1
|
Weiss CM, Liu H, Ball EE, Hoover AR, Wong TS, Wong CF, Lam S, Hode T, Keel MK, Levenson RM, Chen WR, Coffey LL. N-dihydrogalactochitosan reduces mortality in a lethal mouse model of SARS-CoV-2. PLoS One 2023; 18:e0289139. [PMID: 37552656 PMCID: PMC10409267 DOI: 10.1371/journal.pone.0289139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/11/2023] [Indexed: 08/10/2023] Open
Abstract
The rapid emergence and global dissemination of SARS-CoV-2 that causes COVID-19 continues to cause an unprecedented global health burden resulting in nearly 7 million deaths. While multiple vaccine countermeasures have been approved for emergency use, additional treatments are still needed due to sluggish vaccine rollout, vaccine hesitancy, and inefficient vaccine-mediated protection. Immunoadjuvant compounds delivered intranasally can guide non-specific innate immune responses during the critical early stages of viral replication, reducing morbidity and mortality. N-dihydrogalactochitosan (GC) is a novel mucoadhesive immunostimulatory polymer of β-0-4-linked N-acetylglucosamine that is solubilized by the conjugation of galactose glycans with current applications as a cancer immunotherapeutic. We tested GC as a potential countermeasure for COVID-19. GC was well-tolerated and did not produce histopathologic lesions in the mouse lung. GC administered intranasally before and after SARS-CoV-2 exposure diminished morbidity and mortality in humanized ACE2 receptor expressing mice by up to 75% and reduced infectious virus levels in the upper airway. Fluorescent labeling of GC shows that it is confined to the lumen or superficial mucosa of the nasal cavity, without involvement of adjacent or deeper tissues. Our findings demonstrate a new application for soluble immunoadjuvants such as GC for preventing disease associated with SARS-CoV-2 and may be particularly attractive to persons who are needle-averse.
Collapse
Affiliation(s)
- Christopher M. Weiss
- Department of Pathology, Microbiology & Immunology, University of California, Davis, California, United States of America
| | - Hongwei Liu
- Department of Pathology, Microbiology & Immunology, University of California, Davis, California, United States of America
| | - Erin E. Ball
- Department of Pathology, Microbiology & Immunology, University of California, Davis, California, United States of America
| | - Ashley R. Hoover
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Talia S. Wong
- Department of Pathology, Microbiology & Immunology, University of California, Davis, California, United States of America
| | - Chun Fung Wong
- Immunophotonics, Inc., Saint Louis, Missouri, United States of America
| | - Samuel Lam
- Immunophotonics, Inc., Saint Louis, Missouri, United States of America
| | - Tomas Hode
- Immunophotonics, Inc., Saint Louis, Missouri, United States of America
| | - M. Kevin Keel
- Department of Pathology, Microbiology & Immunology, University of California, Davis, California, United States of America
| | - Richard M. Levenson
- Department of Pathology and Laboratory Medicine, UC Davis Health, Sacramento, California, United States of America
| | - Wei R. Chen
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Lark L. Coffey
- Department of Pathology, Microbiology & Immunology, University of California, Davis, California, United States of America
| |
Collapse
|
2
|
Feng H, Yang X, Zhang L, Liu Q, Feng Y, Wu D, Liu Y, Yang J. Mannose-Modified Chitosan Poly(lactic- co-glycolic acid) Microspheres Act as a Mannose Receptor-Mediated Delivery System Enhancing the Immune Response. Polymers (Basel) 2021; 13:polym13132208. [PMID: 34279352 PMCID: PMC8271610 DOI: 10.3390/polym13132208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 06/26/2021] [Accepted: 06/30/2021] [Indexed: 12/16/2022] Open
Abstract
