs to poultry. In contrast, the growth of LPAIVs was limited in each of the animals tested compared with that of HPAIVs. The present results indicate that these common synanthropes play some roles in influenza virus transmission from wild birds to poultry.
Collapse
|
16
|
A Single Amino Acid in the M1 Protein Responsible for the Different Pathogenic Potentials of H5N1 Highly Pathogenic Avian Influenza Virus Strains. PLoS One 2015; 10:e0137989. [PMID: 26368015 PMCID: PMC4569272 DOI: 10.1371/journal.pone.0137989] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/24/2015] [Indexed: 12/21/2022] Open
Abstract
Two highly pathogenic avian influenza virus strains, A/duck/Hokkaido/WZ83/2010 (H5N1) (WZ83) and A/duck/Hokkaido/WZ101/2010 (H5N1) (WZ101), which were isolated from wild ducks in Japan, were found to be genetically similar, with only two amino acid differences in their M1 and PB1 proteins at positions 43 and 317, respectively. We found that both WZ83 and WZ101 caused lethal infection in chickens but WZ101 killed them more rapidly than WZ83. Interestingly, ducks experimentally infected with WZ83 showed no or only mild clinical symptoms, whereas WZ101 was highly lethal. We then generated reassortants between these viruses and found that exchange of the M gene segment completely switched the pathogenic phenotype in both chickens and ducks, indicating that the difference in the pathogenicity for these avian species between WZ83 and WZ101 was determined by only a single amino acid in the M1 protein. It was also found that WZ101 showed higher pathogenicity than WZ83 in mice and that WZ83, whose M gene was replaced with that of WZ101, showed higher pathogenicity than wild-type WZ83, although this reassortant virus was not fully pathogenic compared to wild-type WZ101. These results suggest that the amino acid at position 43 of the M1 protein is one of the factors contributing to the pathogenicity of H5N1 highly pathogenic avian influenza viruses in both avian and mammalian hosts.
Collapse
|
17
|
Yamamoto Y, Nakamura K, Yamada M, Mase M. Corneal Opacity in Domestic Ducks Experimentally Infected With H5N1 Highly Pathogenic Avian Influenza Virus. Vet Pathol 2015; 53:65-76. [PMID: 26123230 DOI: 10.1177/0300985815591077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Domestic ducks can be a key factor in the regional spread of H5N1 highly pathogenic avian influenza (HPAI) virus in Asia. The authors performed experimental infections to examine the relationship between corneal opacity and H5N1 HPAI virus infection in domestic ducks (Anas platyrhyncha var domestica). A total of 99 domestic ducks, including 3 control birds, were used in the study. In experiment 1, when domestic ducks were inoculated intranasally with 2 H5N1 HPAI viruses, corneal opacity appeared more frequently than neurologic signs and mortality. Corneal ulceration and exophthalmos were rare findings. Histopathologic examinations of the eyes of domestic ducks in experiment 2 revealed that corneal opacity was due to the loss of corneal endothelial cells and subsequent keratitis with edema. Influenza viral antigen was detected in corneal endothelial cells and some other ocular cells by immunohistochemistry. Results suggest that corneal opacity is a characteristic and frequent finding in domestic ducks infected with the H5N1 HPAI virus. Confirming this ocular change may improve the detection rate of infected domestic ducks in the field.
Collapse
Affiliation(s)
- Y Yamamoto
- National Institute of Animal Health, Tsukuba, Japan
| | - K Nakamura
- National Institute of Animal Health, Tsukuba, Japan
| | - M Yamada
- National Institute of Animal Health, Tsukuba, Japan
| | - M Mase
- National Institute of Animal Health, Tsukuba, Japan
| |
Collapse
|
18
|
PA-X decreases the pathogenicity of highly pathogenic H5N1 influenza A virus in avian species by inhibiting virus replication and host response. J Virol 2015; 89:4126-42. [PMID: 25631083 DOI: 10.1128/jvi.02132-14] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED PA-X is a newly discovered protein that decreases the virulence of the 1918 H1N1 virus in a mouse model. However, the role of PA-X in the pathogenesis of highly pathogenic avian influenza viruses (HPAIV) of the H5N1 subtype in avian species is totally unknown. By generating two PA-X-deficient viruses and evaluating their virulence in different animal models, we show here that PA-X diminishes the virulence of the HPAIV H5N1 strain A/Chicken/Jiangsu/k0402/2010 (CK10) in mice, chickens, and ducks. Expression of PA-X dampens polymerase activity and virus replication both in vitro and in vivo. Using microarray analysis, we found that PA-X blunts the global host response in chicken lungs, markedly downregulating genes associated with the inflammatory and cell death responses. Correspondingly, a decreased cytokine response was recapitulated in multiple organs of chickens and ducks infected with the wild-type virus relative to those infected with the PA-X-deficient virus. In addition, the PA-X protein exhibits antiapoptotic activity in chicken and duck embryo fibroblasts. Thus, our results demonstrated that PA-X acts as a negative virulence regulator and decreases virulence by inhibiting viral replication and the host innate immune response. Therefore, we here define the role of PA-X in the pathogenicity of H5N1 HPAIV, furthering our understanding of the intricate pathogenesis of influenza A virus. IMPORTANCE Influenza A virus (IAV) continues to pose a huge threat to global public health. Eight gene segments of the IAV genome encode as many as 17 proteins, including 8 main viral proteins and 9 accessory proteins. The presence of these accessory proteins may further complicate the pathogenesis of IAV. PA-X is a newly identified protein in segment 3 that acts to decrease the virulence of the 1918 H1N1 virus in mice by modulating host gene expression. Our study extends these functions of PA-X to H5N1 HPAIV. We demonstrated that loss of PA-X expression increases the virulence and replication of an H5N1 virus in mice and avian species and alters the host innate immune and cell death responses. Our report is the first to delineate the role of the novel PA-X protein in the pathogenesis of H5N1 viruses in avian species and promotes our understanding of H5N1 HPAIV.
