1
|
García-López C, Rodríguez-Calvo-de-Mora M, Borroni D, Sánchez-González JM, Romano V, Rocha-de-Lossada C. The role of matrix metalloproteinases in infectious corneal ulcers. Surv Ophthalmol 2023; 68:929-939. [PMID: 37352980 DOI: 10.1016/j.survophthal.2023.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/06/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
During infectious keratitis, the production of collagenolytic and inflammatory substances, along with increased corneal matrix metalloproteinase (MMP) activity, induces the degradation of corneal collagen and may cause postkeratitis complications, such as opacity, thinning, and corneal perforation. MMPs, especially MMP-2 and MMP-9, are overexpressed in infectious keratitis and sustained over time by inflammatory and nonmicrobial mechanisms. The high MMP levels are correlated with excessive corneal destruction in bacterial, herpetic, fungal, and acanthamoeba infections. Nonspecific treatments, such as tetracyclines, particularly doxycycline, or corticosteroids, are used as adjuvants to antimicrobials to alleviate the disproportionate degradation and inflammation of the corneal layers caused by corneal MMPs and decrease the recruitment and infiltration of inflammatory cells. Treatments showing inhibition of specific MMPs (Galardin, ZHAWOC7726), interfering with pro-MMP activation (EDTA, ascorbic acid), or showing anticytokine effect (epigallocatechin-2-gallate, TRAM-34) have been reported. Other treatments show a direct action over corneal collagen structure such as corneal cross-linking or have been associated with reduction of MMP levels such as amniotic membrane grafting. Although the use of these drugs has been shown in studies to be effective in controlling inflammation, especially in experimental ones, robust studies are still needed based on randomized and randomized clinical trials to demonstrate their potential effect as adjuvants in the management of infectious keratitis.
Collapse
Affiliation(s)
- Celia García-López
- Department of Ophthalmology, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Marina Rodríguez-Calvo-de-Mora
- Department of Ophthalmology, Hospital Regional Universitario de Málaga, Málaga, Spain; Department of Ophthalmology (Qvision), Vithas Almería, Almería, Spain; Department of Ophthalmology, VITHAS Málaga, Málaga, Spain
| | - Davide Borroni
- Department of Doctoral Studies, Riga Stradins University, Riga, Latvia; Cornea Research Unit, ADVALIA Vision, Milan, Italy
| | | | - Vito Romano
- Eye Unit, ASST Spedali Civili di Brescia, Brescia, Italy; Eye Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy; Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Carlos Rocha-de-Lossada
- Department of Ophthalmology, Hospital Regional Universitario de Málaga, Málaga, Spain; Department of Ophthalmology (Qvision), Vithas Almería, Almería, Spain; Department of Ophthalmology, VITHAS Málaga, Málaga, Spain; Department of Surgery, Ophthalmology Area, University of Seville, Seville, Spain
| |
Collapse
|
2
|
Peng F, Xie Q, Chen J, Fang Y, Xu W, Jiang D, Chen W. Effect of Corneal Collagen Cross-Linking on Subsequent Corneal Fungal Infection in Rats. Transl Vis Sci Technol 2023; 12:12. [PMID: 37163284 PMCID: PMC10179700 DOI: 10.1167/tvst.12.5.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Purpose The purpose of this study was to determine whether corneal collagen cross-linking (CXL) alters fungal susceptibility and increases the severity of keratitis through macrophage activation in rats. Methods Four weeks following CXL pretreatment, the corneal epithelium of adult rats was removed and inoculated with Candida albicans (C. albicans; CXL + inoculation group). The non-CXL-pretreated corneas were also inoculated with C. albicans (inoculation group). Clinical scoring and histopathological examination were performed to determine the severity of fungal keratitis. Immunofluorescence and confocal microscopy imaging were applied to determine the effects of CXL treatment on corneal local macrophage content. Real-time polymerase chain reaction (RT-PCR) and Western blots were used to evaluate mRNA and protein expression. Flow cytometry assays were performed to detect M1- and M2-type macrophages. Results CXL pretreatment (CXL + inoculation) resulted in higher infection success rate and more severe fungal keratitis than inoculation alone (inoculation group). On days 1, 3, and 7 following fungal infection, the increase in macrophage infiltration and IL-1β, MMP-9, and VEGFA expression was greater in the CXL + inoculation group than in the inoculation group. Number of M1- and M2-type macrophages, M1 to M2 ratio, M1-type macrophage genes, inducible nitric oxide synthase (iNOS), and tumor necrosis factor (TNFα) expression were higher in the CXL + inoculation group compared with the inoculation group. Conclusions Our data demonstrate that CXL may increase the colonization of macrophages and activate more M1-type macrophages to increase fungal susceptibility and severity of keratitis. Translational Relevance This study may aid long-term risk assessment and treatment of the complications of CXL.
