1
|
Ferreira Sa Antunes T, Huguet-Tapia JC, Elena SF, Folimonova SY. Intra-Host Citrus Tristeza Virus Populations during Prolonged Infection Initiated by a Well-Defined Sequence Variant in Nicotiana benthamiana. Viruses 2024; 16:1385. [PMID: 39339861 PMCID: PMC11437405 DOI: 10.3390/v16091385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Due to the error-prone nature of viral RNA-dependent RNA polymerases, the replication of RNA viruses results in a diversity of viral genomes harboring point mutations, deletions, insertions, and genome rearrangements. Citrus tristeza virus (CTV), a causal agent of diseases of economically important citrus species, shows intrinsic genetic stability. While the virus appears to have some mechanism that limits the accumulation of single-nucleotide variants, the production of defective viral genomes (DVGs) during virus infection has been reported for certain variants of CTV. The intra-host diversity generated during plant infection with variant T36 (CTV-T36) remains unclear. To address this, we analyzed the RNA species accumulated in the initially infected and systemic leaves of Nicotiana benthamiana plants inoculated with an infectious cDNA clone of CTV-T36, which warranted that infection was initiated by a known, well-defined sequence variant of the virus. CTV-T36 limited the accumulation of single-nucleotide mutants during infection. With that, four types of DVGs-deletions, insertions, and copy- and snap-backs-were found in all the samples, with deletions and insertions being the most common types. Hot-spots across the genome for DVG recombination and short direct sequence repeats suggest that sequence complementarity could mediate DVG formation. In conclusion, our study illustrates the formation of diverse DVGs during CTV-T36 infection. To the best of our knowledge, this is the first study that has analyzed the genetic variability and recombination of a well-defined sequence variant of CTV in an herbaceous host.
Collapse
Affiliation(s)
| | - José C. Huguet-Tapia
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA; (T.F.S.A.); (J.C.H.-T.)
| | - Santiago F. Elena
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, 46980 Valencia, Spain;
- Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Svetlana Y. Folimonova
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA; (T.F.S.A.); (J.C.H.-T.)
| |
Collapse
|
2
|
Smith SC, Gribble J, Diller JR, Wiebe MA, Thoner TW, Denison MR, Ogden KM. Reovirus RNA recombination is sequence directed and generates internally deleted defective genome segments during passage. J Virol 2021; 95:JVI.02181-20. [PMID: 33472930 PMCID: PMC8103698 DOI: 10.1128/jvi.02181-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
For viruses with segmented genomes, genetic diversity is generated by genetic drift, reassortment, and recombination. Recombination produces RNA populations distinct from full-length gene segments and can influence viral population dynamics, persistence, and host immune responses. Viruses in the Reoviridae family, including rotavirus and mammalian orthoreovirus (reovirus), have been reported to package segments containing rearrangements or internal deletions. Rotaviruses with RNA segments containing rearrangements have been isolated from immunocompromised and immunocompetent children and in vitro following serial passage at relatively high multiplicity. Reoviruses that package small, defective RNA segments have established chronic infections in cells and in mice. However, the mechanism and extent of Reoviridae RNA recombination are undefined. Towards filling this gap in knowledge, we determined the titers and RNA segment profiles for reovirus and rotavirus following serial passage in cultured cells. The viruses exhibited occasional titer reductions characteristic of interference. Reovirus strains frequently accumulated segments that retained 5' and 3' terminal sequences and featured large internal deletions, while similarly fragmented segments were rarely detected in rotavirus populations. Using next-generation RNA-sequencing to analyze RNA molecules packaged in purified reovirus particles, we identified distinct recombination sites within individual viral genome segments. Recombination junctions were frequently but not always characterized by short direct sequence repeats upstream and downstream that spanned junction sites. Taken together, these findings suggest that reovirus accumulates defective gene segments featuring internal deletions during passage and undergoes sequence-directed recombination at distinct sites.IMPORTANCE Viruses in the Reoviridae family include important pathogens of humans and other animals and have segmented RNA genomes. Recombination in RNA virus populations can facilitate novel host exploration and increased disease severity. The extent, patterns, and mechanisms of Reoviridae recombination and the functions and effects of recombined RNA products are poorly understood. Here, we provide evidence that mammalian orthoreovirus regularly synthesizes RNA recombination products that retain terminal sequences but contain internal deletions, while rotavirus rarely synthesizes such products. Recombination occurs more frequently at specific sites in the mammalian orthoreovirus genome, and short regions of identical sequence are often detected at junction sites. These findings suggest that mammalian orthoreovirus recombination events are directed in part by RNA sequences. An improved understanding of recombined viral RNA synthesis may enhance our capacity to engineer improved vaccines and virotherapies in the future.
