1
|
Lin X, Yang F, Yan S, Wu H, Wang P, Zhao Y, Shi D, Yao H, Wu H, Li L. Preparation and characterization of mouse-derived monoclonal antibodies against the hemagglutinin of the H1N1 influenza virus. Virus Res 2024; 345:199402. [PMID: 38772446 PMCID: PMC11156778 DOI: 10.1016/j.virusres.2024.199402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/23/2024]
Abstract
H1N1 influenza virus is a significant global public health concern. Monoclonal antibodies (mAbs) targeting specific viral proteins such as hemagglutinin (HA) have become an important therapeutic strategy, offering highly specific targeting to block viral transmission and infection. This study focused on the development of mAbs targeting HA of the A/Victoria/2570/2019 (H1N1pdm09, VIC-19) strain by utilizing hybridoma technology to produce two mAbs with high binding capacity. Notably, mAb 2B2 has demonstrated a strong affinity for HA proteins in recent H1N1 influenza vaccine strains. In vitro assessments showed that both mAbs exhibited broad-spectrum hemagglutination inhibition and potent neutralizing effects against various vaccine strains of H1N1pdm09 viruses. 2B2 was also effective in animal models, offering both preventive and therapeutic protection against infections caused by recent H1N1 strains, highlighting its potential for clinical application. By individually co-cultivating each of the aforementioned mAbs with the virus in chicken embryos, four amino acid substitution sites in HA (H138Q, G140R, A141E/V, and D187E) were identified in escape mutants, three in the antigenic site Ca2, and one in Sb. The identification of such mutations is pivotal, as it compels further investigation into how these alterations could undermine the binding efficacy and neutralization capacity of antibodies, thereby impacting the design and optimization of mAb therapies and influenza vaccines. This research highlights the necessity for continuous exploration into the dynamic interaction between viral evolution and antibody response, which is vital for the formulation of robust therapeutic and preventive strategies against influenza.
Collapse
MESH Headings
- Animals
- Influenza A Virus, H1N1 Subtype/immunology
- Antibodies, Monoclonal/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Antibodies, Viral/immunology
- Mice
- Antibodies, Neutralizing/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/virology
- Mice, Inbred BALB C
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Hemagglutination Inhibition Tests
- Humans
- Chick Embryo
- Female
- Influenza, Human/immunology
- Influenza, Human/virology
- Influenza, Human/prevention & control
Collapse
Affiliation(s)
- Xiantian Lin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine,79 Qingchun Rd., Hangzhou City 310003, China
| | - Fan Yang
- Department of Geriatrics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Sijing Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine,79 Qingchun Rd., Hangzhou City 310003, China
| | - Han Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine,79 Qingchun Rd., Hangzhou City 310003, China
| | - Ping Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine,79 Qingchun Rd., Hangzhou City 310003, China
| | - Yuxi Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine,79 Qingchun Rd., Hangzhou City 310003, China
| | - Danrong Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine,79 Qingchun Rd., Hangzhou City 310003, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine,79 Qingchun Rd., Hangzhou City 310003, China
| | - Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine,79 Qingchun Rd., Hangzhou City 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine,79 Qingchun Rd., Hangzhou City 310003, China.