Collapse
|
19
|
Al-Mubarak F, Daly J, Christie D, Fountain D, Dunham SP. Identification of morphological differences between avian influenza A viruses grown in chicken and duck cells. Virus Res 2015; 199:9-19. [PMID: 25613009 DOI: 10.1016/j.virusres.2015.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 12/11/2014] [Accepted: 01/10/2015] [Indexed: 11/29/2022]
Abstract
Although wild ducks are considered to be the major reservoirs for most influenza A virus subtypes, they are typically resistant to the effects of the infection. In contrast, certain influenza viruses may be highly pathogenic in other avian hosts such as chickens and turkeys, causing severe illness and death. Following in vitro infection of chicken and duck embryo fibroblasts (CEF and DEF) with low pathogenic avian influenza (LPAI) viruses, duck cells die more rapidly and produce fewer infectious virions than chicken cells. In the current study, the morphology of viruses produced from CEF and DEF cells infected with low pathogenic avian H2N3 was examined. Transmission electron microscopy showed that viruses budding from duck cells were elongated, while chicken cells produced mostly spherical virions; similar differences were observed in viral supernatants. Sequencing of the influenza genome of chicken- and duck-derived H2N3 LPAI revealed no differences, implicating host cell determinants as responsible for differences in virus morphology. Both DEF and CEF cells produced filamentous virions of equine H3N8 (where virus morphology is determined by the matrix gene). DEF cells produced filamentous or short filament virions of equine H3N8 and avian H2N3, respectively, even after actin disruption with cytochalasin D. These findings suggest that cellular factors other than actin are responsible for the formation of filamentous virions in DEF cells. The formation of elongated virions in duck cells may account for the reduced number of infectious virions produced and could have implications for virus transmission or maintenance in the reservoir host.
Collapse
Affiliation(s)
- Firas Al-Mubarak
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, College Road, Loughborough LE12 5RD, UK; Department of Microbiology - Virology, College of Veterinary Medicine and Science, Basra University, Iraq
| | - Janet Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, College Road, Loughborough LE12 5RD, UK
| | - Denise Christie
- School of Life Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Donna Fountain
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, College Road, Loughborough LE12 5RD, UK
| | - Stephen P Dunham
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, College Road, Loughborough LE12 5RD, UK.
| |
Collapse
|
20
|
Abstract
Skeletal muscle, at 30 to 40% of body mass, is the most abundant soft tissue in the body. Besides its primary function in movement and posture, skeletal muscle is a significant innate immune organ with the capacity to produce cytokines and chemokines and respond to proinflammatory cytokines. Little is known about the role of skeletal muscle during systemic influenza A virus infection in any host and particularly avian species. Here we used primary chicken and duck multinucleated myotubes to examine their susceptibility and innate immune response to influenza virus infections. Both chicken and duck myotubes expressed avian and human sialic acid receptors and were readily susceptible to low-pathogenicity (H2N3 A/mallard duck/England/7277/06) and high-pathogenicity (H5N1 A/turkey/England/50-92/91 and H5N1 A/turkey/Turkey/1/05) avian and human H1N1 (A/USSR/77) influenza viruses. Both avian host species produced comparable levels of progeny H5N1 A/turkey/Turkey/1/05 virus. Notably, the rapid accumulation of viral nucleoprotein and matrix (M) gene RNA in chicken and duck myotubes was accompanied by extensive cytopathic damage with marked myotube apoptosis (widespread microscopic blebs, caspase 3/7 activation, and annexin V binding at the plasma membrane). Infected chicken myotubes produced significantly higher levels of proinflammatory cytokines than did the corresponding duck cells. Additionally, in chicken myotubes infected with H5N1 viruses, the induction of interferon beta (IFN-β) and IFN-inducible genes, including the melanoma differentiation-associated protein 5 (MDA-5) gene, was relatively weak compared to infection with the corresponding H2N3 virus. Our findings highlight that avian skeletal muscle fibers are capable of productive influenza virus replication and are a potential tissue source of infection. IMPORTANCE Infection with high-pathogenicity H5N1 viruses in ducks is often asymptomatic, and skeletal muscle from such birds could be a source of infection of humans and animals. Little is known about the ability of influenza A viruses to replicate in avian skeletal muscle fibers. We show here that cultured chicken and duck myotubes were highly susceptible to infection with both low- and high-pathogenicity avian influenza viruses. Infected myotubes of both avian species displayed rapid virus accumulation, apoptosis, and extensive cellular damage. Our results indicate that avian skeletal muscle fibers of chicken and duck could be significant contributors to progeny production of highly pathogenic H5N1 viruses.
Collapse
|
21
|
Hu J, Liu X. Crucial role of PA in virus life cycle and host adaptation of influenza A virus. Med Microbiol Immunol 2014; 204:137-49. [PMID: 25070354 DOI: 10.1007/s00430-014-0349-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/16/2014] [Indexed: 02/01/2023]
Abstract
The PA protein is the third subunit of the polymerase complex of influenza A virus. Compared with the other two polymerase subunits (PB2 and PB1), its precise functions are less defined. However, in recent years, advances in protein expression and crystallization technologies and also the reverse genetics, greatly accelerate our understanding of the essential role of PA in virus infection. Here, we first review the current literature on this remarkably multifunctional viral protein regarding virus life cycle, including viral RNA transcription and replication, viral genome packaging and assembly. We then discuss the various roles of PA in host adaption in avian species and mammals, general virus-host interaction, and host protein synthesis shutoff. We also review the recent findings about the novel proteins derived from PA. Finally, we discuss the prospects of PA as a target for the development of new antiviral approaches and drugs.
Collapse
Affiliation(s)
- Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
| | | |
Collapse
|
22
|
Duck MDA5 functions in innate immunity against H5N1 highly pathogenic avian influenza virus infections. Vet Res 2014; 45:66. [PMID: 24939427 PMCID: PMC4079828 DOI: 10.1186/1297-9716-45-66] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 05/27/2014] [Indexed: 02/08/2023] Open
Abstract
Melanoma differentiation-associated gene 5 (MDA5) is an important intracellular receptor that recognizes long molecules of viral double-stranded RNA in innate immunity. To understand the mechanism of duck MDA5-mediated innate immunity, we cloned the MDA5 cDNA from the Muscovy duck (Cairina moschata). Quantitative real-time PCR analysis indicates that duck MDA5 mRNA was constitutively expressed in all sampled tissues. A significant increase of MDA5 mRNA was detected in the brain, spleen and lungs of ducks after infection with an H5N1 highly pathogenic avian influenza virus (HPAIV). We investigated the role of the predicted functional domains of MDA5. The results indicate the caspase activation and recruitment domain (CARD) of duck MDA5 had a signal transmission function through IRF-7-dependent signaling pathway. Overexpression of the CARD strongly activated the chicken IFN-β promoter and upregulated the mRNA expression of antiviral molecules (such as OAS, PKR and Mx), proinflammatory cytokines (such as IL-2, IL-6, IFN-α and IFN-γ, but not IL-1β and IL-8) and retinoic acid-inducible gene I (RIG-I)-like receptors (RLR) (RIG-I and LGP2) without exogenous stimulation. We also demonstrate the NS1 of the H5N1 HPAIV inhibited the duck MDA5-mediated signaling pathway in vitro. These results suggest that duck MDA5 is an important receptor for inducing antiviral activity in the host immune response of ducks.