The mannose receptor (MAN-R)-targeted delivery system is commonly used to deliver antigens to macrophages or immature dendritic cells (DCs) to promote the efficiency of antigen presentation. To maximize the enhancement effects of chitosan (CS) and induce an efficient humoral and cellular immune response against an antigen, we encapsulated ovalbumin (OVA) in poly(lactic-co-glycolic acid) (PLGA) microspheres (MPs) and conjugated it with MAN-modified CS to obtain MAN-R-targeting nano-MPs (MAN-CS-OVA-PLGA-MPs). The physicochemical properties, drug loading rate, and immunomodulation activity of MAN-CS-OVA-PLGA-MPs were evaluated. In vitro, MAN-CS-OVA-PLGA-MPs (80 μg mL−1) could enhance the proliferation of DCs and increase their phagocytic efficiency. In vivo, MAN-CS-OVA-PLGA-MPs significantly increased the ratio of CD3+CD4+/CD3+CD8+ T cells, increased CD80+, CD86+, and MHC II expression in DCs, and improved OVA-specific IgG, IgG1, IgG2a, and IgG2b antibodies. Moreover, MAN-CS-OVA-PLGA-MPs promoted cytokine (IFN-γ, IL-4, and IL-6) production in mice. Taken together, our results show that MAN-CS-OVA-PLGA-MPs may act by activating the T cells to initiate an immune response by promoting the maturation of dendritic cells and improving their antigen presentation efficiency. The current study provides a basis for the use of MAN-CS-OVA-PLGA-MPs as an antigen and adjuvant delivery system targeting the MAN-R on the surface of macrophages and dendritic cells.
Collapse
Affiliation(s)
- Haibo Feng
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (X.Y.); (L.Z.); (Q.L.); (Y.F.); (D.W.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
- Correspondence: ; Tel./Fax: +86-28-85522310
| | - Xiaonong Yang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (X.Y.); (L.Z.); (Q.L.); (Y.F.); (D.W.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Linzi Zhang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (X.Y.); (L.Z.); (Q.L.); (Y.F.); (D.W.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Qianqian Liu
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (X.Y.); (L.Z.); (Q.L.); (Y.F.); (D.W.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Yangyang Feng
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (X.Y.); (L.Z.); (Q.L.); (Y.F.); (D.W.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Daiyan Wu
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (X.Y.); (L.Z.); (Q.L.); (Y.F.); (D.W.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Yunjie Liu
- Department of Veterinary Medicine, Southwest University, Rongchang 402460, China; (Y.L.); (J.Y.)
| | - Jie Yang
- Department of Veterinary Medicine, Southwest University, Rongchang 402460, China; (Y.L.); (J.Y.)
| |
Collapse
|
3
|
Safarzadeh M, Sadeghi S, Azizi M, Rastegari-Pouyani M, Pouriran R, Haji Molla Hoseini M. Chitin and chitosan as tools to combat COVID-19: A triple approach. Int J Biol Macromol 2021; 183:235-244. [PMID: 33930442 PMCID: PMC8078037 DOI: 10.1016/j.ijbiomac.2021.04.157] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/21/2021] [Accepted: 04/25/2021] [Indexed: 12/18/2022]
Abstract
The progressive and fatal outbreak of the newly emerged coronavirus, SARS-CoV-2, necessitates rigorous collaboration of all health care systems and researchers from all around the world to bring such a devastating pandemic under control. As there is so far no officially approved drug or ideal vaccine for this disease, investigations on this infectious disease are actively pursued. Chitin and chitosan have shown promising results against viral infections. In this review, we first delve into the problematic consequences of viral pandemics followed by an introduction on SARS-CoV-2 taxonomical classification. Then, we elaborate on the immunology of COVID-19. Common antiviral therapies and their related limitations are described and finally, the potential applicability of chitin and chitosan to fight this overwhelming viral pandemic is addressed.