Collapse
Affiliation(s)
- Fangli Peng
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- The First Affiliated Hospital of Soochow University, Dongxiaoqiao Longyu Shizi Street Intersection, 100 Meters West, Suzhou, Jiangsu, P. R. China
| | - Qi Xie
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jiaqi Chen
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiting Fang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Xu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dan Jiang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Chen
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
3
|
Filiberti A, Gmyrek GB, Berube AN, Carr DJJ. Osteopontin contributes to virus resistance associated with type I IFN expression, activation of downstream ifn-inducible effector genes, and CCR2 +CD115 +CD206 + macrophage infiltration following ocular HSV-1 infection of mice. Front Immunol 2023; 13:1028341. [PMID: 36685562 PMCID: PMC9846535 DOI: 10.3389/fimmu.2022.1028341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Ocular pathology is often associated with acute herpes simplex virus (HSV)-1 infection of the cornea in mice. The present study was undertaken to determine the role of early T lymphocyte activation 1 protein or osteopontin (OPN) in corneal inflammation and host resistance to ocular HSV-1 infection. C57BL/6 wild type (WT) and osteopontin deficient (OPN KO) mice infected in the cornea with HSV-1 were evaluated for susceptibility to infection and cornea pathology. OPN KO mice were found to possess significantly more infectious virus in the cornea at day 3 and day 7 post infection compared to infected WT mice. Coupled with these findings, HSV-1-infected OPN KO mouse corneas were found to express less interferon (IFN)-α1, double-stranded RNA-dependent protein kinase, and RNase L compared to infected WT animals early post infection that likely contributed to decreased resistance. Notably, OPN KO mice displayed significantly less corneal opacity and neovascularization compared to WT mice that paralleled a decrease in expression of vascular endothelial growth factor (VEGF) A within 12 hr post infection. The change in corneal pathology of the OPN KO mice aligned with a decrease in total leukocyte infiltration into the cornea and specifically, in neutrophils at day 3 post infection and in macrophage subpopulations including CCR2+CD115+CD206+ and CD115+CD183+CD206+ -expressing cells. The infiltration of CD4+ and CD8+ T cells into the cornea was unaltered comparing infected WT to OPN KO mice. Likewise, there was no difference in the total number of HSV-1-specific CD4+ or CD8+ T cells found in the draining lymph node with both sets functionally competent in response to virus antigen comparing WT to OPN KO mice. Collectively, these results demonstrate OPN deficiency directly influences the host innate immune response to ocular HSV-1 infection reducing some aspects of inflammation but at a cost with an increase in local HSV-1 replication.
Collapse
Affiliation(s)
- Adrian Filiberti
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Grzegorz B. Gmyrek
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Amanda N. Berube
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Daniel J. J. Carr
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
4
|
Abstract
OBJECTIVES (1) To explore the role and significance of Matrix Metalloproteinase 9 (MMP-9), a proteolytic enzyme, in various ocular surface diseases of inflammatory, infectious, and traumatic etiology (2), to further elucidate the molecular mechanisms responsible for its overexpression in ocular surface disease states, and (3) to discuss possible targets of therapeutic intervention. METHODS A literature review was conducted of primary sources from 1995 onward using search results populated from the US National Library of Medicine search database. RESULTS MMP-9 overexpression has been found in in vitro and in vivo models of dry eye disease (DED), corneal ulceration, microbial keratitis, corneal neovascularization, ultraviolet light-induced radiation, and a host of additional surface pathologies. MMP-9 is involved in an intricate signal transduction cascade that includes induction by many proinflammatory molecules including interleukin-1 (IL-1), tumor necrosis factor alpha (TNF-a), nuclear factor kappa light chain enhancer of activated B cells (NF-kB), platelet-activating factor, activator protein 1 (AP-1), and transforming growth factor beta (TGF-B). MMP-9 expression is blunted by a diverse array of molecular factors, such as tissue inhibitors of metalloproteinases, cyclosporine A (CyA), PES_103, epigalloccatechin-3-gallate (EGCG), N-acetylcysteine (NaC), ascorbate, tetracyclines, and corticosteroids. Inhibition of MMP-9 frequently led to improvement of ocular surface disease. CONCLUSIONS Novel insights into the mechanistic action of MMP-9 provide potential for new therapeutic modulations of ocular surface diseases mediated by its overexpression.
Collapse
|
5
|
Gilchrist VH, Jémus-Gonzalez E, Said A, Alain T. Kinase inhibitors with viral oncolysis: Unmasking pharmacoviral approaches for cancer therapy. Cytokine Growth Factor Rev 2020; 56:83-93. [PMID: 32690442 DOI: 10.1016/j.cytogfr.2020.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/28/2022]
Abstract
There are more than 500 kinases in the human genome, many of which are oncogenic once constitutively activated. Fortunately, numerous hyperactive kinases are druggable, and several targeted small molecule kinase inhibitors have demonstrated impressive clinical benefits in cancer treatment. However, their often cytostatic rather than cytotoxic effect on cancer cells, and the development of resistance mechanisms, remain significant limitations to these targeted therapies. Oncolytic viruses are an emerging class of immunotherapeutic agents with a specific oncotropic nature and excellent safety profile, highlighting them as a promising alternative to conventional therapeutic modalities. Nonetheless, the clinical efficacy of oncolytic virotherapy is challenged by immunological and physical barriers that limit viral delivery, replication, and spread within tumours. Several of these barriers are often associated with oncogenic kinase activity and, in some cases, worsened by the action of oncolytic viruses on kinase signaling during infection. What if inhibiting these kinases could potentiate the cancer-lytic and anti-tumour immune stimulating properties of oncolytic virotherapies? This could represent a paradigm shift in the use of specific kinase inhibitors in the clinic and provide a novel therapeutic approach to the treatment of cancers. A phase III clinical trial combining the oncolytic Vaccinia virus Pexa-Vec with the kinase inhibitor Sorafenib was initiated. While this trial failed to show any benefits over Sorafenib monotherapy in patients with advanced liver cancer, several pre-clinical studies demonstrate that targeting kinases combined with oncolytic viruses have synergistic effects highlighting this strategy as a unique avenue to cancer therapy. Herein, we review the combinations of oncolytic viruses with kinase inhibitors reported in the literature and discuss the clinical opportunities that represent these pharmacoviral approaches.
