1
|
Gaafar YZA, Ziebell H. Aphid transmission of nanoviruses. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21668. [PMID: 32212397 DOI: 10.1002/arch.21668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
The genus Nanovirus consists of plant viruses that predominantly infect legumes leading to devastating crop losses. Nanoviruses are transmitted by various aphid species. The transmission occurs in a circulative nonpropagative manner. It was long suspected that a virus-encoded helper factor would be needed for successful transmission by aphids. Recently, a helper factor was identified as the nanovirus-encoded nuclear shuttle protein (NSP). The mode of action of NSP is currently unknown in contrast to helper factors from other plant viruses that, for example, facilitate binding of virus particles to receptors within the aphids' stylets. In this review, we are summarizing the current knowledge about nanovirus-aphid vector interactions.
Collapse
Affiliation(s)
- Yahya Z A Gaafar
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kuehn Institute, Braunschweig, Lower Saxony, Germany
| | - Heiko Ziebell
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kuehn Institute, Braunschweig, Lower Saxony, Germany
| |
Collapse
|
2
|
Tang SL, Linz LB, Bonning BC, Pohl NLB. Automated Solution-Phase Synthesis of Insect Glycans to Probe the Binding Affinity of Pea Enation Mosaic Virus. J Org Chem 2015; 80:10482-9. [PMID: 26457763 PMCID: PMC4640232 DOI: 10.1021/acs.joc.5b01428] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Indexed: 11/29/2022]
Abstract
Pea enation mosaic virus (PEMV)--a plant RNA virus transmitted exclusively by aphids--causes disease in multiple food crops. However, the aphid-virus interactions required for disease transmission are poorly understood. For virus transmission, PEMV binds to a heavily glycosylated receptor aminopeptidase N in the pea aphid gut and is transcytosed across the gut epithelium into the aphid body cavity prior to release in saliva as the aphid feeds. To investigate the role of glycans in PEMV-aphid interactions and explore the possibility of viral control through blocking a glycan interaction, we synthesized insect N-glycan terminal trimannosides by automated solution-phase synthesis. The route features a mannose building block with C-5 ester enforcing a β-linkage, which also provides a site for subsequent chain extension. The resulting insect N-glycan terminal trimannosides with fluorous tags were used in a fluorous microarray to analyze binding with fluorescein isothiocyanate-labeled PEMV; however, no specific binding between the insect glycan and PEMV was detected. To confirm these microarray results, we removed the fluorous tag from the trimannosides for isothermal titration calorimetry studies with unlabeled PEMV. The ITC studies confirmed the microarray results and suggested that this particular glycan-PEMV interaction is not involved in virus uptake and transport through the aphid.
Collapse
Affiliation(s)
- Shu-Lun Tang
- Department
of Chemistry, Hach Hall, Iowa State University, Ames, Iowa 50011, United States
| | - Lucas B. Linz
- Department
of Entomology, 339 Science
II, Iowa State University, Ames, Iowa 50011, United States
| | - Bryony C. Bonning
- Department
of Entomology, 339 Science
II, Iowa State University, Ames, Iowa 50011, United States
| | - Nicola L. B. Pohl
- Department
of Chemistry, Simon Hall, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
3
|