| |
Collapse
|
2
|
Wang L, Yang F, Xiao Y, Chen B, Liu F, Cheng L, Yao H, Wu N, Wu H. Generation, characterization, and protective ability of mouse monoclonal antibodies against the HA of A (H1N1) influenza virus. J Med Virol 2022; 94:2558-2567. [PMID: 35005794 DOI: 10.1002/jmv.27584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 12/16/2022]
Abstract
Influenza virus infections pose a continuous threat to human health. Although vaccines function as a preventive and protective tool, they may not be effective due to antigen drift or an inaccurate prediction of epidemic strains. Monoclonal antibodies (mAbs) have attracted wide attention as a promising therapeutic method for influenza virus infections. In this study, three hemagglutinin (HA)-specific mAbs, named 2A1, 2H4, and 2G2, respectively, were derived from mice immunized with the HA protein from A/Michigan/45/2015(H1N1). The isolated mAbs all displayed hemagglutination inhibition activity and the 2G2 mAb exhibited the strongest neutralization effect. Two amino acid mutations (A198E and G173E), recognized in the process of selection of mAb-resistant mutants, were located in antigenic site Sb and Ca1, respectively. In prophylactic experiments, all three mAbs could achieve 100% protection in mice infected with a lethal dose of A/Michigan/45/2015(H1N1). A dose of 1 mg/kg for 2H4 and 2G2 was sufficient to achieve a full protective effect. Therapeutic experiments showed that all three mAbs could protect mice from death if they received the mAb administration at 6 h postinfection, and 2G2 was still protective after 24 h. Our findings indicate that these three mAbs may have potential prevention and treatment value in an H1N1 epidemic, as well as in the study of antigen epitope recognition.
Collapse
Affiliation(s)
- Liyan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Geriatrics, Shaoxing People's Hospital, Shaoxing, China
| | - Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yixin Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bin Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fumin Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Linfang Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Xing L, Chen Y, Chen B, Bu L, Liu Y, Zeng Z, Guan W, Chen Q, Lin Y, Qin K, Chen H, Deng X, Wang X, Song W. Antigenic Drift of the Hemagglutinin from an Influenza A (H1N1) pdm09 Clinical Isolate Increases its Pathogenicity In Vitro. Virol Sin 2021; 36:1220-1227. [PMID: 34106413 PMCID: PMC8188537 DOI: 10.1007/s12250-021-00401-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/12/2021] [Indexed: 12/30/2022] Open
Abstract
The influenza A (H1N1) pdm09 virus emerged in 2009 and has been continuously circulating in humans for over ten years. Here, we analyzed a clinical influenza A (H1N1) pdm09-infected patient case hospitalized for two months in Guangdong (from December 14, 2019 to February 15, 2020). This isolate, named A/Guangdong/LCF/2019 (LCF/19), was genetically sequenced, rescued by reverse genetics, and phylogenetically analyzed in the context of other relevant pdm09 isolates. Compared with earlier isolates, this pdm09 virus's genetic sequence contains four substitutions, S186P, T188I, D190A, and Q192E, of the hemagglutinin (HA) segment at position 186–192 (H3 numbering) in the epitope Sb, and two of which are located at the 190-helix. Phylogenetic analysis indicated that the epitope Sb started undergoing a rapid antigenic change in 2018. To characterize the pathogenicity of this novel substitution motif, a panel of reassortant viruses containing the LCF/2019 HA segment or the chimeric HA segment with the four substitutions were rescued. Kinetic growth data revealed that the reassortant viruses, including the LCF/2019 with the PTIAAQE substitution, propagated faster than those rescued ones having the STTADQQ motif in the epitope Sb in Madin-Darby Canine Kidney (MDCK) cells. The HI test showed that the binding activity of escape mutant to 2018 pdm09 sera was weaker than GLW/2018, suggesting that old vaccines might not effectively protect people from infection. Due to the difference in the selection of vaccine strains, people vaccinated in the southern hemisphere could still suffer a severe infection if infected with this antigenic drift pdm09 virus.
Collapse
Affiliation(s)
- Lei Xing
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China.,Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China
| | - Yunbo Chen
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Boqian Chen
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Ling Bu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China.,Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China
| | - Ying Liu
- Intensive Care Unit, Guangzhou No.8 People's Hospital of Guangzhou Medical University, Guangzhou, 510060, China
| | - Zhiqi Zeng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China
| | - Wenda Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China
| | - Qigao Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China
| | - Yongping Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China
| | - Kun Qin
- China CDC, National Institute for Viral Disease Control and Prevention, Beijing, 100052, China
| | - Honglin Chen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China.
| | - Xilong Deng
- Intensive Care Unit, Guangzhou No.8 People's Hospital of Guangzhou Medical University, Guangzhou, 510060, China.