Collapse
Affiliation(s)
- Mehrnoush Safarzadeh
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Sadeghi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdieh Azizi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Rastegari-Pouyani
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Pouriran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Haji Molla Hoseini
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Luczo JM, Bousse T, Johnson SK, Jones CA, Pearce N, Neiswanger CA, Wang MX, Miller EA, Petrovsky N, Wentworth DE, Bronshtein V, Papania M, Tompkins SM. Intranasal powder live attenuated influenza vaccine is thermostable, immunogenic, and protective against homologous challenge in ferrets. NPJ Vaccines 2021; 6:59. [PMID: 33883559 PMCID: PMC8060263 DOI: 10.1038/s41541-021-00320-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/10/2021] [Indexed: 02/06/2023] Open
Abstract
Influenza viruses cause annual seasonal epidemics and sporadic pandemics; vaccination is the most effective countermeasure. Intranasal live attenuated influenza vaccines (LAIVs) are needle-free, mimic the natural route of infection, and elicit robust immunity. However, some LAIVs require reconstitution and cold-chain requirements restrict storage and distribution of all influenza vaccines. We generated a dry-powder, thermostable LAIV (T-LAIV) using Preservation by Vaporization technology and assessed the stability, immunogenicity, and efficacy of T-LAIV alone or combined with delta inulin adjuvant (Advax™) in ferrets. Stability assays demonstrated minimal loss of T-LAIV titer when stored at 25 °C for 1 year. Vaccination of ferrets with T-LAIV alone or with delta inulin adjuvant elicited mucosal antibody and robust serum HI responses in ferrets, and was protective against homologous challenge. These results suggest that the Preservation by Vaporization-generated dry-powder vaccines could be distributed without refrigeration and administered without reconstitution or injection. Given these significant advantages for vaccine distribution and delivery, further research is warranted.
Collapse
Affiliation(s)
- Jasmina M Luczo
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, Georgia, 30602, USA
| | - Tatiana Bousse
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Scott K Johnson
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| | - Cheryl A Jones
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| | - Nicholas Pearce
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Carlie A Neiswanger
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| | - Min-Xuan Wang
- Universal Stabilization Technologies, Inc., San Diego, California, USA
| | - Erin A Miller
- Universal Stabilization Technologies, Inc., San Diego, California, USA
| | - Nikolai Petrovsky
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Vaxine Pty Ltd, Warradale, South Australia, Australia
| | - David E Wentworth
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Victor Bronshtein
- Universal Stabilization Technologies, Inc., San Diego, California, USA
| | - Mark Papania
- Global Immunization Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Stephen M Tompkins
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA.
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, Georgia, 30602, USA.
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
5
|
Lampe AT, Farris EJ, Brown DM, Pannier AK. High- and low-molecular-weight chitosan act as adjuvants during single-dose influenza A virus protein vaccination through distinct mechanisms. Biotechnol Bioeng 2020; 118:1224-1243. [PMID: 33289090 PMCID: PMC7897297 DOI: 10.1002/bit.27647] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/20/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022]
Abstract
The investigation of new adjuvants is essential for the development of efficacious vaccines. Chitosan (CS), a derivative of chitin, has been shown to act as an adjuvant, improving vaccine-induced immune responses. However, the effect of CS molecular weight (MW) on this adjuvanticity has not been investigated, despite MW having been shown to impact CS biological properties. Here, two MW variants of CS were investigated for their ability to enhance vaccine-elicited immune responses in vitro and in vivo, using a single-dose influenza A virus (IAV) protein vaccine model. Both low-molecular-weight (LMW) and high-molecular-weight (HMW) CS-induced interferon regulatory factor pathway signaling, antigen-presenting cell activation, and cytokine messenger RNA (mRNA) production, with LMW inducing higher mRNA levels at 24 h and HMW elevating mRNA responses at 48 h. LMW and HMW CS also induced adaptive immune responses after vaccination, indicated by enhanced immunoglobulin G production in mice receiving LMW CS and increased CD4 interleukin 4 (IL-4) and IL-2 production in mice receiving HMW CS. Importantly, both LMW and HMW CS adjuvantation reduced morbidity following homologous IAV challenge. Taken together, these results support that LMW and HMW CS can act as adjuvants, although this protection may be mediated through distinct mechanisms based on CS MW.