Linz LB, Liu S, Chougule NP, Bonning BC. In Vitro Evidence Supports Membrane Alanyl Aminopeptidase N as a Receptor for a Plant Virus in the Pea Aphid Vector. J Virol 2015; 89:11203-12. [PMID: 26311872 PMCID: PMC4645670 DOI: 10.1128/jvi.01479-15] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/19/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Insect-borne plant viruses cause significant agricultural losses and jeopardize sustainable global food production. Although blocking plant virus transmission would allow for crop protection, virus receptors in insect vectors are unknown. Here we identify membrane alanyl aminopeptidase N (APN) as a receptor for pea enation mosaic virus (PEMV) coat protein (CP) in the gut of the pea aphid, Acyrthosiphon pisum, using a far-Western blot method. Pulldown and immunofluorescence binding assays and surface plasmon resonance were used to confirm and characterize CP-APN interaction. PEMV virions and a peptide comprised of PEMV CP fused to a proline-rich hinge (-P-) and green fluorescent protein (CP-P-GFP) specifically bound to APN. Recombinant APN expressed in Sf9 cells resulted in internalization of CP-P-GFP, which was visualized by confocal microscopy; such internalization is an expected hallmark of a functional gut receptor. Finally, in assays with aphid gut-derived brush border membrane vesicles, binding of CP-P-GFP competed with binding of GBP3.1, a peptide previously demonstrated to bind to APN in the aphid gut and to impede PEMV uptake into the hemocoel; this finding supports the hypothesis that GBP3.1 and PEMV bind to and compete for the same APN receptor. These in vitro data combined with previously published in vivo experiments (S. Liu, S. Sivakumar, W. O. Sparks, W. A. Miller, and B. C. Bonning, Virology 401:107-116, 2010, http://dx.doi.org/10.1016/j.virol.2010.02.009) support the identification of APN as the first receptor in a plant virus vector. Knowledge of this receptor will provide for technologies based on PEMV-APN interaction designed to block plant virus transmission and to suppress aphid populations. IMPORTANCE A significant proportion of global food production is lost to insect pests. Aphids, in addition to weakening plants by feeding on their sap, are responsible for transmitting about half of the plant viruses vectored by insects. Growers rely heavily on the application of chemical insecticides to manage both aphids and aphid-vectored plant viral disease. To increase our understanding of plant virus-aphid vector interaction, we provide in vitro evidence supporting earlier in vivo work for identification of a receptor protein in the aphid gut called aminopeptidase N, which is responsible for entry of the plant virus pea enation mosaic virus into the pea aphid vector. Enrichment of proteins found on the surface of the aphid gut epithelium resulted in identification of this first aphid gut receptor for a plant virus. This discovery is particularly important since the disruption of plant virus binding to such a receptor may enable the development of a nonchemical strategy for controlling aphid-vectored plant viruses to maximize food production.
Collapse
Affiliation(s)
- Lucas B Linz
- Department of Entomology, Iowa State University, Ames, Iowa, USA
| | - Sijun Liu
- Department of Entomology, Iowa State University, Ames, Iowa, USA
| | | | - Bryony C Bonning
- Department of Entomology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
4
|
Cilia M, Johnson R, Sweeney M, DeBlasio SL, Bruce JE, MacCoss MJ, Gray SM. Evidence for lysine acetylation in the coat protein of a polerovirus. J Gen Virol 2014; 95:2321-2327. [PMID: 24939649 PMCID: PMC4165934 DOI: 10.1099/vir.0.066514-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/13/2014] [Indexed: 12/17/2022] Open
Abstract
Virions of the RPV strain of Cereal yellow dwarf virus-RPV were purified from infected oat tissue and analysed by MS. Two conserved residues, K147 and K181, in the virus coat protein, were confidently identified to contain epsilon-N-acetyl groups. While no functional data are available for K147, K181 lies within an interfacial region critical for virion assembly and stability. The signature immonium ion at m/z 126.0919 demonstrated the presence of N-acetyllysine, and the sequence fragment ions enabled an unambiguous assignment of the epsilon-N-acetyl modification on K181. We hypothesize that selection favours acetylation of K181 in a fraction of coat protein monomers to stabilize the capsid by promoting intermonomer salt bridge formation.