Collapse
Affiliation(s)
- Sydni Caet Smith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
| | - Jennifer Gribble
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
| | - Julia R Diller
- Department of Pediatrics, Vanderbilt University Medical Center
| | - Michelle A Wiebe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
| | - Timothy W Thoner
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
| | - Mark R Denison
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
- Department of Pediatrics, Vanderbilt University Medical Center
| | - Kristen M Ogden
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
- Department of Pediatrics, Vanderbilt University Medical Center
| |
Collapse
|
3
|
Duponchel S, Troupin C, Vu LT, Schnuriger A, Trugnan G, Garbarg-Chenon A. Transfection of exogenous rotavirus rearranged RNA segments in cells infected with a WT rotavirus results in subsequent gene rearrangements. J Gen Virol 2014; 95:2089-2098. [PMID: 24906979 DOI: 10.1099/vir.0.065573-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Group A rotaviruses, members of the family Reoviridae, are a major cause of infantile acute gastroenteritis. The rotavirus genome consists of 11 dsRNA segments. In some cases, an RNA segment is replaced by a rearranged RNA segment, which is derived from its standard counterpart by partial sequence duplication. It has been shown that some rearranged segments are preferentially encapsidated into viral progenies after serial passages in cell culture. Based on this characteristic, a reverse genetics system was used previously to introduce exogenous segment 7 rearrangements into an infectious rotavirus. This study extends this reverse genetics system to RNA segments 5 and 11. Transfection of exogenous rotavirus rearranged RNA segment 5 or 11 into cells infected with a WT helper rotavirus (bovine strain RF) resulted in subsequent gene rearrangements in the viral progeny. Whilst recombinant viruses were rescued with an exogenous rearranged segment 11, the exogenous segment was modified by a secondary rearrangement. The occurrence of spontaneous rearrangements of WT or exogenous segments is a major hindrance to the use of this reverse genetics approach.