Collapse
Affiliation(s)
- Victoria Heather Gilchrist
- Children's Hospital of Eastern Ontario Research Institute, Apoptosis Research Center, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.
| | - Estephanie Jémus-Gonzalez
- Children's Hospital of Eastern Ontario Research Institute, Apoptosis Research Center, Ottawa, ON, Canada
| | - Aida Said
- Children's Hospital of Eastern Ontario Research Institute, Apoptosis Research Center, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, Apoptosis Research Center, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
6
|
Wu Z, Ichinose T, Naoe Y, Matsumura S, Villalobos IB, Eissa IR, Yamada S, Miyajima N, Morimoto D, Mukoyama N, Nishikawa Y, Koide Y, Kodera Y, Tanaka M, Kasuya H. Combination of Cetuximab and Oncolytic Virus Canerpaturev Synergistically Inhibits Human Colorectal Cancer Growth. MOLECULAR THERAPY-ONCOLYTICS 2019; 13:107-115. [PMID: 31193737 PMCID: PMC6539424 DOI: 10.1016/j.omto.2019.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 04/24/2019] [Indexed: 12/28/2022]
Abstract
The naturally occurring oncolytic herpes simplex virus canerpaturev (C-REV), formerly HF10, proved its therapeutic efficacy and safety in multiple clinical trials against melanoma, pancreatic, breast, and head and neck cancers. Meanwhile, patients with colorectal cancer, which has increased in prevalence in recent decades, continue to have poor prognosis and morbidity. Combination therapy has better response rates than monotherapy. Hence, we investigated the antitumor efficacy of cetuximab, a widely used anti-epidermal growth factor receptor (EGFR) monoclonal antibody, and C-REV, either alone or in combination, in vitro and in an in vivo human colorectal xenograft model. In human colorectal cancer cell lines with different levels of EGFR expression (HT-29, WiDr, and CW2), C-REV exhibited cytotoxic effects in a time- and dose-dependent manner, irrespective of EGFR expression. Moreover, cetuximab had no effect on viral replication in vitro. Combining cetuximab and C-REV induced a synergistic antitumor effect in HT-29 tumor xenograft models by promoting the distribution of C-REV throughout the tumor and suppressing angiogenesis. Application of cetuximab prior to C-REV yielded better tumor regression than administration of the drug after the virus. Thus, cetuximab represents an ideal virus-associated agent for antitumor therapy, and combination therapy represents a promising antitumor strategy for human colorectal cancer.
Collapse
Affiliation(s)
- Zhiwen Wu
- Department of Surgery II, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Aichi, Japan
- Cancer Immune Therapy Research Center, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Aichi, Japan
| | - Toru Ichinose
- Department of Surgery II, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Aichi, Japan
- Cancer Immune Therapy Research Center, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Aichi, Japan
| | - Yoshinori Naoe
- Cancer Immune Therapy Research Center, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Aichi, Japan
| | - Shigeru Matsumura
- Cancer Immune Therapy Research Center, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Aichi, Japan
| | - Itzel Bustos Villalobos
- Cancer Immune Therapy Research Center, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Aichi, Japan
| | - Ibrahim Ragab Eissa
- Department of Surgery II, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Aichi, Japan
- Cancer Immune Therapy Research Center, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Aichi, Japan
| | - Suguru Yamada
- Department of Surgery II, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Aichi, Japan
| | - Noriyuki Miyajima
- Department of Surgery II, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Aichi, Japan
| | - Daishi Morimoto
- Department of Surgery II, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Aichi, Japan
| | - Nobuaki Mukoyama
- Otorhinolaryngology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Aichi, Japan
| | - Yoko Nishikawa
- Department of Surgery II, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Aichi, Japan
| | - Yusuke Koide
- Otorhinolaryngology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Aichi, Japan
| | - Yasuhiro Kodera
- Department of Surgery II, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Aichi, Japan
| | - Maki Tanaka
- Takara Bio Inc., 7-4-38, Nojihigashi, Kusatsu 525-0058, Shiga, Japan
| | - Hideki Kasuya
- Department of Surgery II, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Aichi, Japan
- Cancer Immune Therapy Research Center, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Aichi, Japan
- Corresponding author: Hideki Kasuya, MD, PhD, FACS, Department of Surgery II, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Aichi, Japan.
| |
Collapse
|
7
|
Torrecilla J, Del Pozo-Rodríguez A, Vicente-Pascual M, Solinís MÁ, Rodríguez-Gascón A. Targeting corneal inflammation by gene therapy: Emerging strategies for keratitis. Exp Eye Res 2018; 176:130-140. [PMID: 29981344 DOI: 10.1016/j.exer.2018.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/14/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023]
Abstract
Inflammation is the underlying process of several diseases within the eye, specifically in the cornea. Current treatment options for corneal inflammation or keratitis, and related neovascularization, are restricted by limited efficacy, adverse effects, and short duration of action. Gene therapy has shown great potential for the treatment of diseases affecting the ocular surface, and major efforts are being targeted to inflammatory mediators and neovascularization, in order to develop potential treatments for corneal inflammation. Gene therapy to treat ocular disorders is still starting, and current therapies are primarily experimental, with most human clinical trials still in research state, although some of them have already shown encouraging results. In this review, we focus on the progress and challenges of gene therapy to treat corneal inflammation. After introducing the inflammation process, we present the main nucleic acid delivery systems, including viral and non-viral vectors, and the most studied strategies to address the therapy: control of neovascularization and regulation of pro- and anti-inflammatory cytokines.