| | - Xinhua Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China. .,Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China. .,Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China.
| | - Wenjun Song
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China. .,Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China. .,State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
4
|
Xiong FF, Liu XY, Gao FX, Luo J, Duan P, Tan WS, Chen Z. Protective efficacy of anti-neuraminidase monoclonal antibodies against H7N9 influenza virus infection. Emerg Microbes Infect 2020; 9:78-87. [PMID: 31894728 PMCID: PMC6968527 DOI: 10.1080/22221751.2019.1708214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 11/24/2022]
Abstract
The H7N9 influenza virus has been circulating in China for more than six years. The neuraminidase (NA) has gained great concern for the development of antiviral drugs, therapeutic antibodies, and new vaccines. In this study, we screened seven mouse monoclonal antibodies (mAbs) and compared their protective effects against H7N9 influenza virus. The epitope mapping from escape mutants showed that all the seven mAbs could bind to the head region of the N9 NA close to the enzyme activity sites, and four key sites of N9 NA were reported for the first time. The mAbs D3 and 7H2 could simultaneously inhibit the cleavage of the sialic acid of fetuin protein with large molecular weight and NA-XTD with small molecule weight in the NA inhibition experiment, prevent the formation of virus plaque at a low concentration, and effectively protect the mice from the challenge of the lethal dose of H7N9 virus.
Collapse
Affiliation(s)
- Fei-Fei Xiong
- Shanghai Institute of Biological Products, Shanghai, People’s Republic of China
| | - Xue-Ying Liu
- Shanghai Institute of Biological Products, Shanghai, People’s Republic of China
| | - Fei-Xia Gao
- Shanghai Institute of Biological Products, Shanghai, People’s Republic of China
- East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Jian Luo
- Shanghai Institute of Biological Products, Shanghai, People’s Republic of China
| | - Peng Duan
- Shanghai Institute of Biological Products, Shanghai, People’s Republic of China
| | - Wen-Song Tan
- East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Ze Chen
- Shanghai Institute of Biological Products, Shanghai, People’s Republic of China
| |
Collapse
|
5
|
Liu H, Xiong C, Chen J, Chen G, Zhang J, Li Y, Xiong Y, Wang R, Cao Y, Chen Q, Liu D, Wang H, Chen J. Two genetically diverse H7N7 avian influenza viruses isolated from migratory birds in central China. Emerg Microbes Infect 2018; 7:62. [PMID: 29636458 PMCID: PMC5893581 DOI: 10.1038/s41426-018-0064-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 03/02/2018] [Accepted: 03/11/2018] [Indexed: 12/03/2022]
Abstract
After the emergence of H7N9 avian influenza viruses (AIV) in early 2013 in China, active surveillance of AIVs in migratory birds was undertaken, and two H7N7 strains were subsequently recovered from the fresh droppings of migratory birds; the strains were from different hosts and sampling sites. Phylogenetic and sequence similarity network analyses indicated that several genes of the two H7N7 viruses were closely related to those in AIVs circulating in domestic poultry, although different gene segments were implicated in the two isolates. This strongly suggested that genes from viruses infecting migratory birds have been introduced into poultry-infecting strains. A Bayesian phylogenetic reconstruction of all eight segments implied that multiple reassortments have occurred in the evolution of these viruses, particularly during late 2011 and early 2014. Antigenic analysis using a hemagglutination inhibition test showed that the two H7N7 viruses were moderately cross-reactive with H7N9-specific anti-serum. The ability of the two H7N7 viruses to remain infectious under various pH and temperature conditions was evaluated, and the viruses persisted the longest at near-neutral pH and in cold temperatures. Animal infection experiments showed that the viruses were avirulent to mice and could not be recovered from any organs. Our results indicate that low pathogenic, divergent H7N7 viruses circulate within the East Asian-Australasian flyway. Virus dispersal between migratory birds and domestic poultry may increase the risk of the emergence of novel unprecedented strains.