Collapse
Affiliation(s)
- Sarah Duponchel
- ERL U1157/UMR 7203, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Micro-Organismes, Molécules Bioactives et Physiopathologie Intestinale, Université Pierre et Marie Curie, Paris 6, Paris, France
| | - Cécile Troupin
- ERL U1157/UMR 7203, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Micro-Organismes, Molécules Bioactives et Physiopathologie Intestinale, Université Pierre et Marie Curie, Paris 6, Paris, France
| | - Lan Trang Vu
- ERL U1157/UMR 7203, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Micro-Organismes, Molécules Bioactives et Physiopathologie Intestinale, Université Pierre et Marie Curie, Paris 6, Paris, France
| | - Aurélie Schnuriger
- Laboratoire de Virologie, Hôpital Armand Trousseau, Assistance Publique - Hôpitaux de Paris, Paris, France.,ERL U1157/UMR 7203, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Micro-Organismes, Molécules Bioactives et Physiopathologie Intestinale, Université Pierre et Marie Curie, Paris 6, Paris, France
| | - Germain Trugnan
- ERL U1157/UMR 7203, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Micro-Organismes, Molécules Bioactives et Physiopathologie Intestinale, Université Pierre et Marie Curie, Paris 6, Paris, France
| | - Antoine Garbarg-Chenon
- Laboratoire de Virologie, Hôpital Armand Trousseau, Assistance Publique - Hôpitaux de Paris, Paris, France.,ERL U1157/UMR 7203, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Micro-Organismes, Molécules Bioactives et Physiopathologie Intestinale, Université Pierre et Marie Curie, Paris 6, Paris, France
| |
Collapse
|
4
|
Arnold MM, Brownback CS, Taraporewala ZF, Patton JT. Rotavirus variant replicates efficiently although encoding an aberrant NSP3 that fails to induce nuclear localization of poly(A)-binding protein. J Gen Virol 2012; 93:1483-1494. [PMID: 22442114 DOI: 10.1099/vir.0.041830-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The rotavirus (RV) non-structural protein NSP3 forms a dimer that has binding domains for the translation initiation factor eIF4G and for a conserved 3'-terminal sequence of viral mRNAs. Through these activities, NSP3 has been proposed to promote viral mRNA translation by directing circularization of viral polysomes. In addition, by disrupting interactions between eIF4G and the poly(A)-binding protein (PABP), NSP3 has been suggested to inhibit translation of host polyadenylated mRNAs and to stimulate relocalization of PABP from the cytoplasm to the nucleus. Herein, we report the isolation and characterization of SA11-4Fg7re, an SA11-4F RV derivative that contains a large sequence duplication initiating within the genome segment (gene 7) encoding NSP3. Our analysis showed that mutant NSP3 (NSP3m) encoded by SA11-4Fg7re is almost twice the size of the wild-type protein and retains the capacity to dimerize. However, in comparison to wild-type NSP3, NSP3m has a decreased capacity to interact with eIF4G and to suppress the translation of polyadenylated mRNAs. In addition, NSP3m fails to induce the nuclear accumulation of PABP in infected cells. Despite the defective activities of NSP3m, the levels of viral protein and progeny virus produced in SA11-4Fg7re- and SA11-4F-infected cells were indistinguishable. Collectively, these data are consistent with a role for NSP3 in suppressing host protein synthesis through antagonism of PABP activity, but also suggest that NSP3 functions may have little or no impact on the efficiency of virus replication in widely used RV-permissive cell lines.
Collapse
Affiliation(s)
- Michelle M Arnold
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive MSC 8026, Room 6314, Bethesda, MD 20892-8026, USA
| | - Catie Small Brownback
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive MSC 8026, Room 6314, Bethesda, MD 20892-8026, USA
| | - Zenobia F Taraporewala
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive MSC 8026, Room 6314, Bethesda, MD 20892-8026, USA
| | - John T Patton
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive MSC 8026, Room 6314, Bethesda, MD 20892-8026, USA
| |
Collapse
|
5
|
Anthony SJ, Darpel KE, Belaganahalli MN, Maan N, Nomikou K, Sutton G, Attoui H, Maan S, Mertens PPC. RNA segment 9 exists as a duplex concatemer in an Australian strain of epizootic haemorrhagic disease virus (EHDV): Genetic analysis and evidence for the presence of concatemers as a normal feature of orbivirus replication. Virology 2011; 420:164-71. [PMID: 21968198 DOI: 10.1016/j.virol.2011.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 08/11/2011] [Accepted: 09/12/2011] [Indexed: 11/26/2022]
Abstract
This paper reports a concatemeric RNA in a strain of epizootic haemorrhagic disease virus (EHDV) serotype 5. Sequencing showed that the concatemeric RNA contains two identical full-length copies of genome segment 9, arranged in series, which has apparently replaced the monomeric form of the segment. In vitro translation demonstrated that the concatemeric RNA can act as a viable template for VP6 translation, but that no double-sized protein is produced. Studies were also performed to assess whether mutations might be easily introduced into the second copy (which might indicate some potential evolutionary significance of a concatemeric RNA segment), however multiple (n=40) passages generated no changes in the sequence of either the upstream or downstream segments. Further, we present results that demonstrate the presence of concatemers or partial gene duplications in multiple segments of different orbiviruses (in tissue culture and purified virus), suggesting their generation is likely to be a normal feature of orbivirus replication.