Collapse
|
23
|
Abstract
Immunohistochemical methods are commonly used for studying the pathogenesis of influenza A virus by allowing the identification of sites of replication of the virus in infected tissues and the correlation with the histopathological changes observed. In this chapter, the materials and methods for performing immunohistochemical detection of influenza virus antigens in tissues are provided. The technique involves the following steps: heat-induced antigen retrieval; binding of a primary antibody to the virus antigen; antibody-antigen complex binding by a biotinylated secondary antibody; and binding of an enzyme-streptavidin conjugate. The enzyme is then visualized by application of the substrate chromogen solution to produce a colorimetric end product. Visualization of influenza virus antigen in tissues is based on chromogen deposition in the nucleus and cytoplasm of infected cells.
Collapse
Affiliation(s)
- Mary J Pantin-Jackwood
- Exotic and Emerging Avian Viral Diseases Unit, Southeast Poultry Research Laboratory, US Department of Agriculture, ARS, 934 College Station Rd., Athens, GA, 30605, USA,
| |
Collapse
|
24
|
Bui VN, Dao TD, Nguyen TTH, Nguyen LT, Bui AN, Trinh DQ, Pham NT, Inui K, Runstadler J, Ogawa H, Nguyen KV, Imai K. Pathogenicity of an H5N1 avian influenza virus isolated in Vietnam in 2012 and reliability of conjunctival samples for diagnosis of infection. Virus Res 2013; 179:125-32. [PMID: 24211664 DOI: 10.1016/j.virusres.2013.10.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 10/06/2013] [Accepted: 10/24/2013] [Indexed: 11/16/2022]
Abstract
The continued spread of highly pathogenic avian influenza virus (HPAIV) subtype H5N1 among poultry in Vietnam poses a potential threat to animals and public health. To evaluate the pathogenicity of a 2012 H5N1 HPAIV isolate and to assess the utility of conjunctival swabs for viral detection and isolation in surveillance, an experimental infection with HPAIV subtype H5N1 was carried out in domestic ducks. Ducks were infected with 10(7.2) TCID50 of A/duck/Vietnam/QB1207/2012 (H5N1), which was isolated from a moribund domestic duck. In the infected ducks, clinical signs of disease, including neurological disorder, were observed. Ducks started to die at 3 days-post-infection (dpi), and the study mortality reached 67%. Viruses were recovered from oropharyngeal and conjunctival swabs until 7 dpi and from cloacal swabs until 4 dpi. In the ducks that died or were sacrificed on 3, 5, or 6 dpi, viruses were recovered from lung, brain, heart, pancreas and intestine, among which the highest virus titers were in the lung, brain or heart. Results of virus titration were confirmed by real-time RT-PCR. Genetic and phylogenetic analysis of the HA gene revealed that the isolate belongs to clade 2.3.2.1 similarly to the H5N1 viruses isolated in Vietnam in 2012. The present study demonstrated that this recent HPAI H5N1 virus of clade 2.3.2.1 could replicate efficiently in the systemic organs, including the brain, and cause severe disease with neurological symptoms in domestic ducks. Therefore, this HPAI H5N1 virus seems to retain the neurotrophic feature and has further developed properties of shedding virus from the oropharynx and conjunctiva in addition to the cloaca, potentially posing a higher risk of virus spread through cross-contact and/or environmental transmission. Continued surveillance and diagnostic programs using conjunctival swabs in the field would further verify the apparent reliability of conjunctival samples for the detection of AIV.
Collapse
Affiliation(s)
- Vuong N Bui
- Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido 080 8555, Japan; National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, Viet Nam
| | - Tung D Dao
- National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, Viet Nam
| | - Tham T H Nguyen
- National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, Viet Nam
| | - Lien T Nguyen
- National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, Viet Nam
| | - Anh N Bui
- National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, Viet Nam
| | - Dai Q Trinh
- Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido 080 8555, Japan; National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, Viet Nam
| | - Nga T Pham
- National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, Viet Nam
| | - Kenjiro Inui
- Food and Agriculture Organization, 3 Nguyen Gia Thieu, Hoan Kiem, Hanoi, Viet Nam
| | | | - Haruko Ogawa
- Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido 080 8555, Japan.
| | - Khong V Nguyen
- National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, Viet Nam
| | - Kunitoshi Imai
- Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido 080 8555, Japan
| |
Collapse
|
25
|
Nemeth NM, Brown JD, Stallknecht DE, Howerth EW, Newman SH, Swayne DE. Experimental infection of bar-headed geese (Anser indicus) and ruddy shelducks (Tadorna ferruginea) with a clade 2.3.2 H5N1 highly pathogenic avian influenza virus. Vet Pathol 2013; 50:961-70. [PMID: 23735616 PMCID: PMC11354424 DOI: 10.1177/0300985813490758] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Since 2005, clade 2.2 H5N1 highly pathogenic avian influenza (HPAI) viruses have caused infections and morbidity among numerous species of wild waterfowl in Eurasia and Africa. However, outbreaks associated with clade 2.3.2 viruses have increased since 2009, and viruses within this clade have become the dominant strain of the H5N1 HPAI virus detected in wild birds, reaching endemic status in domestic birds in select regions of Asia. To address questions regarding the emergence and expansion of clade 2.3.2 viruses, 2 waterfowl species repeatedly involved in outbreaks of H5N1 HPAI viruses, bar-headed geese (Anser indicus) and ruddy shelducks (Tadorna ferruginea), were inoculated with a representative virus. All of 3 infected ruddy shelducks exhibited neurologic signs and died within 4 to 5 days. Two of 3 infected bar-headed geese had transient weakness but all survived. Viral shedding was predominately via the oropharynx and was detected from 1 to 7 days after inoculation. The severity and distribution of microscopic lesions corresponded with clinical disease and influenza-specific immunohistochemical staining of neurons. The predominant lesions were in the brain and were more severe in ruddy shelducks. Increased caspase-3 reactivity in the brains of all infected birds suggests a role for apoptosis in H5N1 HPAI virus pathogenesis in these species. These results demonstrate that similar to clade 2.2 viruses, a clade 2.3.2 H5N1 HPAI virus is neurotropic in some waterfowl species and can lead to neurologic disease with varying clinical outcomes. This has implications for the role that wild waterfowl may play in transmission of this virus in endemic regions.
