1
|
Shi N, Zhu Q, Yang G, Wang P, Huang B. Prevalence and species diversity of dsRNA mycoviruses from Beauveria bassiana strains in the China's Guniujiang nature. Heliyon 2024; 10:e30186. [PMID: 38694113 PMCID: PMC11061733 DOI: 10.1016/j.heliyon.2024.e30186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024] Open
Abstract
We investigated the prevalence and species diversity of dsRNA mycoviruses in Beauveria bassiana isolates from the China's Guniujiang Nature Preserve. Among the 28 isolates analyzed, electropherotyping revealed viral infections in 28.6 % (8 out of 28) of the isolates. Metatranscriptomic identification and RT-PCR confirmed the presence of six putative virus species, including two novel species: Beauveria bassiana victorivirus 2 (BbV-2) and Beauveria bassiana bipartite mycovirus 2 (BbBV-2). Four previously characterized mycoviruses were also identified: Beauveria bassiana polymycovirus 4 (BbPmV4), Beauveria bassiana partitivirus 1 (BbPV-1), Beauveria bassiana bipartite mycovirus 1 (BbBV-1), and Beauveria bassiana chrysovirus 2 (BbCV-2). BbPmV4 was found to be the prevailing mycovirus among the infected isolates, and three isolates showed co-infection with both BbPmV4 and BbBV-2. This study enhances our understanding of fungal viral taxonomy and diversity, providing insights into mycovirus infections in B. bassiana populations in China's Guniujiang Nature Preserve. Furthermore, the study on the diversity of B. bassiana viruses lays the foundation for recognizing fungal viruses as potential enhancers of biocontrol agents.
Collapse
Affiliation(s)
- Najie Shi
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Qiuyan Zhu
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Guogen Yang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Ping Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
2
|
Hough B, Steenkamp E, Wingfield B, Read D. Fungal Viruses Unveiled: A Comprehensive Review of Mycoviruses. Viruses 2023; 15:1202. [PMID: 37243288 PMCID: PMC10224137 DOI: 10.3390/v15051202] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/07/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Mycoviruses (viruses of fungi) are ubiquitous throughout the fungal kingdom and are currently classified into 23 viral families and the genus botybirnavirus by the International Committee on the Taxonomy of Viruses (ICTV). The primary focus of mycoviral research has been on mycoviruses that infect plant pathogenic fungi, due to the ability of some to reduce the virulence of their host and thus act as potential biocontrol against these fungi. However, mycoviruses lack extracellular transmission mechanisms and rely on intercellular transmission through the hyphal anastomosis, which impedes successful transmission between different fungal strains. This review provides a comprehensive overview of mycoviruses, including their origins, host range, taxonomic classification into families, effects on their fungal counterparts, and the techniques employed in their discovery. The application of mycoviruses as biocontrol agents of plant pathogenic fungi is also discussed.
Collapse
Affiliation(s)
| | | | - Brenda Wingfield
- Forestry & Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics & Microbiology, University of Pretoria, Pretoria 0002, South Africa; (B.H.); (E.S.); (D.R.)
| | | |
Collapse
|
3
|
Khan NA, Asaf S, Ahmad W, Jan R, Bilal S, Khan I, Khan AL, Kim KM, Al-Harrasi A. Diversity, Lifestyle, Genomics, and Their Functional Role of Cochliobolus, Bipolaris, and Curvularia Species in Environmental Remediation and Plant Growth Promotion under Biotic and Abiotic Stressors. J Fungi (Basel) 2023; 9:254. [PMID: 36836368 PMCID: PMC9962790 DOI: 10.3390/jof9020254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/17/2023] Open
Abstract
Cochliobolus, Bipolaris, and Curvularia genera contain various devastating plant pathogens that cause severe crop losses worldwide. The species belonging to these genera also perform a variety of diverse functions, including the remediation of environmental contaminations, beneficial phytohormone production, and maintaining their lifestyle as epiphytes, endophytes, and saprophytes. Recent research has revealed that despite their pathogenic nature, these fungi also play an intriguing role in agriculture. They act as phosphate solubilizers and produce phytohormones, such as indole acetic acid (IAA) and gibberellic acid (GAs), to accelerate the growth of various plants. Some species have also been reported to play a significant role in plant growth promotion during abiotic stresses, such as salinity stress, drought stress, heat stress, and heavy metal stress, as well as act as a biocontrol agent and a potential mycoherbicide. Similarly, these species have been reported in numerous industrial applications to produce different types of secondary metabolites and biotechnological products and possess a variety of biological properties, such as antibacterial, antileishmanial, cytotoxic, phytotoxic, and antioxidant activities. Additionally, some of the species have been utilized in the production of numerous valuable industrial enzymes and biotransformation, which has an impact on the growth of crops all over the world. However, the current literature is dispersed, and some of the key areas, such as taxonomy, phylogeny, genome sequencing, phytohormonal analysis, and diversity, are still being neglected in terms of the elucidation of its mechanisms, plant growth promotion, stress tolerance, and bioremediation. In this review, we highlighted the potential role, function, and diversity of Cochliobolus, Curvularia, and Bipolaris for improved utilization during environmental biotechnology.
Collapse
Affiliation(s)
- Nasir Ali Khan
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Waqar Ahmad
- Department of Engineering Technology, University of Houston, Sugar Land, TX 77479, USA
| | - Rahmatullah Jan
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Saqib Bilal
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Ibrahim Khan
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Abdul Latif Khan
- Department of Engineering Technology, University of Houston, Sugar Land, TX 77479, USA
| | - Kyung-Min Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ahmed Al-Harrasi
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| |
Collapse
|
4
|
Zhang X, Li S, Ma Z, Cai Q, Zhou T, Wu X. Complete genome sequence of a novel mitovirus isolated from the fungus Fusarium equiseti causing potato dry rot. Arch Virol 2022; 167:2777-2781. [PMID: 36178543 DOI: 10.1007/s00705-022-05578-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/14/2022] [Indexed: 12/14/2022]
Abstract
In this study, a novel mitovirus was isolated from the fungus Fusarium equiseti causing potato dry rot and tentatively designated as "Fusarium equiseti mitovirus 1" (FeMV1). The full-length genome sequence of FeMV1 consists of 2,459 nucleotides with a predicted A + U content of 69.5%. Using the mold mitochondrial genetic code, an open reading frame (ORF) of 725 amino acids (aa) was predicted to encode an RNA-dependent RNA polymerase (RdRp). The RdRp protein contains six conserved motifs, with the highly conserved GDD in motif IV, and the 5'-untranslated region (UTR) and 3'-UTR of FeMV1 have the potential to fold into stem-loop secondary structures and a panhandle structure, both of which are typical characteristics of members of the family Mitoviridae. Results of a BLASTp search showed that the RdRp aa sequence of FeMV1 shared the highest sequence similarity with that of Fusarium poae mitovirus 2 (FpMV2) (76.84% identity, E-value = 0.0). Phylogenetic analysis based on the complete aa sequence of RdRp further suggested that FeMV1 is a new member of the family Mitoviridae. This is the first report of the complete genome sequence analysis of a mitovirus associated with F. equiseti.