Collapse
Affiliation(s)
- Haizhou Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Chaochao Xiong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Jing Chen
- Hubei Wildlife Rescue, Research and Development Center, Wuhan, Hubei, 430074, China
| | - Guang Chen
- Hubei Wildlife Rescue, Research and Development Center, Wuhan, Hubei, 430074, China
| | - Jun Zhang
- Hubei Wildlife Rescue, Research and Development Center, Wuhan, Hubei, 430074, China
| | - Yong Li
- Hubei Wildlife Rescue, Research and Development Center, Wuhan, Hubei, 430074, China
| | - Yanping Xiong
- Hubei Wildlife Rescue, Research and Development Center, Wuhan, Hubei, 430074, China
| | - Runkun Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Ying Cao
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Quanjiao Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
- Center for Influenza Research and Early warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101, China
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
- Center for Influenza Research and Early warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy Sciences, Beijing, 101409, China
| | - Hanzhong Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Jianjun Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China.
- Center for Influenza Research and Early warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
6
|
Retamal M, Abed Y, Rhéaume C, Baz M, Boivin G. In vitro and in vivo evidence of a potential A(H1N1)pdm09 antigenic drift mediated by escape mutations in the haemagglutinin Sa antigenic site. J Gen Virol 2017. [PMID: 28631598 DOI: 10.1099/jgv.0.000800] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Influenza A(H1N1)pdm09 virus continues to circulate worldwide without evidence of significant antigenic drift between 2009 and 2016. By using escape mutants, we previously identified six haemagglutinin (HA) changes (T80R, G143E, G158E, N159D, K166E and A198E) that were located within antigenic sites. Combinations of these mutations were introduced into the A(H1N1)pdm09 HA plasmid by mutagenesis. Reassortant 6 : 2 viruses containing both the HA and NA genes of the A(H1N1)pdm09 and the six internal gene segments of A/PR/8/34 were rescued by reverse genetics. In vitro, HA inhibition and microneutralization assays showed that the HA hexa-mutant reassortant virus (RG1) escaped A(H1N1)pdm09 hyper-immune ferret antiserum recognition. C57Black/6 mice that received the vaccine formulated with A/California/07/09 were challenged with 2×104 p.f.u. of either the 6 : 2 wild-type (WT) or RG1 viruses. Reductions in body weight loss, mortality rate and lung viral titre were observed in immunized animals challenged with the 6 : 2 WT virus compared to non-immunized mice. However, immunization did not protect mice challenged with RG1 virus. To further characterize the mutations causing this antigenic change, 11 additional RG viruses whose HA gene contained single or combinations of mutations were evaluated in vitro. Although the RG1 virus was still the least reactive against hyper-immune serum by HAI testing, mutations G158E and N159D within the Sa antigenic site appeared to play the major role in the altered antigenicity of the A(H1N1)pdm09 virus. These results show that the Sa antigenic site contains the most prominent epitopes susceptible to cause an antigenic drift, escaping actual vaccine protection.