Collapse
Affiliation(s)
- Michelle Cilia
- USDA-Agricultural Research Service, Ithaca, NY 14853, USA
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | - Richard Johnson
- Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA
| | - Michelle Sweeney
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | - Stacy L. DeBlasio
- USDA-Agricultural Research Service, Ithaca, NY 14853, USA
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | - James E. Bruce
- Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA
| | - Stewart M. Gray
- USDA-Agricultural Research Service, Ithaca, NY 14853, USA
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
5
|
N-glycosylation modification of plant-derived virus-like particles: an application in vaccines. BIOMED RESEARCH INTERNATIONAL 2014; 2014:249519. [PMID: 24971324 PMCID: PMC4055563 DOI: 10.1155/2014/249519] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/19/2014] [Accepted: 05/12/2014] [Indexed: 12/20/2022]
Abstract
Plants have been developed as an alternative system to mammalian cells for production of recombinant prophylactic or therapeutic proteins for human and animal use. Effective plant expression systems for recombinant proteins have been established with the optimal combination of gene expression regulatory elements and control of posttranslational processing of recombinant glycoproteins. In plant, virus-like particles (VLPs), viral “empty shells” which maintain the same structural characteristics of virions but are genome-free, are considered extremely promising as vaccine platforms and therapeutic delivery systems. Unlike microbial fermentation, plants are capable of carrying out N-glycosylation as a posttranslational modification of glycoproteins. Recent advances in the glycoengineering in plant allow human-like glycomodification and optimization of desired glycan structures for enhancing safety and functionality of recombinant pharmaceutical glycoproteins. In this review, the current plant-derived VLP approaches are focused, and N-glycosylation and its in planta modifications are discussed.
Collapse
|
6
|
Cilia M, Peter KA, Bereman MS, Howe K, Fish T, Smith D, Gildow F, MacCoss MJ, Thannhauser TW, Gray SM. Discovery and targeted LC-MS/MS of purified polerovirus reveals differences in the virus-host interactome associated with altered aphid transmission. PLoS One 2012; 7:e48177. [PMID: 23118947 PMCID: PMC3484124 DOI: 10.1371/journal.pone.0048177] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 09/21/2012] [Indexed: 11/19/2022] Open
Abstract
Circulative transmission of viruses in the Luteoviridae, such as cereal yellow dwarf virus (CYDV), requires a series of precisely orchestrated interactions between virus, plant, and aphid proteins. Natural selection has favored these viruses to be retained in the phloem to facilitate acquisition and transmission by aphids. We show that treatment of infected oat tissue homogenate with sodium sulfite reduces transmission of the purified virus by aphids. Transmission electron microscopy data indicated no gross change in virion morphology due to treatments. However, treated virions were not acquired by aphids through the hindgut epithelial cells and were not transmitted when injected directly into the hemocoel. Analysis of virus preparations using nanoflow liquid chromatography coupled to tandem mass spectrometry revealed a number of host plant proteins co-purifying with viruses, some of which were lost following sodium sulfite treatment. Using targeted mass spectrometry, we show data suggesting that several of the virus-associated host plant proteins accumulated to higher levels in aphids that were fed on CYDV-infected plants compared to healthy plants. We propose two hypotheses to explain these observations, and these are not mutually exclusive: (a) that sodium sulfite treatment disrupts critical virion-host protein interactions required for aphid transmission, or (b) that host infection with CYDV modulates phloem protein expression in a way that is favorable for virus uptake by aphids. Importantly, the genes coding for the plant proteins associated with virus may be examined as targets in breeding cereal crops for new modes of virus resistance that disrupt phloem-virus or aphid-virus interactions.