Collapse
Affiliation(s)
- S J Anthony
- Vector-borne Disease Program, Institute for Animal Health, Ash Road, Pirbright, Surrey, GU24 0NF, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Ghosh S, Kobayashi N. Whole-genomic analysis of rotavirus strains: current status and future prospects. Future Microbiol 2011; 6:1049-65. [DOI: 10.2217/fmb.11.90] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Studies on genetic diversity of rotaviruses have been primarily based on the genes encoding the antigenically significant VP7 and VP4 proteins. Since the rotavirus genome has 11 segments of RNA that are vulnerable to reassortment events, analyses of the VP7 and VP4 genes may not be sufficient to obtain conclusive data on the overall genetic diversity, or true origin of strains. In the last few years following the advent of the whole-genome-based genotype classification system, the whole genomes of at least 167 human group A rotavirus strains have been analyzed, providing a plethora of new and important information on the complex origin of strains, inter- and intra-genogroup reassortment events, animal–human reassortment events, zoonosis, and genetic linkages involving different group A rotavirus gene segments. In addition, the whole genomes of a limited number of human group B, C and novel group rotavirus strains have been analyzed. This article briefly reviews the available data on whole-genomic analysis of human rotavirus strains. The significance and future prospects of whole-genome-based studies are also discussed.
Collapse
Affiliation(s)
- Souvik Ghosh
- Department of Hygiene, Sapporo Medical University School of Medicine, S 1, W 17, Chuo-Ku, Sapporo, Hokkaido 060-8556, Japan
| | | |
Collapse
|
7
|
Troupin C, Schnuriger A, Duponchel S, Deback C, Schnepf N, Dehee A, Garbarg-Chenon A. Rotavirus rearranged genomic RNA segments are preferentially packaged into viruses despite not conferring selective growth advantage to viruses. PLoS One 2011; 6:e20080. [PMID: 21611152 PMCID: PMC3096661 DOI: 10.1371/journal.pone.0020080] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 04/21/2011] [Indexed: 12/02/2022] Open
Abstract
The rotavirus (RV) genome consists of 11 double-stranded RNA segments. Sometimes, partial sequence duplication of an RNA segment leads to a rearranged RNA segment. To specify the impact of rearrangement, the replication efficiencies of human RV with rearranged segments 7, 11 or both were compared to these of the homologous human wild-type RV (wt-RV) and of the bovine wt-RV strain RF. As judged by viral growth curves, rotaviruses with a rearranged genome (r-RV) had no selective growth advantage over the homologous wt-RV. In contrast, r-RV were selected over wt-RV during competitive experiments (i.e mixed infections between r-RV and wt-RV followed by serial passages in cell culture). Moreover, when competitive experiments were performed between a human r-RV and the bovine wt-RV strain RF, which had a clear growth advantage, rearranged segments 7, 11 or both always segregated in viral progenies even when performing mixed infections at an MOI ratio of 1 r-RV to 100 wt-RV. Lastly, bovine reassortant viruses that had inherited a rearranged segment 7 from human r-RV were generated. Although substitution of wt by rearranged segment 7 did not result in any growth advantage, the rearranged segment was selected in the viral progenies resulting from mixed infections by bovine reassortant r-RV and wt-RV, even for an MOI ratio of 1 r-RV to 107 wt-RV. Lack of selective growth advantage of r-RV over wt-RV in cell culture suggests a mechanism of preferential packaging of the rearranged segments over their standard counterparts in the viral progeny.