Collapse
Affiliation(s)
- Xiaofang Zhang
- College of Plant Protection, China Agricultural University, Haidian District, 100193, Beijing, People's Republic of China
| | - Siwei Li
- College of Plant Protection, China Agricultural University, Haidian District, 100193, Beijing, People's Republic of China
| | - Zhihao Ma
- College of Plant Protection, China Agricultural University, Haidian District, 100193, Beijing, People's Republic of China
| | - Qingnian Cai
- College of Plant Protection, China Agricultural University, Haidian District, 100193, Beijing, People's Republic of China
| | - Tao Zhou
- College of Plant Protection, China Agricultural University, Haidian District, 100193, Beijing, People's Republic of China
| | - Xuehong Wu
- College of Plant Protection, China Agricultural University, Haidian District, 100193, Beijing, People's Republic of China.
| |
Collapse
|
5
|
Rodriguez Coy L, Plummer KM, Khalifa ME, MacDiarmid RM. Mycovirus-encoded suppressors of RNA silencing: Possible allies or enemies in the use of RNAi to control fungal disease in crops. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:965781. [PMID: 37746227 PMCID: PMC10512228 DOI: 10.3389/ffunb.2022.965781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/21/2022] [Indexed: 09/26/2023]
Abstract
Plants, fungi, and many other eukaryotes have evolved an RNA interference (RNAi) mechanism that is key for regulating gene expression and the control of pathogens. RNAi inhibits gene expression, in a sequence-specific manner, by recognizing and deploying cognate double-stranded RNA (dsRNA) either from endogenous sources (e.g. pre-micro RNAs) or exogenous origin (e.g. viruses, dsRNA, or small interfering RNAs, siRNAs). Recent studies have demonstrated that fungal pathogens can transfer siRNAs into plant cells to suppress host immunity and aid infection, in a mechanism termed cross-kingdom RNAi. New technologies, based on RNAi are being developed for crop protection against insect pests, viruses, and more recently against fungal pathogens. One example, is host-induced gene silencing (HIGS), which is a mechanism whereby transgenic plants are modified to produce siRNAs or dsRNAs targeting key transcripts of plants, or their pathogens or pests. An alternative gene regulation strategy that also co-opts the silencing machinery is spray-induced gene silencing (SIGS), in which dsRNAs or single-stranded RNAs (ssRNAs) are applied to target genes within a pathogen or pest. Fungi also use their RNA silencing machinery against mycoviruses (fungal viruses) and mycoviruses can deploy virus-encoded suppressors of RNAi (myco-VSRs) as a counter-defence. We propose that myco-VSRs may impact new dsRNA-based management methods, resulting in unintended outcomes, including suppression of management by HIGS or SIGS. Despite a large diversity of mycoviruses being discovered using high throughput sequencing, their biology is poorly understood. In particular, the prevalence of mycoviruses and the cellular effect of their encoded VSRs are under-appreciated when considering the deployment of HIGS and SIGS strategies. This review focuses on mycoviruses, their VSR activities in fungi, and the implications for control of pathogenic fungi using RNAi.
Collapse
Affiliation(s)
- Lorena Rodriguez Coy
- Australian Research Council Research Hub for Sustainable Crop Protection, Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Kim M. Plummer
- Australian Research Council Research Hub for Sustainable Crop Protection, Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Mahmoud E. Khalifa
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - Robin M. MacDiarmid
- BioProtection, The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Clinton NA, Hameed SA, Agyei EK, Jacob JC, Oyebanji VO, Jabea CE. Crosstalk between the Intestinal Virome and Other Components of the Microbiota, and Its Effect on Intestinal Mucosal Response and Diseases. J Immunol Res 2022; 2022:7883945. [PMID: 36203793 PMCID: PMC9532165 DOI: 10.1155/2022/7883945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
In recent years, there has been ample evidence illustrating the effect of microbiota on gut immunity, homeostasis, and disease. Most of these studies have engaged more efforts in understanding the role of the bacteriome in gut mucosal immunity and disease. However, studies on the virome and its influence on gut mucosal immunity and pathology are still at infancy owing to limited metagenomic tools. Nonetheless, the existing studies on the virome have largely been focused on the bacteriophages as these represent the main component of the virome with little information on endogenous retroviruses (ERVs) and eukaryotic viruses. In this review, we describe the gut virome, and its role in gut mucosal response and disease progression. We also explore the crosstalk between the virome and other microorganisms in the gut mucosa and elaborate on how these interactions shape the gut mucosal immunity going from bacteriophages through ERVs to eukaryotic viruses. Finally, we elucidate the potential contribution of this crosstalk in the pathogenesis of inflammatory bowel diseases and colon cancer.
Collapse
Affiliation(s)
- Njinju Asaba Clinton
- Health and Empowerment Foundation, Cameroon
- Mbonge District Hospital, Cameroon
- University of Buea, Cameroon
| | | | - Eugene Kusi Agyei
- Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Ghana
| | | | | | - Cyril Ekabe Jabea
- Health and Empowerment Foundation, Cameroon
- Mbonge District Hospital, Cameroon
- University of Buea, Cameroon
| |
Collapse
|
7
|
Cheng X, Zhang L, Luo J, Yang S, Deng Y, Li J, Hou C. Two Pathogenic Fungi Isolated From Chalkbrood Samples and Honey Bee Viruses They Carried. Front Microbiol 2022; 13:843842. [PMID: 35495671 PMCID: PMC9039454 DOI: 10.3389/fmicb.2022.843842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Ascosphaera apis and some Aspergillus species are the main pathogenic fungi of honey bee, and A. apis is the pathogen of chalkbrood disease. However, the infection mechanism of them is incompletely known and it is still unclear whether other factors impact their pathogenesis. In this study, Aspergillus tubingensis were obtained from the chalkbrood bee samples for the first time. Our results showed that A. tubingensis could promote the accumulation of the spores of A. apis. Pathogenicity test found that inoculation of the spores of the two fungi alone or their combination could induce disease characterization of chalkbrood and stonebrood but the extent was less than those in field. To further identify other pathogens impacted the pathogenesis, we found several honey bee viruses presented in the pathogenic fungi A. apis and A. tubingensis, which were different from previous reported. Our results indicated that acute bee paralysis virus (ABPV) and chronic bee paralysis virus (CBPV) could replicate in these two fungi and increased in titer with the going of cultivation time. In addition, CBPV could not only transmit vertically to the next generation by spores, but also spread horizontally to different fungi through hyphal anastomosis. These results suggested that the honey bee chalkbrood contained the other pathogenic fungi besides A. apis, the interactions between different pathogens of chalkbrood microbial communities may influence the prevalence of chalkbrood. Moreover, the discovery of honey bee viruses and their transmission mode in these two fungi enhanced the potential of exploring fungi virus as valuable factors that cause fungal disease outbreak.
Collapse
Affiliation(s)
- Xuefen Cheng
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.,Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li Zhang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ji Luo
- Guangxi Zhuang Autonomous Region Forestry Research Institute, Nanning, China
| | - Sa Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanchun Deng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianghong Li
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chunsheng Hou
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
8
|
Qu Z, Zhang H, Wang Q, Zhao H, Liu X, Fu Y, Lin Y, Xie J, Cheng J, Li B, Jiang D. Exploring the Symbiotic Mechanism of a Virus-Mediated Endophytic Fungus in Its Host by Dual Unique Molecular Identifier-RNA Sequencing. mSystems 2021; 6:e0081421. [PMID: 34519518 PMCID: PMC8547468 DOI: 10.1128/msystems.00814-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
The symbiosis of endophytes and plants is universal in nature. However, how endophytes grow in plants is not entirely clear. Previously, we reported that a virus-infected fungal pathogen could grow in plants as an endophyte. In this study, we utilized Sclerotinia sclerotiorum strain DT-8, a virus-mediated endophyte, to investigate the mechanism of symbiosis with rapeseed by dual unique molecular identifier-RNA sequencing (dual-UMI RNA-seq). We found that the expressions of genes encoding S. sclerotiorum amylase/glucoamylase, glucose transporters, and rapeseed sugars will eventually be exported transporter 11 (SWEET11) were upregulated. It suggested that strain DT-8 might utilize plant starch as a nutrient. The defense systems of rapeseed were also activated, such as production of reactive oxygen species, phenylpropanoids, and brassinin, to control the growth of strain DT-8, while strain DT-8 counteracted host suppression by producing effector-like proteins, detoxification enzymes, and antioxidant components. Moreover, rapeseed also upregulated pectate lyase and pectinesterase genes to facilitate the colonization by strain DT-8. Our findings provide novel insights into the interaction of virus-mediated endophytes and their hosts that warrant further study. IMPORTANCE Although endophytes are widespread in nature, the interactions between endophytes and their hosts are still not fully understood. Members of a unique class of endophytes, the virus-mediated endophytic fungi, are continuously being discovered and have received wide attention. In this study, we investigated the interaction between a mycovirus-mediated endophytic fungus and its host rapeseed by using dual-UMI RNA-seq. According to the dual-UMI RNA-seq results, an aerial view of symbiotic mechanism under balanced regulation was suggested. This research expands our understanding of the symbiotic mechanisms of virus-fungus-plant interactions and could establish a foundation for the further development of practical application with virus-mediated hypovirulent fungi.