Collapse
Affiliation(s)
- Anna T Lampe
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.,Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Eric J Farris
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Deborah M Brown
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.,Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.,Trudeau Institute, Saranac Lake, NY, USA
| | - Angela K Pannier
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
6
|
MiRNA Targeted NP Genome of Live Attenuated Influenza Vaccines Provide Cross-Protection against a Lethal Influenza Virus Infection. Vaccines (Basel) 2020; 8:vaccines8010065. [PMID: 32028575 PMCID: PMC7158662 DOI: 10.3390/vaccines8010065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 12/20/2022] Open
Abstract
The miRNA-based strategy has been used to develop live attenuated influenza vaccines. In this study, the nucleoprotein (NP) genome segment of the influenza virus was inserted by different perfect miRNA-192-5p target sites, and the virus was rescued by standard reverse genetics method, so as to verify the virulence and protective efficacy of live attenuated vaccine in cells and mice. The results showed there was no significant attenuation in 192t virus with one perfect miRNA-192-5p target site, and 192t-3 virus with three perfect miRNA target sites. However, 192t-6 virus with 6 perfect miRNA target sites and 192t-9 virus with 9 perfect miRNA target sites were both significantly attenuated after infection, and their virulence were similar to that of temperature-sensitive (TS) influenza A virus (IAV) which is a temperature-sensitive live attenuated influenza vaccine. Mice were immunized with different doses of 192t-6, 192t-9, and TS IAV. Four weeks after immunization, the IgG in serum and IgA in lung homogenate were increased in the 192t-6, 192t-9, and TS IAV groups, and the numbers of IFN-γ secreting splenocytes were also increased in a dose-dependent manner. Finally, 192t-6, and 192t-9 can protect the mice against the challenge of homologous PR8 H1N1 virus and heterosubtypic H3N2 influenza virus. MiRNA targeted viruses 192t-6 and 192t-9 were significantly attenuated and showed the same virulence as TS IAV and played a role in the cross-protection.
Collapse
|
7
|
Yang Y, Xing R, Liu S, Qin Y, Li K, Yu H, Li P. Chitosan, hydroxypropyltrimethyl ammonium chloride chitosan and sulfated chitosan nanoparticles as adjuvants for inactivated Newcastle disease vaccine. Carbohydr Polym 2019; 229:115423. [PMID: 31826462 DOI: 10.1016/j.carbpol.2019.115423] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/19/2019] [Accepted: 10/01/2019] [Indexed: 11/29/2022]
Abstract
Chitosan (CS) and its water-soluble derivatives, hydroxypropyltrimethyl ammonium chloride chitosan (HACC) and sulfated chitosan (SCS), were used as adjuvants of inactivated Newcastle disease (ND) vaccine. First, NDV-loaded and blank CS, HACC/CS and SCS nanoparticles were prepared. The particle sizes were respectively 343.43 ± 4.12, 320.03 ± 0.84, 156.2 ± 9.29 nm and the zeta potentials were respectively +19.67 ± 0.58, +18.3 ± 0.5, -17.8 ± 2.65 mV under the optimal conditions. Then chickens were immunized with nanoparticles or commercial inactivated oil emulsion vaccine. After immunization, the humoral immunity levels of the chickens were evaluated. The cellular immunity levels were determined by the quantification of cytokines, lymphocyte proliferation assay, the percentages of CD4+ and CD8+ T lymphocytes. Finally, the chickens were challenged with highly virulent virus. The results demonstrated that the humoral immunity levels in NDV-loaded CS and HACC/CS nanoparticles groups were lower than commercial vaccine but the cellular immunity levels are better. Moreover, the prevention effects of NDV-loaded CS and HACC/CS nanoparticles against highly virulent NDV are comparable to commercial vaccine. Our study provides the basis of developing HACC and CS as effective vaccine adjuvants.
Collapse
Affiliation(s)
- Yue Yang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ronge Xing
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao, 266237, China.
| | - Song Liu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao, 266237, China
| | - Yukun Qin
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao, 266237, China
| | - Kecheng Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao, 266237, China
| | - Huahua Yu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao, 266237, China
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao, 266237, China.