Collapse
Affiliation(s)
- N M Nemeth
- Southeastern Cooperative Wildlife Disease Study, University of Georgia, 538 D. W. Brooks Dr, Athens, GA 30602, USA.
| | | | | | | | | | | |
Collapse
|
26
|
The PA and HA gene-mediated high viral load and intense innate immune response in the brain contribute to the high pathogenicity of H5N1 avian influenza virus in mallard ducks. J Virol 2013; 87:11063-75. [PMID: 23926340 DOI: 10.1128/jvi.00760-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Most highly pathogenic avian influenza A viruses cause only mild clinical signs in ducks, serving as an important natural reservoir of influenza A viruses. However, we isolated two H5N1 viruses that are genetically similar but differ greatly in virulence in ducks. A/Chicken/Jiangsu/k0402/2010 (CK10) is highly pathogenic, whereas A/Goose/Jiangsu/k0403/2010 (GS10) is low pathogenic. To determine the genetic basis for the high virulence of CK10 in ducks, we generated a series of single-gene reassortants between CK10 and GS10 and tested their virulence in ducks. Expression of the CK10 PA or hemagglutinin (HA) gene in the GS10 context resulted in increased virulence and virus replication. Conversely, inclusion of the GS10 PA or HA gene in the CK10 background attenuated the virulence and virus replication. Moreover, the PA gene had a greater contribution. We further determined that residues 101G and 237E in the PA gene contribute to the high virulence of CK10. Mutations at these two positions produced changes in virulence, virus replication, and polymerase activity of CK10 or GS10. Position 237 plays a greater role in determining these phenotypes. Moreover, the K237E mutation in the GS10 PA gene increased PA nuclear accumulation. Mutant GS10 viruses carrying the CK10 HA gene or the PA101G or PA237E mutation induced an enhanced innate immune response. A sustained innate response was detected in the brain rather than in the lung and spleen. Our results suggest that the PA and HA gene-mediated high virus replication and the intense innate immune response in the brain contribute to the high virulence of H5N1 virus in ducks.
Collapse
|
27
|
Molecular characterization of a H5N1 highly pathogenic avian influenza virus clade 2.3.2.1b circulating in Vietnam in 2011. Vet Microbiol 2013; 165:341-8. [DOI: 10.1016/j.vetmic.2013.04.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 04/10/2013] [Accepted: 04/13/2013] [Indexed: 11/22/2022]
|
28
|
Pantin-Jackwood M, Swayne DE, Smith D, Shepherd E. Effect of species, breed and route of virus inoculation on the pathogenicity of H5N1 highly pathogenic influenza (HPAI) viruses in domestic ducks. Vet Res 2013; 44:62. [PMID: 23876184 PMCID: PMC3733953 DOI: 10.1186/1297-9716-44-62] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 07/05/2013] [Indexed: 11/16/2022] Open
Abstract
H5N1 highly pathogenic avian influenza (HPAI) viruses continue to be a threat to poultry in many regions of the world. Domestic ducks have been recognized as one of the primary factors in the spread of H5N1 HPAI. In this study we examined the pathogenicity of H5N1 HPAI viruses in different species and breeds of domestic ducks and the effect of route of virus inoculation on the outcome of infection. We determined that the pathogenicity of H5N1 HPAI viruses varies between the two common farmed duck species, with Muscovy ducks (Cairina moschata) presenting more severe disease than various breeds of Anas platyrhynchos var. domestica ducks including Pekin, Mallard-type, Black Runners, Rouen, and Khaki Campbell ducks. We also found that Pekin and Muscovy ducks inoculated with two H5N1 HPAI viruses of different virulence, given by any one of three routes (intranasal, intracloacal, or intraocular), became infected with the viruses. Regardless of the route of inoculation, the outcome of infection was similar for each species but depended on the virulence of the virus used. Muscovy ducks showed more severe clinical signs and higher mortality than the Pekin ducks. In conclusion, domestic ducks are susceptible to H5N1 HPAI virus infection by different routes of exposure, but the presentation of the disease varied by virus strain and duck species. This information helps support the planning and implementation of H5N1 HPAI surveillance and control measures in countries with large domestic duck populations.
Collapse
Affiliation(s)
- Mary Pantin-Jackwood
- Exotic and Emerging Avian Viral Diseases Unit, Southeast Poultry Research Laboratory, USDA-Agricultural Research Service, 934 College Station Road, Athens, GA 30605, USA.
| | | | | | | |
Collapse
|
29
|
Okamatsu M, Nishi T, Nomura N, Yamamoto N, Sakoda Y, Sakurai K, Chu HD, Thanh LP, Van Nguyen L, Van Hoang N, Tien TN, Yoshida R, Takada A, Kida H. The genetic and antigenic diversity of avian influenza viruses isolated from domestic ducks, muscovy ducks, and chickens in northern and southern Vietnam, 2010–2012. Virus Genes 2013; 47:317-29. [DOI: 10.1007/s11262-013-0954-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 07/05/2013] [Indexed: 12/24/2022]
|
30
|
Wei L, Jiao P, Song Y, Cao L, Yuan R, Gong L, Cui J, Zhang S, Qi W, Yang S, Liao M. Host immune responses of ducks infected with H5N1 highly pathogenic avian influenza viruses of different pathogenicities. Vet Microbiol 2013; 166:386-93. [PMID: 23920409 DOI: 10.1016/j.vetmic.2013.06.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 06/06/2013] [Accepted: 06/10/2013] [Indexed: 01/22/2023]
Abstract
Our previous studies have illustrated three strains of duck-origin H5N1 highly pathogenic avian influenza viruses (HPAIVs) had varying levels of pathogenicity in ducks (Sun et al., 2011). However, the host immune response of ducks infected with those of H5N1 HPAIVs was unclear. Here, we compared viral distribution and mRNA expression of immune-related genes in ducks following infection with the two HPAIV (A/Duck/Guangdong/212/2004, DK212 and A/Duck/Guangdong/383/2008, DK383). DK383 could replicate in the tested tissue of ducks (brain, spleen, lungs, cloacal bursa, kidney, and pancreas) more rapid and efficiently than DK212 at 1 and 2 days post-inoculation. Quantitative real-time PCR analysis showed that the expression levels of TLR3, IL-6, IL-8, and MHC class II in brains were higher than those of respective genes in lungs during the early stage of post infection. Furthermore, the expression levels of IL-6 and IL-8 in the brain of ducks following infection with DK383 were remarkably higher than those of ducks infected with DK212, respectively. Our results suggest that the shift in the H5N1 HPAIVs to increased virulence in ducks may be associated with efficient and rapid replication of the virus, accompanied by early destruction of host immune responses. These data are helpful to understand the underlying mechanism of the different outcome of H5N1 HPAIVs infection in ducks.