Collapse
Affiliation(s)
- Zheng Qu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Hubei Province, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Hubei Province, Wuhan, China
| | - Hongxiang Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Hubei Province, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Hubei Province, Wuhan, China
| | - Qianqian Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Hubei Province, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Hubei Province, Wuhan, China
| | - Huizhang Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Hubei Province, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Hubei Province, Wuhan, China
| | - Xiaofan Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Hubei Province, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Hubei Province, Wuhan, China
| | - Yanping Fu
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Hubei Province, Wuhan, China
| | - Yang Lin
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Hubei Province, Wuhan, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Hubei Province, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Hubei Province, Wuhan, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Hubei Province, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Hubei Province, Wuhan, China
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Hubei Province, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Hubei Province, Wuhan, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Hubei Province, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Hubei Province, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
9
|
A mycovirus modulates the endophytic and pathogenic traits of a plant associated fungus. THE ISME JOURNAL 2021; 15:1893-1906. [PMID: 33531623 PMCID: PMC8245556 DOI: 10.1038/s41396-021-00892-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/14/2020] [Accepted: 01/13/2021] [Indexed: 01/30/2023]
Abstract
Fungi are generally thought to live in host plants with a single lifestyle, being parasitism, commensalism, or mutualism. The former, known as phytopathogenic fungi, cause various plant diseases that result in significant losses every year; while the latter, such as endophytic fungi, can confer fitness to the host plants. It is unclear whether biological factors can modulate the parasitic and mutualistic traits of a fungus. In this study, we isolated and characterized a mycovirus from an endophytic strain of the fungus Pestalotiopsis theae, a pathogen of tea (Camellia sinensis). Based on molecular analysis, we tentatively designated the mycovirus as Pestalotiopsis theae chrysovirus-1 (PtCV1), a novel member of the family Chrysoviridae, genus Alphachrysovirus. PtCV1 has four double-stranded (ds) RNAs as its genome, ranging from 0.9 to 3.4 kbp in size, encapsidated in isometric particles. PtCV1 significantly reduced the growth rates of its host fungus in vitro (ANOVA; P-value < 0.001) and abolished its virulence in planta (ANOVA; P-value < 0.001), converting its host fungus to a non-pathogenic endophyte on tea leaves, while PtCV1-free isolates were highly virulent. Moreover, the presence of PtCV1 conferred high resistance to the host plants against the virulent P. theae strains. Here we report a mycovirus that modulates endophytic and phytopathogenic fungal traits and provides an alternative approach to biological control of plant diseases caused by fungi.
Collapse
|
10
|
Sutela S, Forgia M, Vainio EJ, Chiapello M, Daghino S, Vallino M, Martino E, Girlanda M, Perotto S, Turina M. The virome from a collection of endomycorrhizal fungi reveals new viral taxa with unprecedented genome organization. Virus Evol 2020; 6:veaa076. [PMID: 33324490 PMCID: PMC7724248 DOI: 10.1093/ve/veaa076] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mutualistic plant-associated fungi are recognized as important drivers in plant evolution, diversity, and health. The discovery that mycoviruses can take part and play important roles in symbiotic tripartite interactions has prompted us to study the viromes associated with a collection of ericoid and orchid mycorrhizal (ERM and ORM, respectively) fungi. Our study, based on high-throughput sequencing of transcriptomes (RNAseq) from fungal isolates grown in axenic cultures, revealed in both ERM and ORM fungi the presence of new mycoviruses closely related to already classified virus taxa, but also new viruses that expand the boundaries of characterized RNA virus diversity to previously undescribed evolutionary trajectories. In ERM fungi, we provide first evidence of a bipartite virus, distantly related to narnaviruses, that splits the RNA-dependent RNA polymerase (RdRP) palm domain into two distinct proteins, encoded by each of the two segments. Furthermore, in one isolate of the ORM fungus Tulasnella spp. we detected a 12 kb genomic fragment coding for an RdRP with features of bunyavirus-like RdRPs. However, this 12 kb genomic RNA has the unique features, for Bunyavirales members, of being tri-cistronic and carrying ORFs for the putative RdRP and putative nucleocapsid in ambisense orientation on the same genomic RNA. Finally, a number of ORM fungal isolates harbored a group of ambisense bicistronic viruses with a genomic size of around 5 kb, where we could identify a putative RdRP palm domain that has some features of plus strand RNA viruses; these new viruses may represent a new lineage in the Riboviria, as they could not be reliably assigned to any of the branches in the recently derived monophyletic tree that includes most viruses with an RNA genome.
Collapse
Affiliation(s)
- Suvi Sutela
- Natural Resources Institute Finland (Luke), Forest Health and Biodiversity Group, Latokartanonkaari 9, Helsinki FI-00790, Finland
| | - Marco Forgia
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, Torino 10135, Italy
| | - Eeva J Vainio
- Natural Resources Institute Finland (Luke), Forest Health and Biodiversity Group, Latokartanonkaari 9, Helsinki FI-00790, Finland
| | - Marco Chiapello
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, Torino 10135, Italy
| | - Stefania Daghino
- Department of Life Science and Systems Biology, University of Torino, Viale Mattioli 25, Torino 10125, Italy
| | - Marta Vallino
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, Torino 10135, Italy
| | - Elena Martino
- Department of Life Science and Systems Biology, University of Torino, Viale Mattioli 25, Torino 10125, Italy
| | - Mariangela Girlanda
- Department of Life Science and Systems Biology, University of Torino, Viale Mattioli 25, Torino 10125, Italy
| | - Silvia Perotto
- Department of Life Science and Systems Biology, University of Torino, Viale Mattioli 25, Torino 10125, Italy
| | - Massimo Turina
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, Torino 10135, Italy
| |
Collapse
|
11
|
Abstract
Mycoviruses, just as the fungal endophytes they infect, are ubiquitous biological entities on Earth. Mycoviruses constitute a diverse group of viruses, and metagenomic approaches have-through recent discoveries of been mycoviruses-only recently began to provide evidence of this astonishing diversity. The current review presents (1) various mycoviruses which infect fungal endophytes and forest pathogens, (2) their presumed origins and interactions with fungi, plants and the environment, (3) high-throughput sequencing techniques that can be used to explore the horizontal gene transfer of mycoviruses, and (4) how the hypo- and hypervirulence induced by mycoviral infection is relevant to the biological control of pathogenic fungi.