| |
Collapse
|
8
|
Immunomodulatory properties of chitosan polymers. Biomaterials 2018; 184:1-9. [DOI: 10.1016/j.biomaterials.2018.08.054] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/22/2018] [Accepted: 08/27/2018] [Indexed: 12/14/2022]
|
9
|
Limsatanun A, Sasipreeyajan J, Pakpinyo S. Chitosan-adjuvanted Mycoplasma gallisepticum bacterin via intraocular administration enhances Mycoplasma gallisepticum protection in commercial layers. Poult Sci 2018; 97:1934-1940. [PMID: 29462425 DOI: 10.3382/ps/pey051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/20/2018] [Indexed: 12/27/2022] Open
Abstract
Mycoplasma gallisepticum (MG) causes respiratory signs and economic losses in the poultry industry. MG vaccination is one of the effective prevention and control measures that have been used around the world. Our previous study demonstrated that chitosan-adjuvanted MG bacterin could effectively reduce pathological lesions induced by MG and that chitosan could be used as an adjuvant in MG bacterin. The present study determining the efficacy of MG bacterins against the Thai MG strain was based on vaccine programs. Seven groups (25 layers/group) were received MG bacterins containing 0.5% chitosan or a commercial bacterin via intramuscular (IM) or intraocular (IO) route at 6 and 10 wk of age. Sham-negative and sham-positive controls were groups 1 and 2, respectively. Group 3: IM route of chitosan bacterin followed by IM route of chitosan bacterin; group 4: commercial bacterin via IM route followed by chitosan bacterin via IO route; group 5: commercial bacterin via IM route followed by commercial bacterin via IM route; group 6: chitosan bacterin via IM followed by chitosan bacterin via IO route; and group 7: chitosan bacterin via IO route followed by chitosan bacterin via IO route were determined. At 16 wk of age, all groups, excluding group 1, were challenged intratracheally with 0.1 mL containing Thai MG strain 107 colony-forming unit. At 17, 18, and 20 wk of age, 5 birds in each group were bled for serological testing and swabbed at the choanal cleft for the quantitative real-time PCR assay, the euthanized and necropsied. The results showed that birds vaccinated with a commercial intramuscular bacterin followed by an intraocularly chitosan adjuvant bacterin showed the best protection against the MG challenge. The study indicated that chitosan could be the effective mucosal adjuvant and increased the effectiveness of MG bacterin.
Collapse
Affiliation(s)
- A Limsatanun
- Avian Health Research Unit, Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Patumwan, Bangkok 10330, Thailand
| | - J Sasipreeyajan
- Avian Health Research Unit, Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Patumwan, Bangkok 10330, Thailand
| | - S Pakpinyo
- Avian Health Research Unit, Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Patumwan, Bangkok 10330, Thailand
| |
Collapse
|
10
|
Limsatanun A, Sasipreeyajan J, Pakpinyo S. The Efficacy of Chitosan-Adjuvanted,Mycoplasma gallisepticumBacterin in Chickens. Avian Dis 2016; 60:799-804. [DOI: 10.1637/11437-051716-reg] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Wang X, Liu F, Jiang L, Bao Y, Xiao Y, Wang H. Use of chimeric influenza viruses as a novel internal control for diagnostic rRT-PCR assays. Appl Microbiol Biotechnol 2016; 100:1667-1676. [PMID: 26474983 PMCID: PMC7080162 DOI: 10.1007/s00253-015-7042-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/15/2015] [Accepted: 09/24/2015] [Indexed: 02/01/2023]
Abstract
Real-time quantitative reverse transcriptase polymerase chain reaction (rRT-PCR) is now widely used to detect viral pathogens in various human specimens. The application of internal controls to validate the entire process of these assays is necessary to prevent false-negative results caused by unexpected inhibition or inefficient extraction. In the present study, we describe a strategy to produce a stable internal control for rRT-PCR by packaging foreign RNA into influenza virions using plasmid-based reverse genetics technology. The envelope structure of influenza virus can effectively protect RNA segments from RNase digestion, which provides an advantage for its routine use as an internal control. Utilizing this approach, we successfully generated a recombinant influenza virus (rPR8-HCV) containing the 5′ untranslated region (5′ UTR) of the hepatitis C virus (HCV) RNA genome. After inactivation and purification, the rPR8-HCV particles were demonstrated to be RNase resistant and stable at 4 °C for at least 252 days in human plasma, with no degradation even after being frozen and thawed multiple times. These results were reproducible in the COBAS TaqMan HCV test for 164 days. Moreover, the chimeric influenza virus particles could be easily produced in embryonated eggs and were noninfectious after inactivation treatment. Additionally, this strategy could also be adapted for real-time clinical applications of other RNA targets, providing a universal approach with broad clinical applications in rRT-PCR assays.