Collapse
Affiliation(s)
- Michelle Cilia
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Ithaca, New York, United States of America
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
- * E-mail: (MC); (SMG)
| | - Kari A. Peter
- Department of Plant Pathology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Michael S. Bereman
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Kevin Howe
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Ithaca, New York, United States of America
| | - Tara Fish
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Ithaca, New York, United States of America
| | - Dawn Smith
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Fredrick Gildow
- Department of Plant Pathology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Theodore W. Thannhauser
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Ithaca, New York, United States of America
| | - Stewart M. Gray
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Ithaca, New York, United States of America
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
- * E-mail: (MC); (SMG)
| |
Collapse
|
7
|
Bencharki B, Boissinot S, Revollon S, Ziegler-Graff V, Erdinger M, Wiss L, Dinant S, Renard D, Beuve M, Lemaitre-Guillier C, Brault V. Phloem protein partners of Cucurbit aphid borne yellows virus: possible involvement of phloem proteins in virus transmission by aphids. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:799-810. [PMID: 20459319 DOI: 10.1094/mpmi-23-6-0799] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Poleroviruses are phytoviruses strictly transmitted by phloem-feeding aphids in a circulative and nonpropagative mode. During ingestion, aphids sample virions in sieve tubes along with sap. Therefore, any sap protein bound to virions will be acquired by the insects and could potentially be involved in the transmission process. By developing in vitro virus-overlay assays on sap proteins collected from cucumber, we observed that approximately 20 proteins were able to bind to purified particles of Cucurbit aphid borne yellows virus (CABYV). Among them, eight proteins were identified by mass spectrometry. The role of two candidates belonging to the PP2-like family (predominant lectins found in cucurbit sap) in aphid transmission was further pursued by using purified orthologous PP2 proteins from Arabidopsis. Addition of these proteins to the virus suspension in the aphid artificial diet greatly increased virus transmission rate. This shift was correlated with an increase in the number of viral genomes in insect cells and with an increase of virion stability in vitro. Surprisingly, increase of the virus transmission rate was also monitored after addition of unrelated proteins in the aphid diet, suggesting that any soluble protein at sufficiently high concentration in the diet and acquired together with virions could stimulate virus transmission.
Collapse
Affiliation(s)
- B Bencharki
- INRA Université de Strasbourg, UMR SVQV, 28 rue de Herrlisheim BP 20507, 68021 Colmar, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
A reinvestigation provides no evidence for sugar residues on structural proteins of poleroviruses and argues against a role for glycosylation of virus structural proteins in aphid transmission. Virology 2010; 402:303-14. [PMID: 20416918 DOI: 10.1016/j.virol.2010.03.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Revised: 03/19/2010] [Accepted: 03/22/2010] [Indexed: 11/22/2022]
Abstract
Poleroviruses are strictly transmitted by aphids. Glycosylation of Turnip yellows virus (TuYV) was previously reported and this modification was supposed to be required for aphid transmission. Using different approaches based on (i) a lectin-binding assay, (ii) use of specific complex glycan antibodies and (iii) mass spectrometry, we found no evidence that the structural proteins of TuYV and Cucurbit aphid-borne yellow virus (CABYV) carry glycan residues. Moreover, mutation of each of the four potential N-glycosylation sites of the structural protein sequences of CABYV indicated that, unless more than one site on the structural protein is glycosylated, N-glycosylation is not involved in aphid transmission. These results did not corroborate the previous hypothesis for the role of glycosylation in aphid transmission. They, however, revealed the presence of a glycosylated plant protein in purified polerovirus suspensions, whose function in aphid transmission should be further investigated.
Collapse
|
9
|
Crutzen F, Mehrvar M, Gilmer D, Bragard C. A full-length infectious clone of beet soil-borne virus indicates the dispensability of the RNA-2 for virus survival in planta and symptom expression on Chenopodium quinoa leaves. J Gen Virol 2009; 90:3051-3056. [PMID: 19726609 DOI: 10.1099/vir.0.014548-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For a better understanding of the functionality and pathogenicity of beet soil-borne virus (BSBV), full-length cDNA clones have been constructed for the three genomic RNAs. With the aim of assessing their effectiveness and relative contribution to the virus housekeeping functions, transcripts were inoculated on Chenopodium quinoa and Beta macrocarpa leaves using five genome combinations. Both RNAs-1 (putative replicase) and -3 (putative movement proteins) proved to be essential for virus replication in planta and symptom production on C. quinoa, whereas RNA-2 (putative coat protein, CP, and a read-through domain, RT) was not. No symptoms were recorded on B. macrocarpa, but viral RNAs were detected. In both host plants, the 19 kDa CP was detected by Western blotting as well as a 115 kDa protein corresponding to the CP-RT.