Collapse
Affiliation(s)
- Abu Bakar Siddique
- Department of Ecology and Environmental Sciences (EMG), Umeå University, Umeå, Sweden.
| |
Collapse
|
12
|
Description of a Novel Mycovirus in the Phytopathogen Fusarium culmorum and a Related EVE in the Yeast Lipomyces starkeyi. Viruses 2020; 12:v12050523. [PMID: 32397544 PMCID: PMC7290986 DOI: 10.3390/v12050523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 11/20/2022] Open
Abstract
A new mycovirus was found in the Fusarium culmorum strain A104-1 originally sampled on wheat in Belgium. This novel virus, for which the name Fusarium culmorum virus 1 (FcV1) is suggested, is phylogenetically related to members of the previously proposed family ‘’Unirnaviridae’’. FcV1 has a monopartite dsRNA genome of 2898 bp that harbors two large non-overlapping ORFs. A typical -1 slippery motif is found at the end of ORF1, advocating that ORF2 is translated by programmed ribosomal frameshifting. While ORF2 exhibits a conserved replicase domain, ORF1 encodes for an undetermined protein. Interestingly, a hypothetically transcribed gene similar to unirnaviruses ORF1 was found in the genome of Lipomyces starkeyi, presumably resulting from a viral endogenization in this yeast. Conidial isolation and chemical treatment were unsuccessful to obtain a virus-free isogenic line of the fungal host, highlighting a high retention rate for FcV1 but hindering its biological characterization. In parallel, attempt to horizontally transfer FcV1 to another strain of F. culmorum by dual culture failed. Eventually, a screening of other strains of the same fungal species suggests the presence of FcV1 in two other strains from Europe.
Collapse
|
13
|
Abstract
Fungi are phylogenetically and functionally diverse ubiquitous components of almost all ecosystems on Earth, including aquatic environments stretching from high montane lakes down to the deep ocean. Aquatic ecosystems, however, remain frequently overlooked as fungal habitats, although fungi potentially hold important roles for organic matter cycling and food web dynamics. Recent methodological improvements have facilitated a greater appreciation of the importance of fungi in many aquatic systems, yet a conceptual framework is still missing. In this Review, we conceptualize the spatiotemporal dimensions, diversity, functions and organismic interactions of fungi in structuring aquatic food webs. We focus on currently unexplored fungal diversity, highlighting poorly understood ecosystems, including emerging artificial aquatic habitats.
Collapse
|
14
|
Fungal Epigenetic Engineering. Fungal Biol 2020. [DOI: 10.1007/978-3-030-41870-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Sutela S, Poimala A, Vainio EJ. Viruses of fungi and oomycetes in the soil environment. FEMS Microbiol Ecol 2019; 95:5542194. [DOI: 10.1093/femsec/fiz119] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/30/2019] [Indexed: 12/17/2022] Open
Abstract
ABSTRACTSoils support a myriad of organisms hosting highly diverse viromes. In this minireview, we focus on viruses hosted by true fungi and oomycetes (members of Stamenopila, Chromalveolata) inhabiting bulk soil, rhizosphere and litter layer, and representing different ecological guilds, including fungal saprotrophs, mycorrhizal fungi, mutualistic endophytes and pathogens. Viruses infecting fungi and oomycetes are characterized by persistent intracellular nonlytic lifestyles and transmission via spores and/or hyphal contacts. Almost all fungal and oomycete viruses have genomes composed of single-stranded or double-stranded RNA, and recent studies have revealed numerous novel viruses representing yet unclassified family-level groups. Depending on the virus–host combination, infections can be asymptomatic, beneficial or detrimental to the host. Thus, mycovirus infections may contribute to the multiplex interactions of hosts, therefore likely affecting the dynamics of fungal communities required for the functioning of soil ecosystems. However, the effects of fungal and oomycete viruses on soil ecological processes are still mostly unknown. Interestingly, new metagenomics data suggest an extensive level of horizontal virus transfer between plants, fungi and insects.
Collapse
Affiliation(s)
- Suvi Sutela
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Anna Poimala
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Eeva J Vainio
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| |
Collapse
|
16
|
Li CX, Zhu JZ, Gao BD, Zhu HJ, Zhou Q, Zhong J. Characterization of a Novel Ourmia-Like Mycovirus Infecting Magnaporthe oryzae and Implications for Viral Diversity and Evolution. Viruses 2019; 11:v11030223. [PMID: 30841545 PMCID: PMC6465991 DOI: 10.3390/v11030223] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 01/06/2023] Open
Abstract
Here, the molecular characterization of a novel mycovirus that was isolated from a phytopathogenic fungus Magnaporthe oryzae and designed as Magnaporthe oryzae ourmia-like virus 4 (MOLV4) is reported. MOLV4 has a genome that is 2497 bp long and possesses a single open reading frame (ORF), which encodes the product RNA-dependent RNA polymerase (RdRp). Sequence similarities were found between the MOLV4 encoded RdRp and the counterparts of a few previously reported ourmia-like mycoviruses. Virus-curing and biological comparison indicate that the virus has no or mild effects on the morphology and mycelium growth rate of the host fungus. Phylogenetic analysis using the RdRp aa sequences was performed. The results show that MOLV4 is clustered with the ourmia-like mycoviruses, forming a clade closely related to ourmiaviruses but distinct from narnaviruses. In addition, database searches revealed that several MOLV4-related sequences are present in the transcriptome shotgun assembly (TSA) library, expressed sequence tag database (ESTdb), whole-genome shotgun (WGS) library, and genomic survey sequences (GSS) libraries of a few other species of eukaryote organisms. Our results show that MOLV4, together with other similar ourmia-like mycoviruses, might represent a virus clade that links the plant ourmiaviruses and fungal narnaviruses and has a wide range of hosts.
Collapse
Affiliation(s)
- Chang Xin Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha 410128, China.
| | - Jun Zi Zhu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha 410128, China.
| | - Bi Da Gao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha 410128, China.
| | - Hong Jian Zhu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha 410128, China.
| | - Qian Zhou
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha 410128, China.
| | - Jie Zhong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha 410128, China.
| |
Collapse
|
17
|
Kamaruzzaman M, He G, Wu M, Zhang J, Yang L, Chen W, Li G. A Novel Partitivirus in the Hypovirulent Isolate QT5-19 of the Plant Pathogenic Fungus Botrytis cinerea. Viruses 2019; 11:E24. [PMID: 30609795 PMCID: PMC6356794 DOI: 10.3390/v11010024] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/19/2018] [Accepted: 12/28/2018] [Indexed: 01/02/2023] Open
Abstract
A pink isolate (QT5-19) of Botrytis cinerea was compared with three gray isolates of B. cinerea for growth and morphogenesis on potato dextrose agar (PDA), and for pathogenicity on tobacco. A double-stranded (ds) RNA mycovirus infecting QT5-19 was identified based on its genome feature and morphology of the virus particles. The results showed that QT5-19 grew rapidly and established flourishing colonies as the gray isolates did. However, it is different from the gray isolates, as it failed to produce conidia and sclerotia asthe gray isolates did. QT5-19 hardly infected tobacco, whereas the gray isolates aggressively infected tobacco. Two dsRNAs were detected in QT5-19, dsRNA 1 and dsRNA 2, were deduced to encode two polypepetides with homology to viral RNA-dependent RNA polymerase (RdRp) and coat protein (CP), respectively. Phylogenetic analysis of the amino acid sequences of RdRp and CP indicated that the two dsRNAs represent the genome of a novel partitivirus in the genus Alphapartitivirus, designated here as Botrytis cinerea partitivirus 2 (BcPV2). BcPV2 in QT5-19 was successfully transmitted to the three gray isolates through hyphal contact. The resulting BcPV2-infected derivatives showed rapid growth on PDA with defects in conidiogenesis and sclerogenesis, and hypovirulence on tobacco. This study suggests that BcPV2 is closely associated with hypovirulence of B. cinerea.