Collapse
Affiliation(s)
- Josune Torrecilla
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz, Spain
| | - Ana Del Pozo-Rodríguez
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz, Spain
| | - Mónica Vicente-Pascual
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz, Spain
| | - María Ángeles Solinís
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz, Spain
| | - Alicia Rodríguez-Gascón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz, Spain.
| |
Collapse
|
8
|
Han Y, Shen M, Tang LY, Tan G, Yang QC, Ye L, Ye LH, Jiang N, Gao GP, Shao Y. Antiangiogenic effects of catalpol on rat corneal neovascularization. Mol Med Rep 2017; 17:2187-2194. [PMID: 29207076 PMCID: PMC5783469 DOI: 10.3892/mmr.2017.8114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/11/2017] [Indexed: 02/07/2023] Open
Abstract
To investigate the effects of catalpol on corneal neovascularization (CNV) and associated inflammation, eye drops (5 mM catalpol or PBS) were administered four times daily to alkali-burn rat models of CNV and inflammation. Clinical evaluations of CNV and the degree of inflammation were performed on days 0, 4, 7, 10 and 14 under slit lamp microscopy. Eyes were collected on day 14 and prepared for hematoxylin and eosin, and immunofluorescence staining; corneal cell apoptosis was investigated via terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) staining. Protein expression levels of angiogenic and proinflammatory factors, including vascular endothelial growth factor (VEGF), pigment epithelium-derived factor (PEDF), tumor necrosis factor-α (TNF-α) and necrosis factor-κB (NF-κB) were determined by western blotting. The effects of catalpol on cell proliferation were investigated in vitro using human umbilical vein endothelial cells (HUVECs) and a Cell Counting kit-8 (CCK-8); alterations in migration and tube formation were investigated via HUVEC wound closure and tube formation assays. HUVEC viability and proliferative ability were inhibited in a dose-dependent manner; catalpol also decreased HUVEC cell migration and tube forming ability. Within alkali-burn rat models, decreased inflammation and CNV was associated with catalpol administration; as demonstrated with TUNEL, corneal cell apoptosis was decreased in response to catalpol. Western blot analysis revealed reduced protein expression levels of VEGF and TNF-α; however, PEDF and phosphorylated-NF-κB p65 were increased due to catalpol administration. The present study demonstrated the inhibitory effects exerted by catalpol on CNV and inflammation within alkali-burned rat models. Topical application of catalpol in vivo was associated with reduced CNV and inflammation; therefore, catalpol may be considered an anti-inflammatory agent for the clinical treatment of CNV.
Collapse
Affiliation(s)
- Yun Han
- Eye Institute of Xiamen University, Medical College of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian 361102, P.R. China
| | - Mei Shen
- Eye Institute of Xiamen University, Medical College of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian 361102, P.R. China
| | - Li-Yuan Tang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Gang Tan
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Qi-Chen Yang
- Eye Institute of Xiamen University, Medical College of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian 361102, P.R. China
| | - Lei Ye
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lin-Hong Ye
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Nan Jiang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Gui-Ping Gao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
9
|
Huang X, Han Y, Shao Y, Yi JL. Efficacy of the nucleotide-binding oligomerzation domain 1 inhibitor Nodinhibit-1 on corneal alkali burns in rats. Int J Ophthalmol 2015; 8:860-5. [PMID: 26558192 DOI: 10.3980/j.issn.2222-3959.2015.05.02] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 03/10/2015] [Indexed: 12/17/2022] Open
Abstract
AIM To evaluate the therapeutic effect of Nodinhibit-1 on alkali-burn-induced corneal neovascularization (CNV) and inflammation. The nucleotide-binding oligomerzation domain 1 (NOD1) is a potent angiogenic gene. METHODS The alkali-burned rat corneas (32 right eyes) were treated with eye drops containing Nodinhibit-1 or phosphate buffered solution (PBS, PH 7.4) only, four times per day. CNV and inflammation were monitored using slit lamp microscopy, and the area of CNV was measured by formula. Vascular endothelial growth factor (VEGF) and pigment epithelium-derived factor (PEDF) was determined by Western blot analysis. The TUNEL assay was used to assess the corneal apoptosis cells. RESULTS Alkali-burn-induced progressive CNV and inflammation in the cornea. After treatment for 7d and 14d, there were statistically significant differences in the CNV areas and inflammatory index on that between two group(P<0.05, respectively). Epithelial defect quantification showed a significant difference between the two groups at days 4 and 7 after the alkali burns (P<0.05). The apoptotic cells on days 1, 4, and 7 between the two groups showed significant differences at all time points (P<0.05, respectively). Compared to that in control group, the protein level of VEGF expression was significantly reduced whereas the PEDF expression was increase in the Nodinhibit-1 groups on day 14 (P<0.05, respectively). CONCLUSION Topical application of 10.0 µg/mL Nodinhibit-1 may have potential effect for the alkali burn-induced CNV and inflammation. The effect of Nodinhibit-1 on CNV may be by regulation the equilibrium of VEGF and PEDF in the wounded cornea.
Collapse
Affiliation(s)
- Xu Huang
- Affiliated Eye Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yun Han
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, Xiamen 361102, Fujian Province, China
| | - Yi Shao
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Jing-Lin Yi
- Affiliated Eye Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
10
|
Tan G, Kasuya H, Sahin TT, Yamamura K, Wu Z, Koide Y, Hotta Y, Shikano T, Yamada S, Kanzaki A, Fujii T, Sugimoto H, Nomoto S, Nishikawa Y, Tanaka M, Tsurumaru N, Kuwahara T, Fukuda S, Ichinose T, Kikumori T, Takeda S, Nakao A, Kodera Y. Combination therapy of oncolytic herpes simplex virus HF10 and bevacizumab against experimental model of human breast carcinoma xenograft. Int J Cancer 2014; 136:1718-30. [PMID: 25156870 DOI: 10.1002/ijc.29163] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 08/15/2014] [Accepted: 08/19/2014] [Indexed: 02/05/2023]
Abstract
Breast cancer is one of the most common and feared cancers faced by women. The prognosis of patients with advanced or recurrent breast cancer remains poor despite refinements in multimodality therapies involving chemotherapeutic and hormonal agents. Multimodal therapy with more specific and effective strategy is urgently needed. The oncolytic herpes simplex virus (HSV) has potential to become a new effective treatment option because of its broad host range and tumor selective viral distribution. Bevacizumab is a monoclonal antibody against VEGFA, which inhibits angiogenesis and therefore tumor growth. Our approach to enhance the antitumor effect of the oncolytic HSV is to combine oncolytic HSV HF10 and bevacizumab in the treatment of breast cancer. Our results showed that bevacizumab enhanced viral distribution as well as tumor hypoxia and expanded the population of apoptotic cells and therefore induced a synergistic antitumor effect. HF10 is expected to be a promising agent in combination with bevacizumab in the anticancer treatment.