Collapse
Affiliation(s)
- Xueliang Wang
- Shanghai Centre for Clinical Laboratory, 528 Hongshan Road, Shanghai, 200126, China
| | - Fen Liu
- Shanghai Institute of Biological Products, 1262 West Yanan Road, Shanghai, 200052, China
| | - Lingli Jiang
- Shanghai Centre for Clinical Laboratory, 528 Hongshan Road, Shanghai, 200126, China
| | - Yun Bao
- Shanghai Centre for Clinical Laboratory, 528 Hongshan Road, Shanghai, 200126, China
| | - Yanqun Xiao
- Shanghai Centre for Clinical Laboratory, 528 Hongshan Road, Shanghai, 200126, China
| | - Hualiang Wang
- Shanghai Centre for Clinical Laboratory, 528 Hongshan Road, Shanghai, 200126, China.
| |
Collapse
|
12
|
Chua BY, Sekiya T, Al Kobaisi M, Short KR, Mainwaring DE, Jackson DC. A single dose biodegradable vaccine depot that induces persistently high levels of antibody over a year. Biomaterials 2015; 53:50-7. [DOI: 10.1016/j.biomaterials.2015.02.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/11/2015] [Accepted: 02/13/2015] [Indexed: 12/22/2022]
|
13
|
Vasiliev YM. Chitosan-based vaccine adjuvants: incomplete characterization complicates preclinical and clinical evaluation. Expert Rev Vaccines 2014; 14:37-53. [PMID: 25262982 DOI: 10.1586/14760584.2015.956729] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A number of preclinical and clinical studies with chitosan-adjuvanted antigen- and DNA-based vaccines have been carried out. Various chitosans and their modifications, in different forms (solutions, powders, gels and particles), have been evaluated with various antigens administered via different routes. Chitosan is a generic name for a wide array of glucosamine-based substances derived from biological sources, and standardization is necessary. However, in most of the studies published to date, molecular weight, viscosity, deacetylation degree and/or purity level (especially endotoxins) are not provided for the initial chitosan substance and/or final formulation and the preparation procedure is not detailed. Evaluation of adjuvant properties is challenging, given that the only available data are insufficient to demonstrate immunogenicity for chitosans with characteristics within certain intervals to elucidate mechanisms of action or to exclude impurities as the active substance. These and other issues of chitosan-based vaccine adjuvants are summarized and a step-by-step evaluation approach for chitosan-based vaccine adjuvants is outlined.
Collapse
Affiliation(s)
- Yuri M Vasiliev
- Mechnikov Research Institute of Vaccines and Sera, M. Kazeny lane, 5a, Moscow, 105064, Russian Federation
| |
Collapse
|
14
|
Pérez-Girón JV, Belicha-Villanueva A, Hassan E, Gómez-Medina S, Cruz JLG, Lüdtke A, Ruibal P, Albrecht RA, García-Sastre A, Muñoz-Fontela C. Mucosal polyinosinic-polycytidylic acid improves protection elicited by replicating influenza vaccines via enhanced dendritic cell function and T cell immunity. THE JOURNAL OF IMMUNOLOGY 2014; 193:1324-32. [PMID: 24958904 DOI: 10.4049/jimmunol.1400222] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Live-attenuated influenza vaccines (LAIVs) have the potential to generate CD8 T cell immunity that may limit the virulence of an antigenically shifted influenza strain in a population lacking protective Abs. However, current LAIVs exert limited T cell immunity restricted to the vaccine strains. One approach to improve LAIV-induced T cell responses is the use of specific adjuvants to enhance T cell priming by respiratory dendritic cells, but this hypothesis has not been addressed. In this study, we assessed the effect of the TLR3 ligand polyinosinic-polycytidylic acid (poly IC) on CD8 T cell immunity and protection elicited by LAIVs. Mucosal treatment with poly IC shortly after vaccination enhanced respiratory dendritic cell function, CD8 T cell formation, and production of neutralizing Abs. This adjuvant effect of poly IC was dependent on amplification of TLR3 signaling by nonhematopoietic radioresistant cells and enhanced mouse protection to homosubtypic, as well as heterosubtypic, virus challenge. Our findings indicate that mucosal TLR3 ligation may be used to improve CD8 T cell responses to replicating vaccines, which has implications for protection in the absence of pre-existing Ab immunity.