Collapse
Affiliation(s)
- Md Kamaruzzaman
- The Key Laboratory of Plant Pathology of Hubei Province and The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Guoyuan He
- The Key Laboratory of Plant Pathology of Hubei Province and The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mingde Wu
- The Key Laboratory of Plant Pathology of Hubei Province and The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jing Zhang
- The Key Laboratory of Plant Pathology of Hubei Province and The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Long Yang
- The Key Laboratory of Plant Pathology of Hubei Province and The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Weidong Chen
- U. S. Department of Agriculture, Agricultural Research Service, Washington State University, Pullman, WA 99164, USA.
| | - Guoqing Li
- The Key Laboratory of Plant Pathology of Hubei Province and The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
18
|
Liu C, Zeng M, Zhang M, Shu C, Zhou E. Complete Nucleotide Sequence of a Partitivirus from Rhizoctonia solani AG-1 IA Strain C24. Viruses 2018; 10:E703. [PMID: 30544926 PMCID: PMC6316540 DOI: 10.3390/v10120703] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/21/2018] [Accepted: 12/07/2018] [Indexed: 11/24/2022] Open
Abstract
The complete genome of a novel double-stranded (ds) RNA mycovirus, named as Rhizoctonia solani partitivirus 5 (RsPV5), isolated from rice sheath blight fungus R. solani AG-1 IA strain C24, was sequenced and analysed. RsPV5 consists of two segments, dsRNA-1 (1899 nucleotides) and dsRNA-2 (1787 nucleotides). DsRNA-1 has an open reading frame (ORF) 1 that potentially codes for a protein of 584 amino acid (aa) containing the conserved motifs of a RNA-dependent RNA polymerase (RdRp), and dsRNA-2 also contains a ORF 2, encoding a putative capsid protein (CP) of 513 aa. Phylogenetic analysis revealed that RsPV5 clustered together with six other viruses in an independent clade of the genus Alphapartitivirus, indicating that RsPV5 was a new member of the genus Alphapartitivirus, within the family Partitiviridae.
Collapse
Affiliation(s)
- Chen Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Miaolin Zeng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Meiling Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Canwei Shu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Erxun Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
19
|
Kyrychenko AN, Tsyganenko KS, Olishevska SV. Hypovirulence of Mycoviruses as a Tool for Biotechnological Control of Phytopathogenic Fungi. CYTOL GENET+ 2018. [DOI: 10.3103/s0095452718050043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Abstract
Viruses are an important but sequence-diverse and often understudied component of the phytobiome. We succinctly review current information on how plant viruses directly affect plant health and physiology and consequently have the capacity to modulate plant interactions with their biotic and abiotic environments. Virus interactions with other biota in the phytobiome, including arthropods, fungi, and nematodes, may also impact plant health. For example, viruses interact with and modulate the interface between plants and insects. This has been extensively studied for insect-vectored plant viruses, some of which also infect their vectors. Other viruses have been shown to alter the impacts of plant-interacting phytopathogenic and nonpathogenic fungi and bacteria. Viruses that infect nematodes have also recently been discovered, but the impact of these and phage infecting soil bacteria on plant health remain largely unexplored.
Collapse
Affiliation(s)
- James E Schoelz
- Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Lucy R Stewart
- Corn, Soybean and Wheat Quality Research Unit, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Wooster, Ohio 44691, USA;
| |
Collapse
|
21
|
Mycovirus associated hypovirulence, a potential method for biological control of Fusarium species. Virusdisease 2018; 29:134-140. [PMID: 29911145 DOI: 10.1007/s13337-018-0438-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/06/2018] [Indexed: 01/18/2023] Open
Abstract
Fusarium is a large genus of filamentous fungi belongs to the division Ascomycota and was first described as Fusisporium. Innumerable members of this genus act as pathogens, endophytes and saprophytes and can be recovered from plants and soils worldwide. Many of these members are known to be phytopathogens. It is among the most diverse and widely dispersed phyto-pathogenic fungi which cause economically important blights, rots, wilts and cankers of many ornamental, field, horticultural and forest crops both in agricultural commodities and natural ecosystems. Some species, e.g. F. graminearum and F. verticillioides have a narrow host range and mainly infect the cereals, whereas F. oxysporum has effects on both monocotyledonous and dicotyledonous plants. Attempts have been made to control the diseases caused by Fusarium sp. and to minimize crop yield losses. Till date, effective and eco-friendly methods have not been devised for the control of this devastating pathogen. A new potential of using mycovirus associated hypovirulence as biocontrol method against Fusarium species has been proposed. The present review taking into account of worldwide researches to provide possible insights for Fusarium-mycovirus coevolution.
Collapse
|
22
|
Picarelli MASC, Gobatto D, Patrício F, Rivas EB, Colariccio A. Vírus que infectam fungos fitopatogênicos. ARQUIVOS DO INSTITUTO BIOLÓGICO 2018. [DOI: 10.1590/1808-1657000162016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RESUMO: Micovírus são vírus que infectam todos os taxa de fungos. São geralmente crípticos (latentes), mas podem causar pequenas ou imperceptíveis alterações no hospedeiro. Nos fungos fitopatogênicos, os vírus podem interferir com os sintomas e, em alguns casos, reduzir a virulência de seu hospedeiro; por esta razão, são objeto de estudo, por serem um potencial agente de biocontrole e por serem ferramentas importantes para o conhecimento sobre os mecanismos de patogênese de fungos. A presente revisão teve o objetivo de reunir os dados de literatura relacionados aos aspectos gerais da biologia e do comportamento dos micovírus presentes em alguns fungos fitopatogênicos.
Collapse
|
23
|
Hrabáková L, Grum-Grzhimaylo AA, Koloniuk I, Debets AJM, Sarkisova T, Petrzik K. The alkalophilic fungus Sodiomyces alkalinus hosts beta- and gammapartitiviruses together with a new fusarivirus. PLoS One 2017; 12:e0187799. [PMID: 29186149 PMCID: PMC5706713 DOI: 10.1371/journal.pone.0187799] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 10/26/2017] [Indexed: 11/18/2022] Open
Abstract
Mixed infection by three dsRNA viruses, a novel betapartitivirus, a gammapartitivirus, and a novel fusarivirus, has been identified in four isolates of the obligate alkalophilic fungus Sodiomyces alkalinus. The first, Sodiomyces alkalinus partitivirus 1 (SaPV1), is placed within the genus Betapartitivirus and is related to Ustilaginoidea virens partitivirus 2. The taxonomic position of the second virus is less clear as it shares high (85%) amino acid sequence identity but significantly low (77%) nucleotide sequence identity of the capsid protein with Colletotrichum truncatum partitivirus 1. The third, the novel Sodiomyces alkalinus fusarivirus 1 (SaFV1), is related to Fusarium poae fusarivirus 1. All the viruses show efficient vertical transmission through asexual and sexual spores. These novel coexisting viruses do not evoke apparent phenotypic alteration to their fungal host. This is the first description of a viral infection in an alkalophilic fungus.
Collapse
Affiliation(s)
- Lenka Hrabáková
- Department of Plant Virology, Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | | | - Igor Koloniuk
- Department of Plant Virology, Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | | | - Tatiana Sarkisova
- Department of Plant Virology, Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Karel Petrzik
- Department of Plant Virology, Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| |
Collapse
|
24
|
Zabalgogeazcoa I, Alvarez A, Herrero N, Vazquez-de-Aldana BR. Production of fumonisins by endophytic strains of Tolypocladium cylindrosporum and its relation to fungal virus infection. Mycotoxin Res 2017; 34:49-57. [PMID: 29143925 DOI: 10.1007/s12550-017-0298-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/30/2017] [Accepted: 11/06/2017] [Indexed: 11/30/2022]
Abstract
Fumonisins were first discovered in Fusarium verticillioides, a fungus associated to disease and asymptomatic infections in maize. Afterwards, other fungal taxa have been found to produce fumonisins. The entomopathogenic ascomycete Tolypocladium cylindrosporum has been isolated from soil and also as an endophyte from leaves of grasses. The objectives of this work were to determine the in vitro production of fumonisin B (FB) mycotoxins and the immunosuppressive compound cyclosporine A (CyA) in several strains of T. cylindrosporum, and to examine the effect of fungal virus infection and temperature in FB production. FB1 was detected in 30% of the strains, ranging from 0.16 to 5.52 μg cm-2 in solid media, and FB2 was detected in 78% of the strains, ranging from 0.764 to 40.92 μg cm-2. CyA was not detected in any strain. The mean FB2 concentration of the endophytic strain Tc37W was three times greater (p < 0.05) than that of any other strain. Up to 34% more of FB2 was detected in strains infected by the virus TcV3 than in the corresponding virus-free versions. The effect of temperature on FB2 content was interactively significantly dependent on fungal strain and growth medium; in the YES medium, the FB2 of virus-infected strains Tc37-1V and Tc37W increased by 67 and 16%, respectively, at 26 °C as compared to 20 °C. The FB concentration in some fungal strains was similar to that in fungi associated to food and feed intoxications.