Collapse
Affiliation(s)
- Liangmeng Wei
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Cornelissen JBWJ, Vervelde L, Post J, Rebel JMJ. Differences in highly pathogenic avian influenza viral pathogenesis and associated early inflammatory response in chickens and ducks. Avian Pathol 2013; 42:347-64. [PMID: 23782222 DOI: 10.1080/03079457.2013.807325] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We studied the immunological responses in the lung, brain and spleen of ducks and chickens within the first 7 days after infection with H7N1 highly pathogenic avian influenza (HPAI). Infection with HPAI caused significant morbidity and mortality in chickens, while in ducks the infection was asymptomatic. The HPAI viral mRNA load was higher in all investigated tissues of chickens compared with duck tissues. In the lung, brain and spleen of HPAI-infected chickens, a high, but delayed, pro-inflammatory response of IL-6 and IL-1β mRNA was induced, including up-regulation of IFN-β, IFN-γ, TLR3 and MDA-5 mRNA from 1 day post infection (p.i.). Whereas in ducks already at 8 h p.i., a quicker but lower response was found for IL-6, IL-1β and iNOS mRNA followed by a delayed activation of TLR7, RIG-I, MDA5 and IFN-γ mRNA response. Virus-infected areas in the lung of chickens co-localized with KUL-01⁺ (macrophages, dendritic cells), CD4⁺, and CD8α⁺ cells, during the first day after infection. However, only KUL-01⁺ cells co-localized with the virus after 1 day p.i. In ducks, CVI-ChNL-68.1⁺ (macrophage-like cells), CD4⁺ and CD8α⁺ cells and apoptosis co-localized with the virus within 8 h p.i. Apoptosis was detected in the brain and lung of HPAI-infected chickens after 2 days p.i. and apoptotic cells co-localized with virus-infected areas. In conclusion, excessive delayed cytokine inflammatory responses but inadequate cellular immune responses may contribute to pathogenesis in chickens, while ducks initiate a fast lower cytokine response followed by the activation of major pattern recognition receptors (TLR7, RIG-I, MDA5) and a persistent cellular response.
Collapse
Affiliation(s)
- J B W J Cornelissen
- Department of Infection Biology, Central Veterinary Institute of Wageningen UR, P.O. Box 65, 8200 AB Lelystad, The Netherlands.
| | | | | | | |
Collapse
|
32
|
Abstract
Although low pathogenic avian influenza virus (LPAIV) is traditionally considered to have adapted to its wild waterbird host to become avirulent, recent studies have suggested that LPAIV infection might after all have clinical effects. Therefore, I reviewed the literature on LPAIV infections in wild waterbirds. The virulence of LPAIV was assessed in 17 studies on experimental infections and nine studies on natural infections. Reported evidence for virulence were reductions in return rate, feeding rate, body weight, long-range movement and reproductive success, as well as pathological changes in infected organs. However, major caveats in studies of experimental infections were unnatural route of LPAIV inoculation, animal husbandry not simulating natural stressors and low sensitivity of clinical assessment. Major caveats in studies of natural infections were incomplete measurement of LPAIV infection burden, quasi-experimental design and potential misclassification of birds. After taking these caveats into account, the only remaining evidence for virulence was that presence and intensity of LPAIV infection were negatively correlated with body weight. Based on this correlation, together with the demonstrated LPAIV tropism for the intestinal tract, I hypothesize that LPAIV reduces digestive tract function, and suggest how future studies could be directed to test this hypothesis.
Collapse
Affiliation(s)
- Thijs Kuiken
- Department of Viroscience, Erasmus University Medical Centre, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| |
Collapse
|
33
|
Ferreira HL, Pirlot JF, Reynard F, van den Berg T, Bublot M, Lambrecht B. Immune responses and protection against H5N1 highly pathogenic avian influenza virus induced by the Newcastle disease virus H5 vaccine in ducks. Avian Dis 2013; 56:940-8. [PMID: 23402116 DOI: 10.1637/10148-040812-resnote.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Ducks play an important role in the epidemiology of avian influenza, and there is a need for new avian influenza vaccines that are suitable for mass vaccination in ducks. The immune responses as well as highly pathogenic avian influenza (HPAI) H5N1 protection induced by a Newcastle disease virus (NDV) vector expressing an H5N1 hemagglutinin (rNDV-H5) were investigated in mule ducks, a hybrid between Muscovy (Cairina moschata domesticus) males and Pekin (Anas platyrhynchos domesticus) females. Immunological tools to measure NDV and H5-specific serum antibody, mucosal, and cell-mediated immune (CMI) responses in ducks have been validated after infection with the vector NDV and an H5N1 low pathogenic avian influenza virus. The effect of maternally-derived antibodies (MDAs) to NDV on the humoral and CMI responses after NDV-H5 vaccination was also investigated. Our results showed the rNDV-H5 vaccine elicits satisfactory humoral and cellular responses in 11-day-old ducks correlating with a complete clinical and virological protection against the H5N1 strain. However, vaccination with rNDV-H5 in the presence of NDV MDA induced lower NDV-specific serum antibody, mucosal, and CMI responses than in ducks with no MDA, while interestingly the H5-specific serum antibody and duodenal IgY response were higher in ducks with NDV MDA. To our knowledge, this is the first report of the use of an NDV vector in ducks and of an HPAI H5N1 challenge in mule ducks, which appeared to be as resistant as Pekin ducks.