Collapse
Affiliation(s)
- Cécile Troupin
- Micro-Organismes, Molécules Bioactives et Physiopathologie Intestinale, Université Pierre et Marie Curie - Paris 6, Paris, France
| | - Aurélie Schnuriger
- Micro-Organismes, Molécules Bioactives et Physiopathologie Intestinale, Université Pierre et Marie Curie - Paris 6, Paris, France
- ERL U1057/UMR 7203, Institut National de la Santé et de la Recherche Médicale, Paris, France
- Laboratoire de Virologie, Hôpital Armand Trousseau, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Sarah Duponchel
- Micro-Organismes, Molécules Bioactives et Physiopathologie Intestinale, Université Pierre et Marie Curie - Paris 6, Paris, France
- ERL U1057/UMR 7203, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Claire Deback
- Micro-Organismes, Molécules Bioactives et Physiopathologie Intestinale, Université Pierre et Marie Curie - Paris 6, Paris, France
| | - Nathalie Schnepf
- Micro-Organismes, Molécules Bioactives et Physiopathologie Intestinale, Université Pierre et Marie Curie - Paris 6, Paris, France
| | - Axelle Dehee
- Micro-Organismes, Molécules Bioactives et Physiopathologie Intestinale, Université Pierre et Marie Curie - Paris 6, Paris, France
- Laboratoire de Virologie, Hôpital Armand Trousseau, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Antoine Garbarg-Chenon
- Micro-Organismes, Molécules Bioactives et Physiopathologie Intestinale, Université Pierre et Marie Curie - Paris 6, Paris, France
- ERL U1057/UMR 7203, Institut National de la Santé et de la Recherche Médicale, Paris, France
- Laboratoire de Virologie, Hôpital Armand Trousseau, Assistance Publique - Hôpitaux de Paris, Paris, France
- * E-mail:
| |
Collapse
|
8
|
Wang YH, Kobayashi N, Nagashima S, Zhou X, Ghosh S, Peng JS, Hu Q, Zhou DJ, Yang ZQ. Full genomic analysis of a porcine-bovine reassortant G4P[6] rotavirus strain R479 isolated from an infant in China. J Med Virol 2010; 82:1094-102. [PMID: 20419827 DOI: 10.1002/jmv.21760] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
During the 2004 surveillance of rotaviruses in Wuhan, China, a G4P[6] rotavirus strain R479 was isolated from a stool specimen collected from a 2-year-old child with diarrhea. The strain R479 had an uncommon subgroup specificity I + II, and analysis of the VP6 gene suggested that it was related to porcine rotaviruses. In the present study, full-length nucleotide sequences of all the RNA segments of R479 were determined and analyzed phylogenetically to identify the origin of individual RNA segments. According to the rotavirus genotyping system based on 11 RNA segments, the genotype of R479 was expressed as G4-P[6]-I5-R1-C1-M1-A1-N1-T7-E1-H1. This genotype includes the porcine-like VP6 genotype (I5) and bovine-like NSP3 genotype (T7). Phylogenetic analysis revealed that R479 genes encoding VP1, VP2, VP3, VP6, VP7, VP8*, NSP1, NSP4, and NSP5 were more closely related to those of porcine rotaviruses than human or other animal rotaviruses. In contrast, it was remarkable that the NSP3 gene of R479 was genetically closely related to only a bovine rotavirus strain UK. The NSP2 gene of R479 was also unique and clustered with only the G5P[8] human strain IAL28 and G3P[24] simian strain TUCH. These results suggested that R479 may be a reassortant virus having the NSP3 gene from a bovine rotavirus in the genetic background of a porcine rotavirus, with an NSP2 gene related to the porcine-human reassortant strain IAL28. To our knowledge, R479 is the first porcine-bovine reassortant rotavirus isolated from a human.