Collapse
Affiliation(s)
- Iñigo Zabalgogeazcoa
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008, Salamanca, Spain
| | - Amador Alvarez
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008, Salamanca, Spain
| | - Noemi Herrero
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008, Salamanca, Spain
| | - Beatriz R Vazquez-de-Aldana
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008, Salamanca, Spain.
| |
Collapse
|
25
|
Glynou K, Ali T, Kia SH, Thines M, Maciá-Vicente JG. Genotypic diversity in root-endophytic fungi reflects efficient dispersal and environmental adaptation. Mol Ecol 2017; 26:4618-4630. [PMID: 28667772 DOI: 10.1111/mec.14231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 04/09/2017] [Accepted: 06/08/2017] [Indexed: 12/25/2022]
Abstract
Studying community structure and dynamics of plant-associated fungi is the basis for unravelling their interactions with hosts and ecosystem functions. A recent sampling revealed that only a few fungal groups, as defined by internal transcribed spacer region (ITS) sequence similarity, dominate culturable root endophytic communities of nonmycorrhizal Microthlaspi spp. plants across Europe. Strains of these fungi display a broad phenotypic and functional diversity, which suggests a genetic variability masked by ITS clustering into operational taxonomic units (OTUs). The aims of this study were to identify how genetic similarity patterns of these fungi change across environments and to evaluate their ability to disperse and adapt to ecological conditions. A first ITS-based haplotype analysis of ten widespread OTUs mostly showed a low to moderate genotypic differentiation, with the exception of a group identified as Cadophora sp. that was highly diverse. A multilocus phylogeny based on additional genetic loci (partial translation elongation factor 1α, beta-tubulin and actin) and amplified fragment length polymorphism profiling of 185 strains representative of the five dominant OTUs revealed a weak association of genetic differences with geography and environmental conditions, including bioclimatic and soil factors. Our findings suggest that dominant culturable root endophytic fungi have efficient dispersal capabilities, and that their distribution is little affected by environmental filtering. Other processes, such as inter- and intraspecific biotic interactions, may be more important for the local assembly of their communities.
Collapse
Affiliation(s)
- Kyriaki Glynou
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany.,Integrative Fungal Research Cluster (IPF), Frankfurt am Main, Germany
| | - Tahir Ali
- Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Sevda Haghi Kia
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany.,Integrative Fungal Research Cluster (IPF), Frankfurt am Main, Germany
| | - Marco Thines
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany.,Integrative Fungal Research Cluster (IPF), Frankfurt am Main, Germany.,Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Jose G Maciá-Vicente
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany.,Integrative Fungal Research Cluster (IPF), Frankfurt am Main, Germany
| |
Collapse
|
26
|
A novel monopartite dsRNA virus isolated from the entomopathogenic and nematophagous fungus Purpureocillium lilacinum. Arch Virol 2016; 161:3375-3384. [DOI: 10.1007/s00705-016-3045-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/31/2016] [Indexed: 12/01/2022]
|
27
|
Santangelo JS, Kotanen PM. Nonsystemic fungal endophytes increase survival but reduce tolerance to simulated herbivory in subarctic
Festuca rubra. Ecosphere 2016. [DOI: 10.1002/ecs2.1260] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- James S. Santangelo
- Department of Biology University of Toronto Mississauga 3359 Mississauga RoadMississaugaOntario L5L 1C6 Canada
| | - Peter M. Kotanen
- Department of Ecology and Evolutionary Biology University of Toronto Mississauga 3359 Mississauga RoadMississaugaOntarioL5L 1C6 Canada
| |
Collapse
|
28
|
Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A. The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes. Microbiol Mol Biol Rev 2015; 79:293-320. [PMID: 26136581 PMCID: PMC4488371 DOI: 10.1128/mmbr.00050-14] [Citation(s) in RCA: 1108] [Impact Index Per Article: 110.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All plants are inhabited internally by diverse microbial communities comprising bacterial, archaeal, fungal, and protistic taxa. These microorganisms showing endophytic lifestyles play crucial roles in plant development, growth, fitness, and diversification. The increasing awareness of and information on endophytes provide insight into the complexity of the plant microbiome. The nature of plant-endophyte interactions ranges from mutualism to pathogenicity. This depends on a set of abiotic and biotic factors, including the genotypes of plants and microbes, environmental conditions, and the dynamic network of interactions within the plant biome. In this review, we address the concept of endophytism, considering the latest insights into evolution, plant ecosystem functioning, and multipartite interactions.
Collapse
Affiliation(s)
- Pablo R. Hardoim
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | | | - Gabriele Berg
- Institute for Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | | | - Stéphane Compant
- Department of Health and Environment, Bioresources Unit, Austrian Institute of Technology GmbH, Tulln, Austria
| | - Andrea Campisano
- Sustainable Agro-Ecosystems and Bioresources Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
| | | | - Angela Sessitsch
- Department of Health and Environment, Bioresources Unit, Austrian Institute of Technology GmbH, Tulln, Austria
| |
Collapse
|
29
|
The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes. Microbiol Mol Biol Rev 2015. [PMID: 26136581 DOI: 10.1128/mmbr.00050-14.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All plants are inhabited internally by diverse microbial communities comprising bacterial, archaeal, fungal, and protistic taxa. These microorganisms showing endophytic lifestyles play crucial roles in plant development, growth, fitness, and diversification. The increasing awareness of and information on endophytes provide insight into the complexity of the plant microbiome. The nature of plant-endophyte interactions ranges from mutualism to pathogenicity. This depends on a set of abiotic and biotic factors, including the genotypes of plants and microbes, environmental conditions, and the dynamic network of interactions within the plant biome. In this review, we address the concept of endophytism, considering the latest insights into evolution, plant ecosystem functioning, and multipartite interactions.
Collapse
|
30
|
Ghabrial SA, Castón JR, Jiang D, Nibert ML, Suzuki N. 50-plus years of fungal viruses. Virology 2015; 479-480:356-68. [PMID: 25771805 DOI: 10.1016/j.virol.2015.02.034] [Citation(s) in RCA: 489] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 01/31/2015] [Accepted: 02/19/2015] [Indexed: 10/23/2022]
Abstract
Mycoviruses are widespread in all major taxa of fungi. They are transmitted intracellularly during cell division, sporogenesis, and/or cell-to-cell fusion (hyphal anastomosis), and thus their life cycles generally lack an extracellular phase. Their natural host ranges are limited to individuals within the same or closely related vegetative compatibility groups, although recent advances have established expanded experimental host ranges for some mycoviruses. Most known mycoviruses have dsRNA genomes packaged in isometric particles, but an increasing number of positive- or negative-strand ssRNA and ssDNA viruses have been isolated and characterized. Although many mycoviruses do not have marked effects on their hosts, those that reduce the virulence of their phytopathogenic fungal hosts are of considerable interest for development of novel biocontrol strategies. Mycoviruses that infect endophytic fungi and those that encode killer toxins are also of special interest. Structural analyses of mycoviruses have promoted better understanding of virus assembly, function, and evolution.