Collapse
Affiliation(s)
- José V Pérez-Girón
- Heinrich Pette Institute, Leibniz Institute For Experimental Virology, 20251 Hamburg, Germany
| | - Alan Belicha-Villanueva
- Division of Infectious Diseases, Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ebrahim Hassan
- Heinrich Pette Institute, Leibniz Institute For Experimental Virology, 20251 Hamburg, Germany
| | - Sergio Gómez-Medina
- Heinrich Pette Institute, Leibniz Institute For Experimental Virology, 20251 Hamburg, Germany
| | - Jazmina L G Cruz
- Heinrich Pette Institute, Leibniz Institute For Experimental Virology, 20251 Hamburg, Germany
| | - Anja Lüdtke
- Heinrich Pette Institute, Leibniz Institute For Experimental Virology, 20251 Hamburg, Germany
| | - Paula Ruibal
- Heinrich Pette Institute, Leibniz Institute For Experimental Virology, 20251 Hamburg, Germany
| | - Randy A Albrecht
- Division of Infectious Diseases, Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; Division of Infectious Diseases, Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and
| | - Adolfo García-Sastre
- Division of Infectious Diseases, Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; Division of Infectious Diseases, Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - César Muñoz-Fontela
- Heinrich Pette Institute, Leibniz Institute For Experimental Virology, 20251 Hamburg, Germany;
| |
Collapse
|
15
|
Sawaengsak C, Mori Y, Yamanishi K, Mitrevej A, Sinchaipanid N. Chitosan nanoparticle encapsulated hemagglutinin-split influenza virus mucosal vaccine. AAPS PharmSciTech 2014; 15:317-25. [PMID: 24343789 DOI: 10.1208/s12249-013-0058-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 11/15/2013] [Indexed: 11/30/2022] Open
Abstract
Subunit/split influenza vaccines are less reactogenic compared with the whole virus vaccines. However, their immunogenicity is relatively low and thus required proper adjuvant and/or delivery vehicle for immunogenicity enhancement. Influenza vaccines administered intramuscularly induce minimum, if any, mucosal immunity at the respiratory mucosa which is the prime site of the infection. In this study, chitosan (CS) nanoparticles were prepared by ionic cross-linking of the CS with sodium tripolyphosphate (TPP) at the CS/TPP ratio of 1:0.6 using 2 h mixing time. The CS/TPP nanoparticles were used as delivery vehicle of an intranasal influenza vaccine made of hemagglutinin (HA)-split influenza virus product. Innocuousness, immunogenicity, and protective efficacy of the CS/TPP-HA vaccine were tested in influenza mouse model in comparison with the antigen alone vaccine. The CS/TPP-HA nanoparticles had required characteristics including nano-sizes, positive charges, and high antigen encapsulation efficiency. Mice that received two doses of the CS/TPP-HA vaccine intranasally showed no adverse symptoms indicating the vaccine innocuousness. The animals developed higher systemic and mucosal antibody responses than vaccine made of the HA-split influenza virus alone. The CS/TPP-HA vaccine could induce also a cell-mediated immune response shown as high numbers of IFN-γ-secreting cells in spleens while the HA vaccine alone could not. Besides, the CS nanoparticle encapsulated HA-split vaccine reduced markedly the influenza morbidity and also conferred 100% protective rate to the vaccinated mice against lethal influenza virus challenge. Overall results indicated that the CS nanoparticles invented in this study is an effective and safe delivery vehicle/adjuvant for the influenza vaccine.