Collapse
Affiliation(s)
- Yuan-Hong Wang
- Wuhan Centers for Disease Prevention and Control, Wuhan, Hubei Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Martínez-Laso J, Román A, Rodriguez M, Cervera I, Head J, Rodríguez-Avial I, Picazo JJ. Diversity of the G3 genes of human rotaviruses in isolates from Spain from 2004 to 2006: cross-species transmission and inter-genotype recombination generates alleles. J Gen Virol 2009; 90:935-943. [PMID: 19264637 DOI: 10.1099/vir.0.007807-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rotavirus evolves by using multiple genetic mechanisms which are an accumulation of spontaneous point mutations and reassortment events. Other mechanisms, such as cross-species transmission and inter-genotype recombination, may be also involved. One of the most interesting genotypes in the accumulation of these events is the G3 genotype. In this work, six new Spanish G3 sequences belonging to 0-2-year-old patients from Madrid were analysed and compared with 160 others of the same genotype obtained from humans and other host species to establish the evolutionary pathways of the G3 genotype. The following results were obtained: (i) there are four different lineages of the G3 genotype which have evolved in different species; (ii) Spanish G3 rotavirus sequences are most similar to the described sequences that belong to lineage I; (iii) several G3 genotype alleles were reassigned as other G genotypes; and (iv) inter-genotype recombination events in G3 viruses involving G1 and G2 were described. These findings strongly suggest multiple inter-species transmission events between different non-human mammalian species and humans.
Collapse
Affiliation(s)
- Jorge Martínez-Laso
- Unidad de Inmunoterapia Celular, Centro Nacional de Microbiología. Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Angela Román
- Unidad de Inmunoterapia Celular, Centro Nacional de Microbiología. Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Miriam Rodriguez
- Unidad de Inmunoterapia Celular, Centro Nacional de Microbiología. Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Isabel Cervera
- Unidad de Inmunoterapia Celular, Centro Nacional de Microbiología. Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Jacqueline Head
- Servicio de Microbiología Clínica, Hospital Clínico de San Carlos, 28040 Madrid, Spain
| | - Iciar Rodríguez-Avial
- Servicio de Microbiología Clínica, Hospital Clínico de San Carlos, 28040 Madrid, Spain
| | - Juan J Picazo
- Servicio de Microbiología Clínica, Hospital Clínico de San Carlos, 28040 Madrid, Spain
| |
Collapse
|
10
|
Rearrangements of rotavirus genomic segment 11 are generated during acute infection of immunocompetent children and do not occur at random. J Virol 2008; 82:3689-96. [PMID: 18216096 DOI: 10.1128/jvi.01770-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Group A rotaviruses are the main cause of viral gastroenteritis in infants. The viral genome consists of 11 double-stranded RNA (dsRNA) segments. Dysfunction of the viral RNA polymerase can lead to gene rearrangements, which most often consist of partial sequence duplication of a dsRNA segment. Gene rearrangements have been detected in vivo during chronic infection in immunodeficient children or in vitro during passages at a high multiplicity of infection in cell culture, suggesting that these replication conditions lead to selective advantages favoring the recovery of viruses with rearranged genes. During acute rotavirus infection, the replication level is high, but the occurrence of rearrangement events has never been reported. By the use of a reverse transcription-PCR assay specifically designed to detect small numbers of copies of rearranged forms of segment 11 in a high background of its standard counterpart, we detected 12 rearrangement events among 161 cases (7.5%) of acute rotavirus infection in immunocompetent children. Strikingly, in all but one case, rearrangement took place at the same location within the short direct repeat AUGU sequence. For the unique case with a different rearrangement pattern, the rearrangement occurred within the direct repeat ACAAGUC that was specific for this isolate. In conclusion, we report the occurrence of segment 11 rearrangements during acute rotavirus infection in immunocompetent children. We show that under such conditions of infection, the viral RNA polymerase generates rearrangements which occur not at random but within direct repeats which might constitute hot spots for RNA recombination.
Collapse
|