Collapse
Affiliation(s)
- Said A Ghabrial
- Plant Pathology Department, University of Kentucky, Lexington, KY, USA.
| | - José R Castón
- Department of Structure of Macromolecules, Centro Nacional Biotecnologıa/CSIC, Campus de Cantoblanco, Madrid, Spain
| | - Daohong Jiang
- State Key Lab of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
| | - Max L Nibert
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| |
Collapse
|
31
|
Li Z, Su S, Hamilton M, Yan L, Chen Y. The ability to cause infection in a pathogenic fungus uncovers a new biological feature of honey bee viruses. J Invertebr Pathol 2014; 120:18-22. [PMID: 24825460 DOI: 10.1016/j.jip.2014.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 05/03/2014] [Accepted: 05/05/2014] [Indexed: 10/25/2022]
Abstract
We demonstrated that honey bee viruses including Deformed wing virus (DWV), Black queen cell virus (BQCV) and Israeli acute paralysis virus (IAPV) could infect and replicate in the fungal pathogen Ascosphaera apis that causes honey bee chalkbrood disease, revealing a novel biological feature of honey bee viruses. The phylogenetic analysis show that viruses of fungal and honey bee origins form two clusters in the phylogenetic trees distinctly and that host range of honey bee viruses is dynamic. Further studies are warranted to investigate the impact of the viruses on the fitness of their fungal host and phenotypic effects the virus-fungus combination has on honey bee hosts.
Collapse
Affiliation(s)
- Zhiguo Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; USDA-ARS, Bee Research Laboratory, Beltsville, MD 20705, USA
| | - Songkun Su
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | | | - Limin Yan
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yanping Chen
- USDA-ARS, Bee Research Laboratory, Beltsville, MD 20705, USA.
| |
Collapse
|
32
|
Massart S, Olmos A, Jijakli H, Candresse T. Current impact and future directions of high throughput sequencing in plant virus diagnostics. Virus Res 2014; 188:90-6. [PMID: 24717426 DOI: 10.1016/j.virusres.2014.03.029] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 12/17/2022]
Abstract
The ability to provide a fast, inexpensive and reliable diagnostic for any given viral infection is a key parameter in efforts to fight and control these ubiquitous pathogens. The recent developments of high-throughput sequencing (also called Next Generation Sequencing - NGS) technologies and bioinformatics have drastically changed the research on viral pathogens. It is now raising a growing interest for virus diagnostics. This review provides a snapshot vision on the current use and impact of high throughput sequencing approaches in plant virus characterization. More specifically, this review highlights the potential of these new technologies and their interplay with current protocols in the future of molecular diagnostic of plant viruses. The current limitations that will need to be addressed for a wider adoption of high-throughput sequencing in plant virus diagnostics are thoroughly discussed.
Collapse
Affiliation(s)
- Sebastien Massart
- Laboratory of Phytopathology, University of Liège, Gembloux Agro-BioTech, Passage des déportés, 2, 5030 Gembloux, Belgium.
| | - Antonio Olmos
- Centro de Protección Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Apartado Oficial, 46113 Moncada, Valencia, Spain
| | - Haissam Jijakli
- Laboratory of Phytopathology, University of Liège, Gembloux Agro-BioTech, Passage des déportés, 2, 5030 Gembloux, Belgium
| | - Thierry Candresse
- UMR 1332 de Biologie du fruit et Pathologie, INRA, CS20032, 33882 Villenave d'Ornon cedex, France; UMR 1332 de Biologie du fruit et Pathologie, Université de Bordeaux, CS20032, 33882 Villenave d'Ornon cedex, France
| |
Collapse
|
33
|
Molecular characterization of a novel victorivirus from the entomopathogenic fungus Beauveria bassiana. Arch Virol 2013; 159:1321-7. [PMID: 24327093 DOI: 10.1007/s00705-013-1938-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 10/29/2013] [Indexed: 10/25/2022]
Abstract
New Zealand isolates of the entomopathogenic fungus Beauveria were examined for the presence of dsRNAs and virus-like particles. Seven out of nine isolates contained one or more high-molecular-weight dsRNAs and all seven contained isometric virus particles ranging in size from 30 to 50 nm. B. bassiana isolate ICMP#6887 contained a single dsRNA band of ~6 kb and isometric virus-like particles of ~50 nm in diameter. Sequencing revealed that the virus from ICMP#6887 had a genome of 5,327 nt with two overlapping ORFs coding for a putative coat protein (CP) and an RNA-dependent RNA-polymerase (RdRp). The sequence showed a highest CP identity of 58.3 % to Tolypocladium cylindrosporum virus 1 (TcV1) and a highest RdRp identity of 48.8 % to Sphaeropsis sapinea RNA virus 1 (SsRV1). Since both TcV1 and SsRV1 belong to the genus Victorivirus, the new virus from B. bassiana ICMP#6887 was tentatively assigned the name Beauveria bassiana victorivirus 1 (BbVV1-6887).
Collapse
|
34
|
Abstract
Most of the major fungal families including plant-pathogenic fungi, yeasts, and mushrooms are infected by mycoviruses, and many double-stranded RNA (dsRNA) mycoviruses have been recently identified from diverse plant-pathogenic Fusarium species. The frequency of occurrence of dsRNAs is high in Fusarium poae but low in other Fusarium species. Most Fusarium mycoviruses do not cause any morphological changes in the host but some mycoviruses like Fusarium graminearum virus 1 (FgV1) cause hypovirulence. Available genomic data for seven of the dsRNA mycoviruses infecting Fusarium species indicate that these mycoviruses exist as complexes of one to five dsRNAs. According to phylogenetic analysis, the Fusarium mycoviruses identified to date belong to four families: Chrysoviridae, Hypoviridae, Partitiviridae, and Totiviridae. Proteome and transcriptome analysis have revealed that FgV1 infection of Fusarium causes changes in host transcriptional and translational machineries. Successful transmission of FgV1 via protoplast fusion suggests the possibility that, as biological control agents, mycoviruses could be introduced into diverse species of fungal plant pathogens. Research is now needed on the molecular biology of mycovirus life cycles and mycovirus-host interactions. This research will be facilitated by the further development of omics technologies.
Collapse
Affiliation(s)
- Won Kyong Cho
- Department of Agricultural Biotechnology, Center for Fungal Pathogenesis and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
35
|
Abstract
Mycoviruses have been detected from all four classes of fungal endophytes. The virus species richness is probably extremely high in endophytes. The incidence and diversity of mycoviruses may be affected by transmission modes, virus-fungus-plant interactions, and endophyte population structures. Endophyte viruses are unlikely to be strong antagonists to their fungal hosts and can clearly play mutualistic roles in the multiplex symbioses with endophytes and plants under some environmental conditions. A better understanding of fungal endophyte viruses will help prospects of future applications for sustainable agriculture.
Collapse
|
36
|
|
37
|
Prevalence and diversity of viruses in the entomopathogenic fungus Beauveria bassiana. Appl Environ Microbiol 2012; 78:8523-30. [PMID: 23001673 DOI: 10.1128/aem.01954-12] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Viruses have been discovered in numerous fungal species, but unlike most known animal or plant viruses, they are rarely associated with deleterious effects on their hosts. The knowledge about viruses among entomopathogenic fungi is very limited, although their existence is suspected because of the presence of virus-like double-stranded RNA (dsRNA) in isolates of several species. Beauveria bassiana is one of the most-studied species of entomopathogenic fungi; it has a cosmopolitan distribution and is used as a biological control agent against invertebrates in agriculture. We analyzed a collection of 73 isolates obtained at different locations and from different habitats in Spain and Portugal, searching for dsRNA elements indicative of viral infections. The results revealed that the prevalence of viral infections is high; 54.8% of the isolates contained dsRNA elements with viral characteristics. The dsRNA electropherotypes of infected isolates indicated that virus diversity was high in the collection analyzed and that mixed virus infections occurred in fungal isolates. However, a hybridization experiment indicated that dsRNA bands that are similar in size do not always have similar sequences. Particular virus species or dsRNA profiles were not associated with locations or types of habitats, probably because of the ubiquity and efficient dispersion of this fungus as an airborne species. The sequence of one of the most common dsRNA elements corresponded to the 5.2-kbp genome of a previously undescribed member of the Totiviridae family, termed B. bassiana RNA virus 1 (BbRV1).