Collapse
Affiliation(s)
- Helena Lage Ferreira
- FZEA-USP, Av. Duque de Caxias Norte, 225, Pirassununga, SP, CEP 13635-900, Brazil
| | | | | | | | | | | |
Collapse
|
34
|
Kajihara M, Sakoda Y, Soda K, Minari K, Okamatsu M, Takada A, Kida H. The PB2, PA, HA, NP, and NS genes of a highly pathogenic avian influenza virus A/whooper swan/Mongolia/3/2005 (H5N1) are responsible for pathogenicity in ducks. Virol J 2013; 10:45. [PMID: 23374292 PMCID: PMC3570374 DOI: 10.1186/1743-422x-10-45] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 01/28/2013] [Indexed: 12/19/2022] Open
Abstract
Background Wild ducks are the natural hosts of influenza A viruses. Duck influenza, therefore, has been believed inapparent infection with influenza A viruses, including highly pathogenic avian influenza viruses (HPAIVs) in chickens. In fact, ducks experimentally infected with an HPAIV strain, A/Hong Kong/483/1997 (H5N1) (HK483), did not show any clinical signs. Another HPAIV strain, A/whooper swan/Mongolia/3/2005 (H5N1) (MON3) isolated from a dead swan, however, caused neurological dysfunction and death in ducks. Method To understand the mechanism whereby MON3 shows high pathogenicity in ducks, HK483, MON3, and twenty-four reassortants generated between these two H5N1 viruses were compared for their pathogenicity in domestic ducks. Results None of the ducks infected with MON3-based single-gene reassortants bearing the PB2, NP, or NS gene segment of HK483 died, and HK483-based single-gene reassortants bearing PB2, NP, or NS genes of MON3 were not pathogenic in ducks, suggesting that multiple gene segments contribute to the pathogenicity of MON3 in ducks. All the ducks infected with the reassortant bearing PB2, PA, HA, NP, and NS gene segments of MON3 died within five days post-inoculation, as did those infected with MON3. Each of the viruses was assessed for replication in ducks three days post-inoculation. MON3 and multi-gene reassortants pathogenic in ducks were recovered from all of the tissues examined and replicated with high titers in the brains and lungs. Conclusion The present results indicate that multigenic factors are responsible for efficient replication of MON3 in ducks. In particular, virus growth in the brain might correlate with neurological dysfunction and the disease severity.
Collapse
Affiliation(s)
- Masahiro Kajihara
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Longworth N, Mourits MCM, Saatkamp HW. Economic Analysis of HPAI Control in the Netherlands I: Epidemiological Modelling to Support Economic Analysis. Transbound Emerg Dis 2012; 61:199-216. [DOI: 10.1111/tbed.12021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Indexed: 11/27/2022]
Affiliation(s)
- N. Longworth
- Business Economics; Wageningen University; Wageningen The Netherlands
| | - M. C. M. Mourits
- Business Economics; Wageningen University; Wageningen The Netherlands
| | - H. W. Saatkamp
- Business Economics; Wageningen University; Wageningen The Netherlands
| |
Collapse
|
36
|
Effect of age on the pathogenesis and innate immune responses in Pekin ducks infected with different H5N1 highly pathogenic avian influenza viruses. Virus Res 2012; 167:196-206. [DOI: 10.1016/j.virusres.2012.04.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 04/11/2012] [Accepted: 04/27/2012] [Indexed: 11/18/2022]
|
37
|
Isoda N, Tsuda Y, Asakura S, Okamatsu M, Sakoda Y, Kida H. The nucleoprotein is responsible for intracerebral pathogenicity of A/duck/Mongolia/47/2001 (H7N1) in chicks. Arch Virol 2012; 157:2257-64. [PMID: 22833102 DOI: 10.1007/s00705-012-1415-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 06/08/2012] [Indexed: 11/30/2022]
Abstract
Avian influenza viruses A/duck/Mongolia/47/2001 (H7N1) (47/01) and A/duck/Mongolia/867/2002 (H7N1) (867/02) were defined as low-pathogenic avian influenza viruses (LPAIVs) using an intravenous pathogenicity test in chickens. On the other hand, the intracerebral pathogenicity indices of 47/01 and 867/02 were 1.30 and 0.00, respectively. A series of reassortant viruses were generated between 47/01 and 867/02, and their intracerebral pathogenicity was compared in one-day-old chicks to identify the protein(s) responsible for the intracerebral pathogenicity of 47/01. The results indicate that the amino acids at positions 50 and 98 of the nucleoprotein are related to the pathogenicity of 47/01 in chicks by intracerebral inoculation. A significant association was found between mortality of the chicks inoculated intracerebrally with 47/01 and virus replication in the lungs and/or brain. These results indicate that the NP of avian influenza viruses may be responsible for intracerebral pathogenicity in the host.
Collapse
Affiliation(s)
- Norikazu Isoda
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18-jo Nishi-9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Schat KA, Bingham J, Butler JM, Chen LM, Lowther S, Crowley TM, Moore RJ, Donis RO, Lowenthal JW. Role of position 627 of PB2 and the multibasic cleavage site of the hemagglutinin in the virulence of H5N1 avian influenza virus in chickens and ducks. PLoS One 2012; 7:e30960. [PMID: 22363523 PMCID: PMC3283584 DOI: 10.1371/journal.pone.0030960] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 12/28/2011] [Indexed: 11/30/2022] Open
Abstract
Highly pathogenic H5N1 avian influenza viruses have caused major disease outbreaks in domestic and free-living birds with transmission to humans resulting in 59% mortality amongst 564 cases. The mutation of the amino acid at position 627 of the viral polymerase basic-2 protein (PB2) from glutamic acid (E) in avian isolates to lysine (K) in human isolates is frequently found, but it is not known if this change affects the fitness and pathogenicity of the virus in birds. We show here that horizontal transmission of A/Vietnam/1203/2004 H5N1 (VN/1203) virus in chickens and ducks was not affected by the change of K to E at PB2-627. All chickens died between 21 to 48 hours post infection (pi), while 70% of the ducks survived infection. Virus replication was detected in chickens within 12 hours pi and reached peak titers in spleen, lung and brain between 18 to 24 hours for both viruses. Viral antigen in chickens was predominantly in the endothelium, while in ducks it was present in multiple cell types, including neurons, myocardium, skeletal muscle and connective tissues. Virus replicated to a high titer in chicken thrombocytes and caused upregulation of TLR3 and several cell adhesion molecules, which may explain the rapid virus dissemination and location of viral antigen in endothelium. Virus replication in ducks reached peak values between 2 and 4 days pi in spleen, lung and brain tissues and in contrast to infection in chickens, thrombocytes were not involved. In addition, infection of chickens with low pathogenic VN/1203 caused neuropathology, with E at position PB2-627 causing significantly higher infection rates than K, indicating that it enhances virulence in chickens.