Collapse
Affiliation(s)
- Miguel Retamal
- Research Center in Infectious Diseases of the CHU of Québec and Laval University, Québec City, Quebec, Canada
| | - Yacine Abed
- Research Center in Infectious Diseases of the CHU of Québec and Laval University, Québec City, Quebec, Canada
| | - Chantal Rhéaume
- Research Center in Infectious Diseases of the CHU of Québec and Laval University, Québec City, Quebec, Canada
| | - Mariana Baz
- Research Center in Infectious Diseases of the CHU of Québec and Laval University, Québec City, Quebec, Canada
| | - Guy Boivin
- Research Center in Infectious Diseases of the CHU of Québec and Laval University, Québec City, Quebec, Canada
| |
Collapse
|
7
|
Koday MT, Nelson J, Chevalier A, Koday M, Kalinoski H, Stewart L, Carter L, Nieusma T, Lee PS, Ward AB, Wilson IA, Dagley A, Smee DF, Baker D, Fuller DH. A Computationally Designed Hemagglutinin Stem-Binding Protein Provides In Vivo Protection from Influenza Independent of a Host Immune Response. PLoS Pathog 2016; 12:e1005409. [PMID: 26845438 PMCID: PMC4742065 DOI: 10.1371/journal.ppat.1005409] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 12/31/2015] [Indexed: 12/31/2022] Open
Abstract
Broadly neutralizing antibodies targeting a highly conserved region in the hemagglutinin (HA) stem protect against influenza infection. Here, we investigate the protective efficacy of a protein (HB36.6) computationally designed to bind with high affinity to the same region in the HA stem. We show that intranasal delivery of HB36.6 affords protection in mice lethally challenged with diverse strains of influenza independent of Fc-mediated effector functions or a host antiviral immune response. This designed protein prevents infection when given as a single dose of 6.0 mg/kg up to 48 hours before viral challenge and significantly reduces disease when administered as a daily therapeutic after challenge. A single dose of 10.0 mg/kg HB36.6 administered 1-day post-challenge resulted in substantially better protection than 10 doses of oseltamivir administered twice daily for 5 days. Thus, binding of HB36.6 to the influenza HA stem region alone, independent of a host response, is sufficient to reduce viral infection and replication in vivo. These studies demonstrate the potential of computationally designed binding proteins as a new class of antivirals for influenza.
Collapse
Affiliation(s)
- Merika Treants Koday
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Jorgen Nelson
- Institute for Protein Design, Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Aaron Chevalier
- Institute for Protein Design, Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Michael Koday
- Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Hannah Kalinoski
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Lance Stewart
- Institute for Protein Design, Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Lauren Carter
- Institute for Protein Design, Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Travis Nieusma
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Peter S. Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Ashley Dagley
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, United States of America
| | - Donald F. Smee
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, United States of America
| | - David Baker
- Institute for Protein Design, Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
| | - Deborah Heydenburg Fuller
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
8
|
Zhang H, He X, Shi Y, Yu Y, Guan S, Gong X, Yin H, Kuai Z, Shan Y. Potential of a novel peptide P16-D from the membrane-proximal external region of human immunodeficiency virus type 1 to enhance retrovirus infection. RSC Adv 2016. [DOI: 10.1039/c6ra10424j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A modified peptide nanofibril “networks” could capture and concentrate enveloped virus easily. Stronger immune response could be elicited by the captured virus implying a potential for P16-D to improve gene transfer rates and vaccine applications.
Collapse
Affiliation(s)
- Huayan Zhang
- National Engineering Laboratory for AIDS Vaccine
- School of Life Sciences
- Jilin University
- Changchun
- China
| | - Xiaoqiu He
- National Engineering Laboratory for AIDS Vaccine
- School of Life Sciences
- Jilin University
- Changchun
- China
| | - Yuhua Shi
- National Engineering Laboratory for AIDS Vaccine
- School of Life Sciences
- Jilin University
- Changchun
- China
| | - Yongjiao Yu
- National Engineering Laboratory for AIDS Vaccine
- School of Life Sciences
- Jilin University
- Changchun
- China
| | - Shanshan Guan
- National Engineering Laboratory for AIDS Vaccine
- School of Life Sciences
- Jilin University
- Changchun
- China
| | - Xin Gong
- National Engineering Laboratory for AIDS Vaccine
- School of Life Sciences
- Jilin University
- Changchun
- China
| | - He Yin
- National Engineering Laboratory for AIDS Vaccine
- School of Life Sciences
- Jilin University
- Changchun
- China
| | - Ziyu Kuai
- National Engineering Laboratory for AIDS Vaccine
- School of Life Sciences
- Jilin University
- Changchun
- China
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine
- School of Life Sciences
- Jilin University
- Changchun
- China
| |
Collapse
|
9
|
Wilson JR, Guo Z, Tzeng WP, Garten RJ, Xiyan X, Blanchard EG, Blanchfield K, Stevens J, Katz JM, York IA. Diverse antigenic site targeting of influenza hemagglutinin in the murine antibody recall response to A(H1N1)pdm09 virus. Virology 2015; 485:252-62. [PMID: 26318247 DOI: 10.1016/j.virol.2015.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/04/2015] [Accepted: 08/06/2015] [Indexed: 10/23/2022]
Abstract
Here we define the epitopes on HA that are targeted by a group of 9 recombinant monoclonal antibodies (rmAbs) isolated from memory B cells of mice, immunized by infection with A(H1N1)pdm09 virus followed by a seasonal TIV boost. These rmAbs were all reactive against the HA1 region of HA, but display 7 distinct binding footprints, targeting each of the 4 known antigenic sites. Although the rmAbs were not broadly cross-reactive, a group showed subtype-specific cross-reactivity with the HA of A/South Carolina/1/18. Screening these rmAbs with a panel of human A(H1N1)pdm09 virus isolates indicated that naturally-occurring changes in HA could reduce rmAb binding, HI activity, and/or virus neutralization activity by rmAb, without showing changes in recognition by polyclonal antiserum. In some instances, virus neutralization was lost while both ELISA binding and HI activity were retained, demonstrating a discordance between the two serological assays traditionally used to detect antigenic drift.