Collapse
Affiliation(s)
- François Crutzen
- Université catholique de Louvain, unité de phytopathologie, Croix du Sud 2 bte 3, B-1348 Louvain-la-Neuve, Belgium
| | - Mohsen Mehrvar
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
- Université catholique de Louvain, unité de phytopathologie, Croix du Sud 2 bte 3, B-1348 Louvain-la-Neuve, Belgium
| | - David Gilmer
- Institut de Biologie Moléculaire des Plantes, Laboratoire propre du CNRS (UPR 2357) conventionné avec l'Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Claude Bragard
- Université catholique de Louvain, unité de phytopathologie, Croix du Sud 2 bte 3, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
10
|
Peter KA, Liang D, Palukaitis P, Gray SM. Small deletions in the potato leafroll virus readthrough protein affect particle morphology, aphid transmission, virus movement and accumulation. J Gen Virol 2008; 89:2037-2045. [PMID: 18632976 DOI: 10.1099/vir.0.83625-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Potato leafroll virus (PLRV) capsid comprises 180 coat protein (CP) subunits, with some percentage containing a readthrough domain (RTD) extension located on the particle's surface. The RTD N terminus is highly conserved in luteovirids and this study sought to identify biologically active sites within this region of the PLRV RTD. Fourteen three-amino-acid-deletion mutants were generated from a cloned infectious PLRV cDNA and delivered to plants by Agrobacterium inoculations. All mutant viruses accumulated locally in infiltrated tissues and expressed the readthrough protein (RTP) containing the CP and RTD sequences in plant tissues; however, when purified, only three mutant viruses incorporated the RTP into the virion. None of the mutant viruses were aphid transmissible, but the viruses persisted in aphids for a period sufficient to allow for virus transmission. Several mutant viruses were examined further for systemic infection in four host species. All mutant viruses, regardless of RTP incorporation, moved systemically in each host, although they accumulated at different rates in systemically infected tissues. The biological properties of the RTP are sensitive to modifications in both the RTD conserved and variable regions.
Collapse
Affiliation(s)
- Kari A Peter
- Department of Plant Pathology, Cornell University, Ithaca, NY 14853, USA
- USDA/ARS, Biological Integrated Pest Management Research Unit, Ithaca, NY 14853, USA
| | - Delin Liang
- Department of Plant Pathology, Cornell University, Ithaca, NY 14853, USA
- USDA/ARS, Biological Integrated Pest Management Research Unit, Ithaca, NY 14853, USA
| | - Peter Palukaitis
- Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Stewart M Gray
- Department of Plant Pathology, Cornell University, Ithaca, NY 14853, USA
- USDA/ARS, Biological Integrated Pest Management Research Unit, Ithaca, NY 14853, USA
| |
Collapse
|
11
|
Tagu D, Klingler JP, Moya A, Simon JC. Early progress in aphid genomics and consequences for plant-aphid interactions studies. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:701-8. [PMID: 18624634 DOI: 10.1094/mpmi-21-6-0701] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aphids occupy a niche comprising two conceptual realms: a micron-scale feeding site beneath the plant surface, in which a syringe-like appendage mediates chemical exchange with a specific plant cell type; and the larger realm of a metazoan with sensory organs, a nervous system, and behavior, all responsive to the condition of the host plant and the broader environment. The biology that connects these realms is not well understood, but new details are emerging with the help of genomic tools. The power of these tools is set to increase substantially now that the first genome of an aphid is being sequenced and annotated. This has been possible because a community of aphid researchers focused their efforts to develop and share genomic resources through an international consortium. This complete genome sequence, along with other resources, should permit major advances in understanding the complex and peculiar biological traits responsible for aphids' evolutionary success and their damaging effects on agriculture. This review highlights early progress in the application of aphid genomics and identifies key issues of plant-aphid interactions likely to benefit as molecular tools are further developed. Use of this new knowledge could make significant contributions to crop protection against these and other phloem-feeding insects.