Collapse
Affiliation(s)
- Karel A. Schat
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - John Bingham
- Commonwealth Scientific and Industrial Research Organisation, Livestock Industries, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Jeff M. Butler
- Commonwealth Scientific and Industrial Research Organisation, Livestock Industries, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Li-Mei Chen
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Sue Lowther
- Commonwealth Scientific and Industrial Research Organisation, Livestock Industries, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Tamsyn M. Crowley
- Commonwealth Scientific and Industrial Research Organisation, Livestock Industries, Australian Animal Health Laboratory, Geelong, Victoria, Australia
- Centre for Biotechnology, Chemistry and Systems Biology, Deakin University, Geelong, Victoria, Australia
| | - Robert J. Moore
- Commonwealth Scientific and Industrial Research Organisation, Livestock Industries, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Ruben O. Donis
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - John W. Lowenthal
- Commonwealth Scientific and Industrial Research Organisation, Livestock Industries, Australian Animal Health Laboratory, Geelong, Victoria, Australia
- * E-mail:
| |
Collapse
|
39
|
Henning J, Henning KA, Morton JM, Long NT, Ha NT, Vu LT, Vu PP, Hoa DM, Meers J. Highly pathogenic avian influenza (H5N1) in ducks and in-contact chickens in backyard and smallholder commercial duck farms in Viet Nam. Prev Vet Med 2011; 101:229-40. [DOI: 10.1016/j.prevetmed.2010.05.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Śmietanka, K, Minta, Z, Wyrostek, K, Jóźwiak, M, Olszewska, M, Domańska-Blicharz, K, Reichert, M, Pikuła, A, Habyarimana, A, van den Berg T. Susceptibility of Pigeons to Clade 1 and 2.2 High Pathogenicity Avian Influenza H5N1 Virus. Avian Dis 2011; 55:106-12. [DOI: 10.1637/9514-090110-resnote.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
41
|
Wahlgren J. Influenza A viruses: an ecology review. Infect Ecol Epidemiol 2011; 1:IEE-1-6004. [PMID: 22957113 PMCID: PMC3426330 DOI: 10.3402/iee.v1i0.6004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 01/18/2011] [Accepted: 01/18/2011] [Indexed: 01/08/2023] Open
Abstract
In humans, influenza A viruses cause yearly outbreaks with high morbidity and excess fatality rates as a direct effect. Placed in its ecological niche, however - in dabbling ducks - avian influenza virus (AIV) induces quite a mild disease. It is when the virus crosses the species barrier that pathogenic traits are attributed to infection. When infecting phylogenetically more distant species (i.e. chicken and turkeys), the AIV can cause high morbidity and may in some cases change the virus into a highly pathogenic variant with nearly 100% fatality rate. Being a very adaptable virus, these spill-over events are frequent and numerous species are susceptible to influenza virus. When a subtype of AIV that has not previously infected humans crosses the species barrier, adapts to humans, and spreads easily, a pandemic event is imminent. There is no cure for influenza infection and vaccination is a cumbersome endeavor so, currently, the strategy when a pandemic strikes is damage control. The interest in AIV ecology has increased dramatically since the beginning of the millennium as a key factor for preventive work for future pandemics. This review gives a broad overview of influenza A virus ecology: in the natural host, accidental hosts, new endemic hosts, and humans.
Collapse
Affiliation(s)
- John Wahlgren
- Department for Preparedness, Swedish Institute for Infectious Disease Control, Solna, Sweden
| |
Collapse
|
42
|
Burggraaf S, Bingham J, Payne J, Kimpton WG, Lowenthal JW, Bean AGD. Increased inducible nitric oxide synthase expression in organs is associated with a higher severity of H5N1 influenza virus infection. PLoS One 2011; 6:e14561. [PMID: 21283521 PMCID: PMC3023712 DOI: 10.1371/journal.pone.0014561] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 12/21/2010] [Indexed: 11/18/2022] Open
Abstract
Background The mechanisms of disease severity caused by H5N1 influenza virus infection remain somewhat unclear. Studies have indicated that a high viral load and an associated hyper inflammatory immune response are influential during the onset of infection. This dysregulated inflammatory response with increased levels of free radicals, such as nitric oxide (NO), appears likely to contribute to disease severity. However, enzymes of the nitric oxide synthase (NOS) family such as the inducible form of NOS (iNOS) generate NO, which serves as a potent anti-viral molecule to combat infection in combination with acute phase proteins and cytokines. Nevertheless, excessive production of iNOS and subsequent high levels of NO during H5N1 infection may have negative effects, acting with other damaging oxidants to promote excessive inflammation or induce apoptosis. Methodology/Principal Findings There are dramatic differences in the severity of disease between chickens and ducks following H5N1 influenza infection. Chickens show a high level of mortality and associated pathology, whilst ducks show relatively minor symptoms. It is not clear how this varying pathogenicty comes about, although it has been suggested that an overactive inflammatory immune response to infection in the chicken, compared to the duck response, may be to blame for the disparity in observed pathology. In this study, we identify and investigate iNOS gene expression in ducks and chickens during H5N1 influenza infection. Infected chickens show a marked increase in iNOS expression in a wide range of organs. Contrastingly, infected duck tissues have lower levels of tissue related iNOS expression. Conclusions/Significance The differences in iNOS expression levels observed between chickens and ducks during H5N1 avian influenza infection may be important in the inflammatory response that contributes to the pathology. Understanding the regulation of iNOS expression and its role during H5N1 influenza infection may provide insights for the development of new therapeutic strategies in the treatment of avian influenza infection.
Collapse
Affiliation(s)
- Simon Burggraaf
- Infection and Immunity, CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
The recent H1N1 pandemic that emerged in 2009 has illustrated how swiftly a new influenza virus can circulate the globe. Here we explain the origins of the 2009 pandemic virus, and other twentieth century pandemics. We also consider the impact of the 2009 pandemic in the human population and the use of vaccines and antiviral drugs. Thankfully this outbreak was much less severe than that associated with Spanish flu in 1918. We describe the viral factors that affect virulence of influenza and speculate on the future course of this virus in humans and animals.