Collapse
|
38
|
Liu H, Fu Y, Xie J, Cheng J, Ghabrial SA, Li G, Yi X, Jiang D. Discovery of novel dsRNA viral sequences by in silico cloning and implications for viral diversity, host range and evolution. PLoS One 2012; 7:e42147. [PMID: 22848734 PMCID: PMC3407116 DOI: 10.1371/journal.pone.0042147] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 07/02/2012] [Indexed: 11/18/2022] Open
Abstract
Genome sequence of viruses can contribute greatly to the study of viral evolution, diversity and the interaction between viruses and hosts. Traditional molecular cloning methods for obtaining RNA viral genomes are time-consuming and often difficult because many viruses occur in extremely low titers. DsRNA viruses in the families, Partitiviridae, Totiviridae, Endornaviridae, Chrysoviridae, and other related unclassified dsRNA viruses are generally associated with symptomless or persistent infections of their hosts. These characteristics indicate that samples or materials derived from eukaryotic organisms used to construct cDNA libraries and EST sequencing might carry these viruses, which were not easily detected by the researchers. Therefore, the EST databases may include numerous unknown viral sequences. In this study, we performed in silico cloning, a procedure for obtaining full or partial cDNA sequence of a gene by bioinformatics analysis, using known dsRNA viral sequences as queries to search against NCBI Expressed Sequence Tag (EST) database. From this analysis, we obtained 119 novel virus-like sequences related to members of the families, Endornaviridae, Chrysoviridae, Partitiviridae, and Totiviridae. Many of them were identified in cDNA libraries of eukaryotic lineages, which were not known to be hosts for these viruses. Furthermore, comprehensive phylogenetic analysis of these newly discovered virus-like sequences with known dsRNA viruses revealed that these dsRNA viruses may have co-evolved with respective host supergroups over a long evolutionary time while potential horizontal transmissions of viruses between different host supergroups also is possible. We also found that some of the plant partitiviruses may have originated from fungal viruses by horizontal transmissions. These findings extend our knowledge of the diversity and possible host range of dsRNA viruses and offer insight into the origin and evolution of relevant viruses with their hosts.
Collapse
Affiliation(s)
- Huiquan Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
| | - Jiatao Xie
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
| | - Jiasen Cheng
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
| | - Said A. Ghabrial
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
| | - Xianhong Yi
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
- * E-mail:
| |
Collapse
|
39
|
Sánchez Márquez S, Bills GF, Herrero N, Zabalgogeazcoa Í. Non-systemic fungal endophytes of grasses. FUNGAL ECOL 2012. [DOI: 10.1016/j.funeco.2010.12.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Lima JS, Figueiredo JG, Gomes RG, Stringari D, Goulin EH, Adamoski D, Kava-Cordeiro V, Galli-Terasawa LV, Glienke C. Genetic Diversity of Colletotrichum spp. an Endophytic Fungi in a Medicinal Plant, Brazilian Pepper Tree. ISRN MICROBIOLOGY 2012; 2012:215716. [PMID: 23724319 PMCID: PMC3658576 DOI: 10.5402/2012/215716] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 03/14/2012] [Indexed: 11/23/2022]
Abstract
In this study, we reported thirty-nine endophytic fungi identified as Colletotrichum spp. associated with Brazilian pepper tree or aroeira (Schinus terebinthifolius Raddi. Anacardiaceae) in Paraná state, Brazil. These endophytes were identified by morphological and molecular methods, using PCR taxon-specific with CaInt/ITS4, CgInt/ITS4, and Col1/ITS4 primers, which amplify specific bands in C. acutatum, C. gloeosporioides lato sensu, and Colletotrichum boninensis, respectively, and by DNA sequence analysis of the nrDNA internal transcribed spacer region (ITS1, 5.8S, ITS2). We also assayed the presence of dsRNA particles in Colletotrichum spp. isolates. Combining both morphological characters and molecular data, we identified the species C. gloeosporioides, C. boninense, and C. simmondsii. However, we found a high genetic variability intraspecific in C. gloeosporioides which suggests the existence of several other species. Bands of double-stranded RNA (dsRNA) were detected in three of thirty-nine isolates. Identity of these bands was confirmed by RNAse, DNAse, and S1 nuclease treatments for the isolates LGMF633, LGMF726, and LGMF729. This is the first study reporting these particles of dsRNA in C. gloeosporioides.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - C. Glienke
- Department of Genetics, Centro Politécnico, Universidade Federal do Paraná (UFPR), Box 19071, 81531-990 Curitiba, PR, Brazil
| |
Collapse
|
41
|
Feldman TS, Morsy MR, Roossinck MJ. Are communities of microbial symbionts more diverse than communities of macrobial hosts? Fungal Biol 2012; 116:465-77. [DOI: 10.1016/j.funbio.2012.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 01/12/2012] [Accepted: 01/19/2012] [Indexed: 11/16/2022]
|
42
|
|
43
|
Mycoviruses infecting the endophytic and entomopathogenic fungus Tolypocladium cylindrosporum. Virus Res 2011; 160:409-13. [DOI: 10.1016/j.virusres.2011.06.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 06/20/2011] [Accepted: 06/21/2011] [Indexed: 11/19/2022]
|
44
|
Complete nucleotide sequence of TaV1, a novel totivirus isolated from a black truffle ascocarp (Tuber aestivum Vittad.). Arch Virol 2010; 155:2075-8. [DOI: 10.1007/s00705-010-0824-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 09/21/2010] [Indexed: 10/19/2022]
|
45
|
Molecular diversity of chrysoviruses in Korean isolates of a new fungal species, Cryphonectria nitschkei. J Microbiol 2009; 47:441-7. [PMID: 19763418 DOI: 10.1007/s12275-009-0206-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 07/24/2009] [Indexed: 10/20/2022]
Abstract
Genetic diversity of the chrysovirus within the four fungal strains was analyzed by comparing the full-length sequences of cloned chrysoviral genes encoding the RNA-dependent RNA polymerase (RdRp) and capsid protein (CP). Because the morphological characteristics of four chrysovirus-infected Cryphonectria spp. strains were different, strain identification was conducted via sequence comparison of the internal transcribed spacers (ITSs) of the fungal rRNA gene. Phylogenic analysis of the ITS regions revealed that the four strains were closely clustered with the reference strain of Cryphonectria nitschkei, while they were more distantly related to other common Cryphonectria species, indicating that they were likely C. nitschkei. Sequence comparison among chrysoviruses from Korean C. nitschkei strains revealed that similarities of the RdRp and CP genes ranged from 98% to 100% and from 95% to 100%, respectively, at the protein level. Their corresponding nucleotide sequences showed 97% to 100% and 84% to 100% identities, respectively. Compared to RdRp, the CP gene had more divergence, suggesting the presence of genes possessing different evolutionary rates within the chrysovirus genome. Sequence comparisons with other known chrysoviruses showed that the four Korean chrysoviruses were clustered together at the next lineage level. Discovering why two strains (bsl31 and bsl32) containing identical ITS sequences and chrysoviruses display different phenotypes should prove interesting.
Collapse
|