Collapse
Affiliation(s)
- Gewen Tan
- Department of Surgery II, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Park PJ, Chang M, Garg N, Zhu J, Chang JH, Shukla D. Corneal lymphangiogenesis in herpetic stromal keratitis. Surv Ophthalmol 2014; 60:60-71. [PMID: 25444520 DOI: 10.1016/j.survophthal.2014.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 05/23/2014] [Accepted: 06/04/2014] [Indexed: 12/26/2022]
Abstract
Corneal lymphangiogenesis is the extension of lymphatic vessels into the normally alymphatic cornea, a process that compromises the cornea's immune-privileged state and facilitates herpetic stromal keratitis (HSK). HSK results most commonly from infection by herpes simplex virus-1 (HSV-1) and is characterized by immune- and inflammation-mediated damage to the deep layers of the cornea. Current research demonstrates the potential of anti-lymphangiogenic therapy to decrease and prevent herpes-induced lymphangiogenesis.
Collapse
Affiliation(s)
- Paul J Park
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Michael Chang
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Nitin Garg
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jimmy Zhu
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA; Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA; Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA; Department Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA.
| |
Collapse
|
12
|
Rolfsen ML, Frisard NE, Stern EM, Foster TP, Bhattacharjee PS, McFerrin Jr HE, Clement C, Rodriguez PC, Lukiw WJ, Bergsma DR, Ochoa AC, Hill JM. Corneal neovascularization: a review of the molecular biology and current therapies. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.13.8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
13
|
Yamamura K, Kasuya H, Sahin TT, Tan G, Hotta Y, Tsurumaru N, Fukuda S, Kanda M, Kobayashi D, Tanaka C, Yamada S, Nakayama G, Fujii T, Sugimoto H, Koike M, Nomoto S, Fujiwara M, Tanaka M, Kodera Y. Combination treatment of human pancreatic cancer xenograft models with the epidermal growth factor receptor tyrosine kinase inhibitor erlotinib and oncolytic herpes simplex virus HF10. Ann Surg Oncol 2013; 21:691-8. [PMID: 24170435 DOI: 10.1245/s10434-013-3329-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Indexed: 02/05/2023]
Abstract
BACKGROUND There is the potential to use replication-competent oncolytic viruses to treat cancer. We evaluated the efficacy of HF10, a herpes simplex virus type 1 (HSV-1) mutant, in combination with erlotinib, an epidermal growth factor receptor tyrosine kinase inhibitor, in human pancreatic cancer xenograft models. METHODS The viability of human pancreatic cancer cell lines (BxPC-3 and PANC-1) treated with HF10 and erlotinib, on their own or in combination, was determined. Effects of erlotinib on HF10 entry into tumor cells were also investigated. BxPC-3 subcutaneous tumor-bearing mice were treated with HF10 and erlotinib, on their own or in combination, with effects on tumor volume determined. Immunohistochemical examination of HSV-1 and CD31 was conducted to assess virus distribution and angiogenesis within tumors. A peritoneally disseminated BxPC-3 xenograft model was evaluated for survival. RESULTS HF10 combined with erlotinib demonstrated the highest cytotoxicity against BxPC-3. A combination effect was not observed in PANC-1 cells, and erlotinib did not affect virus entry into tumor cells. In the peritoneally disseminated model, HF10 combined with erlotinib had no beneficial effect on survival. In the subcutaneous tumor model, combination therapy resulted in the inhibition of tumor growth to a greater extent than using each agent on its own. Immunohistochemistry revealed that virus distribution within the tumor persisted in the combination therapy group. CONCLUSIONS Combination therapy with HF10 and erlotinib warrants further investigation to establish a new treatment strategy against human pancreatic cancers.
Collapse
Affiliation(s)
- Kazuo Yamamura
- Department of Surgery II, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
In herpetic stromal keratitis (HSK), herpes simplex virus type-1 DNA fragments and herpes simplex virus-immunoglobulin G immune complexes are present in corneas long after the infective virus has disappeared. These viral components are highly immunogenic and potentiate the production of proinflammatory cytokines and chemokines via Toll-like receptors expressed on corneal cells and macrophages. In addition, angiogenic factors, such as the vascular endothelium growth factor and the tissue-damaging enzyme, matrix metalloproteinase 9, are induced by corneal cells and macrophages through the recognition of these viral components in the pathogenesis of HSK. Upon neovascularization, robust infiltration of leukocytes via leaky new vessels is elicited. Activated polymorphonuclear leukocytes (PMNs) secrete hydrogen peroxide and myeloperoxidase, which inhibit viral growth. PMNs also produce tumor necrosis factor, monokine-induced by interferon-γ (CXCL9), and nitric oxide. These factors provide a local environment that can induce the differentiation of peripheral CD4* T cells to induce Th1-predominant immunopathology. Thus, strategies developed to alter these pathways should lead to new preventative and therapeutic measures for the treatment of HSK.