Collapse
Affiliation(s)
- Nigel Curtis
- Royal Children's Hosp., Dept. Paediatrics, University of Melbourne, Parkville, 3052 Victoria Australia
| | - Adam Finn
- Institute of Child Life and Health, UBHT Education Centre, University of Bristol, Upper Maudlin Street, Bristol, BS2 8AE United Kingdom
| | - Andrew J. Pollard
- University of Oxford, Level 4,John Radcliffe Hospital, Oxford, OX3 9DU United Kingdom
| |
Collapse
|
44
|
Yao Q, Fischer KP, Li L, Agrawal B, Berhane Y, Tyrrell DL, Gutfreund KS, Pasick J. Immunogenicity and protective efficacy of a DNA vaccine encoding a chimeric protein of avian influenza hemagglutinin subtype H5 fused to CD154 (CD40L) in Pekin ducks. Vaccine 2010; 28:8147-56. [PMID: 20937323 DOI: 10.1016/j.vaccine.2010.09.081] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 09/23/2010] [Accepted: 09/26/2010] [Indexed: 11/24/2022]
Abstract
The potential of CD154 (CD40L) as a powerful immunological adjuvant has been shown in various strategies. In this study we examine the immunogenicity and protective efficacy of a CD40-targeting avian influenza hemagglutinin (HA) subunit DNA vaccine in ducks. DNA constructs encoded the ectodomain of the HA protein of LPAI A/mallard/BC/373/2005 (H5N2) with or without fusion to the ectodomain of duck CD154. CD40-targeting significantly accelerated and enhanced humoral responses to the vector-encoded HA protein. In viral challenge experiments with A/chicken/Vietnam/14/2005 (H5N1), DNA immunization conferred partial protection against the genetically distant HPAI. The observed improved kinetics and magnitude of immune induction suggest that CD40-targeting holds promise for influenza A vaccine development.
Collapse
Affiliation(s)
- Qingxia Yao
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Characterization of H5N1 highly pathogenic avian influenza virus strains isolated from migratory waterfowl in Mongolia on the way back from the southern Asia to their northern territory. Virology 2010; 406:88-94. [DOI: 10.1016/j.virol.2010.07.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 05/20/2010] [Accepted: 07/02/2010] [Indexed: 11/20/2022]
|
46
|
Antigenic, genetic, and pathogenic characterization of H5N1 highly pathogenic avian influenza viruses isolated from dead whooper swans (Cygnus cygnus) found in northern Japan in 2008. Virus Genes 2010; 41:351-7. [DOI: 10.1007/s11262-010-0530-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Accepted: 09/02/2010] [Indexed: 12/24/2022]
|
47
|
Abstract
Influenza surveillance in wild birds has established that the aquatic birds of the world are the source of influenza A viruses, which occasionally spread to domestic avian species and to mammals, including humans, and cause mild to severe disease. With the realization that the pandemics of influenza in poultry and people originate from inapparent infections of aquatic birds, including the highly pathogenic H5N1 virus, much more attention has been given to understanding the ecology of influenza in wild aquatic birds. This article deals with the major events establishing the role of wild birds in the natural history of influenza and with some of the unresolved issues. These include 1) whether all H5 and H7 influenza viruses have high pandemic potential, 2) whether avian influenza (AI) is exchanged between Eurasia and the Americas, and 3) whether the highly pathogenic H5N1 AI virus is now being perpetuated in wild birds, one of the most important unresolved issues. Continued surveillance of wild birds for influenza is essential to resolve the many unanswered questions concerning the zoonotic spread of influenza and pandemicity.
Collapse
Affiliation(s)
- Scott Krauss
- St. Jude Children's Research Hospital, Department of Infectious Diseases, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | | |
Collapse
|
48
|
Lang V, Rinder M, Hafner-Marx A, Rabl S, Bogner KH, Neubauer-Juric A, Büttner M. Avian influenza A virus monitoring in wild birds in Bavaria: occurrence and heterogeneity of H5 and N1 encoding genes. Zoonoses Public Health 2010; 57:e184-94. [PMID: 20298489 DOI: 10.1111/j.1863-2378.2010.01326.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To define avian influenza virus prevalence in wild birds in Bavaria, 12,930 tracheal, cloacal swabs or tissue samples from various waterfowl species were screened between January 2006 and December 2007. In 291 (2.3%) birds, genomes of influenza A viruses were detected by reverse transcription real-time PCR (rRT-PCR) targeting the matrix protein genes. Furthermore, solitary H5 hemagglutinin or N1 neuraminidase encoding genes were identified in 35 (0.3%) apparently healthy birds; whereas highly pathogenic (HPAI) H5N1 virus genomes were only diagnosed in dead wild birds (n = 93; 0.7%) found across this federal state region. In this study, multiple import events for H5N1 viruses were confirmed during 2006 and 2007. In addition, our findings argue against an existing HPAI H5N1 reservoir in aquatic birds in Bavaria. By contrast, phylogenetic analyses of the H5 or N1 sequences of low pathogenic avian influenza (LPAI) viruses revealed a marked diversity and multiple genetic lineages. This diversity of LPAI H5 and N1 subtype components indicates the existence of LPAI HA and NA gene pools which differ from the Bavarian HPAI H5N1. Moreover, the hemagglutinin amino acid differences between LPAI H5 viruses of a western European genotypic lineage observed in wild birds suggest a continuous evolution of LPAI viruses in Bavaria.
Collapse
Affiliation(s)
- V Lang
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | | | | | | | | | | | | |
Collapse
|
49
|
Guionie O, Guillou-Cloarec C, Courtois D, Bougeard S, Amelot M, Jestin V. Experimental Infection of Muscovy Ducks with Highly Pathogenic Avian Influenza Virus (H5N1) Belonging to Clade 2.2. Avian Dis 2010; 54:538-47. [DOI: 10.1637/8790-040109-reg.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
50
|
Sarmento L, Wasilenko J, Pantin-Jackwood M. The Effects of NS Gene Exchange on the Pathogenicity of H5N1 HPAI Viruses in Ducks. Avian Dis 2010; 54:532-7. [DOI: 10.1637/8917-050409-reg.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|