Collapse
|
16
|
Ju Y, Fan H, Liu J, Hu J, Li X, Li C, Chen L, Gao Q, Gao GF, Meng S. Heat shock protein gp96 adjuvant induces T cell responses and cross-protection to a split influenza vaccine. Vaccine 2014; 32:2703-11. [PMID: 24699472 DOI: 10.1016/j.vaccine.2014.03.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 02/06/2014] [Accepted: 03/13/2014] [Indexed: 01/09/2023]
Abstract
The commonly used inactivated or split influenza vaccines induce only induce minimal T cell responses and are less effective in preventing heterologous virus infection. Thus, developing cross-protective influenza vaccines against the spread of a new influenza virus is an important strategy against pandemic emergence. Here we demonstrated that immunization with heat shock protein gp96 as adjuvant led to a dramatic increased antigen-specific T cell response to a pandemic H1N1 split vaccine. Notably, gp96 elicited a cross-protective CD8(+) T cell response to the internal conserved viral protein NP. Although the split pH1N1vaccine alone has low cross-protective efficiency, adding gp96 as an adjuvant effectively improved the cross-protection against challenge with a heterologous virus in mice. Our study reveals the novel property of gp96 in boosting the T cell response against conserved epitopes of influenza virus and its potential use as an adjuvant for human pre-pandemic inactivated influenza vaccines against different viral subtypes.
Collapse
Affiliation(s)
- Ying Ju
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Hongxia Fan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Jun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Jun Hu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Xinghui Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Changfei Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Lizhao Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Qiang Gao
- Sinovac Biotech Co., Ltd, Beijing, China
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Songdong Meng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), No.1 West Beichen Road, Chaoyang District, Beijing 100101, China.
| |
Collapse
|
17
|
Zhou Z, Zhang J, Sun L, Ma G, Su Z. Comparison of Site-Specific PEGylations of the N-Terminus of Interferon Beta-1b: Selectivity, Efficiency, and in Vivo/Vitro Activity. Bioconjug Chem 2013; 25:138-46. [DOI: 10.1021/bc400435u] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Zhan Zhou
- National
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhang
- National
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Lijing Sun
- National
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Guanghui Ma
- National
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhiguo Su
- National
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
18
|
Zheng D, Yi Y, Chen Z. Development of live-attenuated influenza vaccines against outbreaks of H5N1 influenza. Viruses 2012; 4:3589-605. [PMID: 23223214 PMCID: PMC3528281 DOI: 10.3390/v4123589] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 11/14/2012] [Accepted: 11/22/2012] [Indexed: 01/06/2023] Open
Abstract
Several global outbreaks of highly pathogenic avian influenza (HPAI) H5N1 virus have increased the urgency of developing effective and safe vaccines against H5N1. Compared with H5N1 inactivated vaccines used widely, H5N1 live-attenuated influenza vaccines (LAIVs) have advantages in vaccine efficacy, dose-saving formula, long-lasting effect, ease of administration and some cross-protective immunity. Furthermore, H5N1 LAIVs induce both humoral and cellular immune responses, especially including improved IgA production at the mucosa. The current trend of H5N1 LAIVs development is toward cold-adapted, temperature-sensitive or replication-defective vaccines, and moreover, H5N1 LAIVs plus mucosal adjuvants are promising candidates. This review provides an update on the advantages and development of H5N1 live-attenuated influenza vaccines.
Collapse
Affiliation(s)
- Dan Zheng
- Shanghai Institute of Biological Products, 1262 YanAn Road(w), 200052, Shanghai, China; E-Mails: (D.Z.); (Y.Y.)
| | - Yinglei Yi
- Shanghai Institute of Biological Products, 1262 YanAn Road(w), 200052, Shanghai, China; E-Mails: (D.Z.); (Y.Y.)
| | - Ze Chen
- Shanghai Institute of Biological Products, 1262 YanAn Road(w), 200052, Shanghai, China; E-Mails: (D.Z.); (Y.Y.)
- College of Life Sciences, Hunan Normal University, Changsha Yuelushan 410081, Hunan, China
| |
Collapse
|