Collapse
|
15
|
El Hayderi L, Paurobally D, Fassotte MF, André J, Arrese JE, Sadzot-Delvaux C, Ruebben A, Nikkels AF. Herpes simplex virus type-I and pyogenic granuloma: a vascular endothelial growth factor-mediated association? Case Rep Dermatol 2013; 5:236-43. [PMID: 24019777 PMCID: PMC3764972 DOI: 10.1159/000354570] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Pyogenic granuloma (PG) is a vascular endothelial growth factor (VEGF)-related neoangiogenic process. Minor trauma, chronic irritation, certain drugs and pregnancy may favor PG. Viral triggers have not been reported up to date. A 52-year-old woman with hairy-cell leukemia presented because of a 3-month history of a giant pseudotumoral lesion on her left cheek. All prior antibacterial, antifungal and anti-inflammatory treatments had failed. Histology revealed PG with sparse and isolated epithelial cell aggregates. Immunohistochemistry (IHC) identified herpes simplex virus type-I (HSV-I) antigens in the nuclei and cytoplasm of normal-appearing as well as cytopathic epithelial cells, suggesting a chronic, low-productive HSV infection. No HSV-I signal was evidenced in the endothelial cells of the PG. Furthermore, IHC revealed VEGF in the HSV-I infected epithelial cells as well as within the PG endothelial cells. These results incited oral treatment with valaciclovir, and the PG promptly resolved after 2 weeks. These findings suggest that a chronic HSV-I infection might play an indirect, partial role in neoangiogenesis, presumably via HSV-I infection-related stimulation of keratinocytic VEGF production.
Collapse
Affiliation(s)
- L El Hayderi
- Department of Dermatology, CHU of Sart Tilman, University of Liège, Liège, Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Machado GF, Bernardi F, Hosomi FYM, Peiró JR, Weiblen R, Roehe PM, Alessi AC, Melo GD, Ramos AT, Maiorka PC. Bovine herpesvirus-5 infection in a rabbit experimental model: immunohistochemical study of the cellular response in the CNS. Microb Pathog 2013; 57:10-6. [PMID: 23375887 DOI: 10.1016/j.micpath.2013.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 12/05/2012] [Accepted: 01/10/2013] [Indexed: 10/27/2022]
Abstract
Since little information is available regarding cellular antigen mapping and the involvement of non-neuronal cells in the pathogenesis of bovine herpesvirus type 5 (BHV-5) infection, it were determined the BHV-5 distribution, the astrocytic reactivity, the involvement of lymphocytes and the presence of matrix metalloproteinase (MMP)-9 in the brain of rabbits experimentally infected with BHV-5. Twelve New Zealand rabbits that were seronegative for BHV-5 were used for virus inoculation, and five rabbits were used as mock-infected controls. The rabbits were kept in separate areas and were inoculated intranasally with 500 μl of virus suspension (EVI 88 Brazilian isolate) into each nostril (virus titer, 10(7.5) TCID50). Control rabbits were inoculated with the same volume of minimum essential medium. Five days before virus inoculation, the rabbits were submitted to daily administration of dexamethasone. After virus inoculation, the rabbits were monitored clinically on a daily basis. Seven rabbits showed respiratory symptoms and four animals exhibited neurological symptoms. Tissue sections were collected for histological examination and immunohistochemistry to examine BHV-5 antigens, astrocytes, T and B lymphocytes and MMP-9. By means of immunohistochemical and PCR methods, BHV-5 was detected in the entire brain of the animals which presented with neurological symptoms, especially in the trigeminal ganglion and cerebral cortices. Furthermore, BHV-5 antigens were detected in neurons and/or other non-neural cells. In addition to the neurons, most infiltrating CD3 T lymphocytes observed in these areas were positive for MMP-9 and also for BHV-5 antigen. These infected cells might contribute to the spread of the virus to the rabbit brain along the trigeminal ganglia and olfactory nerve pathways.
Collapse
Affiliation(s)
- Gisele F Machado
- UNESP - Univ Estadual Paulista, Faculdade de Medicina Veterinária, Departamento de Clínica, Cirurgia e Reprodução Animal, Araçatuba, SP, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hayashi K, Hooper LC, Okuno T, Takada Y, Hooks JJ. Inhibition of HSV-1 by chemoattracted neutrophils: supernatants of corneal epithelial cells (HCE) and macrophages (THP-1) treated with virus components chemoattract neutrophils (PMN), and supernatants of PMN treated with these conditioned media inhibit viral growth. Arch Virol 2012; 157:1377-81. [PMID: 22527863 PMCID: PMC3384783 DOI: 10.1007/s00705-012-1306-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/10/2012] [Indexed: 01/06/2023]
Abstract
The role of PMNs (neutrophils) in corneal herpes was studied using an in vitro system. Human corneal cells (HCE) and macrophages (THP-1) infected with HSV-1 or treated with virus components (DNA or virus immune complexes) released chemokines, which attracted PMNs. Highly reactive oxygen species were detected in PMNs. PMNs inhibited HSV when overlaid onto infected HCE cells (50:1). PMNs incubated with the supernatants of HCE cells treated with virus components released H2O2 and myeloperoxidase. These inhibited virus growth. PMNs released NO and MIG, which may differentiate CD4 T cells to Th1. PMNs participate in innate immune responses, limit virus growth, and initiate immunopathology.