Collapse
Affiliation(s)
- Denis Tagu
- INRA Rennes, UMR BiO3P, INRA, Agrocampus Rennes, Université Rennes 1, Biologie des Organismes et des Populations Appliquées à la Protection des Plantes, BP 35327, F-35653 Le Rheu Cedex, France.
| | | | | | | |
Collapse
|
12
|
Wang S, Ng LHM, Chow WL, Lee YK. Infant intestinal Enterococcus faecalis down-regulates inflammatory responses in human intestinal cell lines. World J Gastroenterol 2008; 14:1067-76. [PMID: 18286689 PMCID: PMC2689410 DOI: 10.3748/wjg.14.1067] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the ability of Lactic acid bacteria (LAB) to modulate inflammatory reaction in human intestinal cell lines (Caco-2, HT-29 and HCT116). Different strains of LAB isolated from new born infants and fermented milk, together with the strains obtained from culture collections were tested.
METHODS: LABs were treated with human intestinal cell lines. ELISA was used to detect IL-8 and TGF-β protein secretion. Cytokines and Toll like receptors (TLRs) gene expression were assessed using RT-PCR. Conditional medium, sonicated bacteria and UV killed bacteria were used to find the effecter molecules on the bacteria. Carbohydrate oxidation and protein digestion were applied to figure out the molecules’ residues. Adhesion assays were further carried out.
RESULTS: It was found that Enterococcus faecalis is the main immune modulator among the LABs by downregulation of IL-8 secretion and upregulation of TGF-β. Strikingly, the effect was only observed in four strains of E. faecalis out of the 27 isolated and tested. This implies strain dependent immunomodulation in the host. In addition, E. faecalis may regulate inflammatory responses through TLR3, TLR4, TLR9 and TRAF6. Carbohydrates on the bacterial cell surface are involved in both its adhesion to intestinal cells and regulation of inflammatory responses in the host.
CONCLUSION: These data provide a case for the modulation of intestinal mucosal immunity in which specific strains of E. faecalis have uniquely evolved to maintain colonic homeostasis and regulate inflammatory responses.
Collapse
|
13
|
Hogenhout SA, Ammar ED, Whitfield AE, Redinbaugh MG. Insect vector interactions with persistently transmitted viruses. ANNUAL REVIEW OF PHYTOPATHOLOGY 2008; 46:327-59. [PMID: 18680428 DOI: 10.1146/annurev.phyto.022508.092135] [Citation(s) in RCA: 613] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The majority of described plant viruses are transmitted by insects of the Hemipteroid assemblage that includes aphids, whiteflies, leafhoppers, planthoppers, and thrips. In this review we highlight progress made in research on vector interactions of the more than 200 plant viruses that are transmitted by hemipteroid insects beginning a few hours or days after acquisition and for up to the life of the insect, i.e., in a persistent-circulative or persistent-propagative mode. These plant viruses move through the insect vector, from the gut lumen into the hemolymph or other tissues and finally into the salivary glands, from which these viruses are introduced back into the plant host during insect feeding. The movement and/or replication of the viruses in the insect vectors require specific interactions between virus and vector components. Recent investigations have resulted in a better understanding of the replication sites and tissue tropism of several plant viruses that propagate in insect vectors. Furthermore, virus and insect proteins involved in overcoming transmission barriers in the vector have been identified for some virus-vector combinations.
Collapse
Affiliation(s)
- Saskia A Hogenhout
- Department of Disease and Stress Biology, John Innes Centre, Norwich, NR4 7UH, United Kingdom.
| | | | | | | |
Collapse
|
14
|
Abstract
Most phytoviruses rely on vectors for their spread and survival. Although a great variety of virus vectors have been described, there are relatively few different mechanisms mediating virus transmission by vectors: virions can either be internalized into vector cells where replication may or may not take place or they can simply be adsorbed on the vector's surface or cuticle. Virus transmission by vectors requires tight associations between viral proteins, generally capsid proteins, and vector compounds, usually referred to as receptors. This review will focus on the viral determinants involved in virus transmission. Only the best-known models for which molecular data are available are described.