Collapse
Affiliation(s)
- Kozaburo Hayashi
- Immunology and Virology Section, Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
19
|
Labetoulle M, Colin J. Aspects actuels du traitement des kératites herpétiques. J Fr Ophtalmol 2012; 35:292-307. [DOI: 10.1016/j.jfo.2011.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 09/26/2011] [Accepted: 10/05/2011] [Indexed: 01/18/2023]
|
20
|
Altenburger AE, Bachmann B, Seitz B, Cursiefen C. Morphometric analysis of postoperative corneal neovascularization after high-risk keratoplasty: herpetic versus non-herpetic disease. Graefes Arch Clin Exp Ophthalmol 2012; 250:1663-71. [DOI: 10.1007/s00417-012-1988-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 01/30/2012] [Accepted: 02/27/2012] [Indexed: 10/28/2022] Open
|
21
|
Sahin TT, Kasuya H, Nomura N, Shikano T, Yamamura K, Gewen T, Kanzaki A, Fujii T, Sugae T, Imai T, Nomoto S, Takeda S, Sugimoto H, Kikumori T, Kodera Y, Nishiyama Y, Nakao A. Impact of novel oncolytic virus HF10 on cellular components of the tumor microenviroment in patients with recurrent breast cancer. Cancer Gene Ther 2011; 19:229-37. [PMID: 22193629 DOI: 10.1038/cgt.2011.80] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Oncolytic viruses are a promising method of cancer therapy, even for advanced malignancies. HF10, a spontaneously mutated herpes simplex type 1, is a potent oncolytic agent. The interaction of oncolytic herpes viruses with the tumor microenvironment has not been well characterized. We injected HF10 into tumors of patients with recurrent breast carcinoma, and sought to determine its effects on the tumor microenvironment. Six patients with recurrent breast cancer were recruited to the study. Tumors were divided into two groups: saline-injected (control) and HF10-injected (treatment). We investigated several parameters including neovascularization (CD31) and tumor lymphocyte infiltration (CD8, CD4), determined by immunohistochemistry, and apoptosis, determined by terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Median apoptotic cell count was lower in the treatment group (P=0.016). Angiogenesis was significantly higher in treatment group (P=0.032). Count of CD8-positive lymphocytes infiltrating the tumors was higher in the treatment group (P=0.008). We were unable to determine CD4-positive lymphocyte infiltration. An effective oncolytic viral agent must replicate efficiently in tumor cells, leading to higher viral counts, in order to aid viral penetration. HF10 seems to meet this criterion; furthermore, it induces potent antitumor immunity. The increase in angiogenesis may be due to either viral replication or the inflammatory response.
Collapse
Affiliation(s)
- T T Sahin
- Department of Surgery II, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Toll-like receptor 2 induced angiogenesis and invasion is mediated through the Tie2 signalling pathway in rheumatoid arthritis. PLoS One 2011; 6:e23540. [PMID: 21858161 PMCID: PMC3157402 DOI: 10.1371/journal.pone.0023540] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 07/20/2011] [Indexed: 12/16/2022] Open
Abstract
Background Angiogenesis is a critical early event in inflammatory arthritis, facilitating leukocyte migration into the synovium resulting in invasion and destruction of articular cartilage and bone. This study investigates the effect of TLR2 on angiogenesis, EC adhesion and invasion using microvascular endothelial cells and RA whole tissue synovial explants ex-vivo. Methods Microvascular endothelial cells (HMVEC) and RA synovial explants ex vivo were cultured with the TLR2 ligand, Pam3CSK4 (1 µg/ml). Angiopoietin 2 (Ang2), Tie2 and TLR2 expression in RA synovial tissue was assessed by immunohistology. HMVEC tube formation was assessed using Matrigel matrix assays. Ang2 was measured by ELISA. ICAM-1 cell surface expression was assessed by flow cytometry. Cell migration was assessed by wound repair scratch assays. ECM invasion, MMP-2 and -9 expression were assessed using transwell invasion chambers and zymography. To examine if the angiopoietin/Tie2 signalling pathway mediates TLR2 induced EC tube formation, invasion and migration assays were performed in the presence of a specific neutralising anti-Tie2mAb (10 ug/ml) and matched IgG isotype control Ab (10 ug/ml). Results Ang2 and Tie2 were localised to RA synovial blood vessels, and TLR2 was localised to RA synovial blood vessels, sub-lining infiltrates and the lining layer. Pam3CSK4 significantly increased angiogenenic tube formation (p<0.05), and upregulated Ang2 production in HMVEC (p<0.05) and RA synovial explants (p<0.05). Pam3CSK4 induced cell surface expression of ICAM-1, from basal level of 149±54 (MFI) to 617±103 (p<0.01). TLR-2 activation induced an 8.8±2.8 fold increase in cell invasion compared to control (p<0.05). Pam3CSK4 also induced HMVEC cell migration and induced MMP-2 and -9 from RA synovial explants. Neutralisation of the Ang2 receptor, Tie2 significantly inhibited Pam3CSK4-induced EC tube formation and invasion (p<0.05). Conclusion TLR2 activation promotes angiogenesis, cell adhesion and invasion, effects that are in part mediated through the Tie2 signalling pathway, key mechanisms involved in the pathogenesis of RA.
Collapse
|
23
|
Sharma C, Velpandian T, Baskar Singh S, Ranjan Biswas N, Bihari Vajpayee R, Ghose S. Effect of fluoroquinolones on the expression of matrix metalloproteinase in debrided cornea of rats. Toxicol Mech Methods 2010; 21:6-12. [PMID: 21058936 DOI: 10.3109/15376516.2010.529183] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Matrix metalloproteinases (MMPs) are implicated in regenerative and healing processes in corneal injuries. Based upon reports that topical fluoroquinolones (FQs) may cause perforations during corneal healing by modulating MMPs, this study evaluated the comparative effects of commercially available FQs eye drops on the expression of MMP-2 and MMP-9 in the cornea after ethanol injury. Uniform corneal epithelial defects were created using 70% ethanol in the right eye of the rats (n = 6). The groups studied were (I) sham, (II) normal saline with benzalkonium chloride (NS-BKC), (III) norfloxacin 0.3%, (IV) ciprofloxacin 0.3%, (V) lomefloxacin 0.3%, (VI) sparfloxacin 0.3%, (VII) gatifloxacin 0.3%, and (VIII) moxifloxacin 0.5%. Each treatment was instilled six times/day up to 48 h and rats were sacrificed using excess of anesthesia. The corneas were excised to study the expression of MMP-2 and MMP-9 using gelatin zymography and real-time PCR. All the FQs significantly increased the expression of MMP-2 and MMP-9 as compared to the sham and NS-BKC-treated group. NS-BKC did not show a significant effect on MMPs expression compared to the sham group. Among the studied FQs, ciprofloxacin was observed to exhibit maximal induction of MMP-2 and MMP-9, whereas lomefloxacin exhibited an equivocal effect on both MMP-2 and MMP-9 expression. Findings of the present study demonstrate that topical application of FQs may induce the expression of MMP-2 and MMP-9 in debrided corneal epithelium and, therefore, may delay corneal wound healing. Thus, it can be concluded that selecting a FQ for ophthalmic use having minimal effect on MMPs may impact wound healing in injured or vulnerable cornea.