Collapse
Affiliation(s)
- Véronique Ziegler-Graff
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, 12 Rue du Général Zimmer, Strasbourg, 67084, France
| | | |
Collapse
|
15
|
Yang X, Thannhauser TW, Burrows M, Cox-Foster D, Gildow FE, Gray SM. Coupling genetics and proteomics to identify aphid proteins associated with vector-specific transmission of polerovirus (luteoviridae). J Virol 2008; 82:291-9. [PMID: 17959668 PMCID: PMC2224398 DOI: 10.1128/jvi.01736-07] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Accepted: 10/15/2007] [Indexed: 11/20/2022] Open
Abstract
Cereal yellow dwarf virus-RPV (CYDV-RPV) is transmitted specifically by the aphids Rhopalosiphum padi and Schizaphis graminum in a circulative nonpropagative manner. The high level of vector specificity results from the vector aphids having the functional components of the receptor-mediated endocytotic pathways to allow virus to transverse the gut and salivary tissues. Studies of F(2) progeny from crosses of vector and nonvector genotypes of S. graminum showed that virus transmission efficiency is a heritable trait regulated by multiple genes acting in an additive fashion and that gut- and salivary gland-associated factors are not genetically linked. Utilizing two-dimensional difference gel electrophoresis to compare the proteomes of vector and nonvector parental and F(2) genotypes, four aphid proteins (S4, S8, S29, and S405) were specifically associated with the ability of S. graminum to transmit CYDV-RPV. The four proteins were coimmunoprecipitated with purified RPV, indicating that the aphid proteins are capable of binding to virus. Analysis by mass spectrometry identified S4 as a luciferase and S29 as a cyclophilin, both of which have been implicated in macromolecular transport. Proteins S8 and S405 were not identified from available databases. Study of this unique genetic system coupled with proteomic analysis indicated that these four virus-binding aphid proteins were specifically inherited and conserved in different generations of vector genotypes and suggests that they play a major role in regulating polerovirus transmission.
Collapse
Affiliation(s)
- Xiaolong Yang
- Department of Plant Pathology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
16
|
de Jesús Pérez J, Juárez S, Chen D, Scott CL, Hartweck LM, Olszewski NE, García JA. Mapping of two O-GlcNAc modification sites in the capsid protein of the potyvirus Plum pox virus. FEBS Lett 2006; 580:5822-8. [PMID: 17014851 DOI: 10.1016/j.febslet.2006.09.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 09/15/2006] [Accepted: 09/15/2006] [Indexed: 11/24/2022]
Abstract
A large number of O-linked N-acetylglucosamine (O-GlcNAc) residues have been mapped in vertebrate proteins, however targets of O-GlcNAcylation in plants still have not been characterized. We show here that O-GlcNAcylation of the N-terminal region of the capsid protein of Plum pox virus resembles that of animal proteins in introducing O-GlcNAc monomers. Thr-19 and Thr-24 were specifically O-GlcNAcylated. These residues are surrounded by amino acids typical of animal O-GlcNAc acceptor sites, suggesting that the specificity of O-GlcNAc transferases is conserved among plants and animals. In laboratory conditions, mutations preventing O-GlcNAcylation of Thr-19 and Thr-24 did not have noticeable effects on PPV competence to infect Prunus persicae or Nicotiana clevelandii. However, the fact that Thr-19 and Thr-24 are highly conserved among different PPV strains suggests that their O-GlcNAc modification could be relevant for efficient competitiveness in natural conditions.
Collapse
Affiliation(s)
- José de Jesús Pérez
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|