Collapse
Affiliation(s)
- Charu Sharma
- Department of Ocular Pharmacology and Pharmacy, Dr R P Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | | | |
Collapse
|
24
|
Cardoso TC, Ferrari HF, Garcia AF, Bregano LC, Andrade AL, Nogueira AH. Immunohistochemical approach to the pathogenesis of clinical cases of bovine Herpesvirus type 5 infections. Diagn Pathol 2010; 5:57. [PMID: 20831786 PMCID: PMC2945982 DOI: 10.1186/1746-1596-5-57] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 09/10/2010] [Indexed: 11/10/2022] Open
Abstract
Meningoencephalitis by Herpesvirus type 5 (BoHV-5) in cattle has some features that are similar to those of herpetic encephalitis in humans and other animal species. Human Herpesvirus 3 (commonly known as Varicella-zoster virus 1), herpes simplex viruses (HSV), and equid Herpesvirus 1 (EHV-1) induce an intense inflammatory, vascular and cellular response. In spite of the many reports describing the histological lesions associated with natural and experimental infections, the immunopathological mechanisms for the development of neurological disorder have not been established. A total of twenty calf brains were selected from the Veterinary School, University of São Paulo State, Araçatuba, Brazil, after confirmation of BoHV-5 infection by virus isolation as well as by a molecular approach. The first part of the study characterized the microscopic lesions associated with the brain areas in the central nervous system (CNS) that tested positive in a viral US9 gene hybridization assay. The frontal cortex (Fc), parietal cortex (Pc), thalamus (T) and mesencephalon (M) were studied. Secondly, distinct pathogenesis mechanisms that take place in acute cases were investigated by an immunohistochemistry assay. This study found the frontal cortex to be the main region where intense oxidative stress phenomena (AOP-1) and synaptic protein expression (SNAP-25) were closely related to inflammatory cuffs, satellitosis and gliosis, which represent the most frequently observed neurological lesions. Moreover, MMP-9 expression was shown to be localized in the leptomeninges, in the parenchyma and around mononuclear infiltrates (p < 0.0001). These data open a new perspective in understanding the role of the AOP-1, MMP-9 and SNAP-25 proteins in mediating BoHV-5 pathogenesis and the strategies of host-virus interaction in order to invade the CNS.
Collapse
Affiliation(s)
- Tereza C Cardoso
- Department of DCCA and DCCRA, Veterinary School, Laboratory of Virology, Clovis Pestana Street, Araçatuba, 16,050-680, Brazil.
| | | | | | | | | | | |
Collapse
|
25
|
Lee JY, Song JJ, Wooming A, Li X, Zhou H, Bottje WG, Kong BW. Transcriptional profiling of host gene expression in chicken embryo lung cells infected with laryngotracheitis virus. BMC Genomics 2010; 11:445. [PMID: 20663125 PMCID: PMC3091642 DOI: 10.1186/1471-2164-11-445] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Accepted: 07/21/2010] [Indexed: 01/04/2023] Open
Abstract
Background Infection by infectious laryngotracheitis virus (ILTV; gallid herpesvirus 1) causes acute respiratory diseases in chickens often with high mortality. To better understand host-ILTV interactions at the host transcriptional level, a microarray analysis was performed using 4 × 44 K Agilent chicken custom oligo microarrays. Results Microarrays were hybridized using the two color hybridization method with total RNA extracted from ILTV infected chicken embryo lung cells at 0, 1, 3, 5, and 7 days post infection (dpi). Results showed that 789 genes were differentially expressed in response to ILTV infection that include genes involved in the immune system (cytokines, chemokines, MHC, and NF-κB), cell cycle regulation (cyclin B2, CDK1, and CKI3), matrix metalloproteinases (MMPs) and cellular metabolism. Differential expression for 20 out of 789 genes were confirmed by quantitative reverse transcription-PCR (qRT-PCR). A bioinformatics tool (Ingenuity Pathway Analysis) used to analyze biological functions and pathways on the group of 789 differentially expressed genes revealed that 21 possible gene networks with intermolecular connections among 275 functionally identified genes. These 275 genes were classified into a number of functional groups that included cancer, genetic disorder, cellular growth and proliferation, and cell death. Conclusion The results of this study provide comprehensive knowledge on global gene expression, and biological functionalities of differentially expressed genes in chicken embryo lung cells in response to ILTV infections.
Collapse
Affiliation(s)
- Jeong Yoon Lee
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
In this article, we provide the results of experimental studies demonstrating that corneal avascularity is an active process involving the production of anti-angiogenic factors, which counterbalance the pro-angiogenic/lymphangiogenic factors that are upregulated during wound healing. We also summarize pertinent published reports regarding corneal neovascularization (NV), corneal lymphangiogenesis and corneal angiogenic/lymphangiogenic privilege. We outline the clinical causes of corneal NV, and discuss the angiogenic proteins (VEGF and bFGF) and angiogenesis regulatory proteins. We also describe the role of matrix metalloproteinases MMP-2, -7, and MT1-MMP, anti-angiogenic factors, and lymphangiogenic regulatory proteins during corneal wound healing. Established and potential new therapies for the treatment of corneal neovascularization are also discussed.
Collapse
|