Collapse
Affiliation(s)
- Jason R Wilson
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Zhu Guo
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Wen-Pin Tzeng
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Rebecca J Garten
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Xu Xiyan
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Elisabeth G Blanchard
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Kristy Blanchfield
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - James Stevens
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Jacqueline M Katz
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Ian A York
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| |
Collapse
|
10
|
Long-term immunogenicity of an inactivated split-virion 2009 pandemic influenza A H1N1 virus vaccine with or without aluminum adjuvant in mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:327-35. [PMID: 25589552 DOI: 10.1128/cvi.00662-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In 2009, a global epidemic of influenza A(H1N1) virus caused the death of tens of thousands of people. Vaccination is the most effective means of controlling an epidemic of influenza and reducing the mortality rate. In this study, the long-term immunogenicity of influenza A/California/7/2009 (H1N1) split vaccine was observed as long as 15 months (450 days) after immunization in a mouse model. Female BALB/c mice were immunized intraperitoneally with different doses of aluminum-adjuvanted vaccine. The mice were challenged with a lethal dose (10× 50% lethal dose [LD(50)]) of homologous virus 450 days after immunization. The results showed that the supplemented aluminum adjuvant not only effectively enhanced the protective effect of the vaccine but also reduced the immunizing dose of the vaccine. In addition, the aluminum adjuvant enhanced the IgG antibody level of mice immunized with the H1N1 split vaccine. The IgG level was correlated to the survival rate of the mice. Aluminum-adjuvanted inactivated split-virion 2009 pandemic influenza A H1N1 vaccine has good immunogenicity and provided long-term protection against lethal influenza virus challenge in mice.
Collapse
|
11
|
Grabherr R. The passive strategy: increasing the force in the battle against influenza. Biotechnol J 2014; 9:1476-7. [PMID: 25104227 DOI: 10.1002/biot.201400409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Reingard Grabherr
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
12
|
Shembekar N, Mallajosyula VVA, Chaudhary P, Upadhyay V, Varadarajan R, Gupta SK. Humanized antibody neutralizing 2009 pandemic H1N1 virus. Biotechnol J 2014; 9:1594-603. [DOI: 10.1002/biot.201400083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/02/2014] [Accepted: 07/02/2014] [Indexed: 11/06/2022]
|
13
|
Retamal M, Abed Y, Corbeil J, Boivin G. Epitope mapping of the 2009 pandemic and the A/Brisbane/59/2007 seasonal (H1N1) influenza virus haemagglutinins using mAbs and escape mutants. J Gen Virol 2014; 95:2377-2389. [PMID: 25078301 DOI: 10.1099/vir.0.067819-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
mAbs constitute an important biological tool for influenza virus haemagglutinin (HA) epitope mapping through the generation of escape mutants, which could provide insights into immune evasion mechanisms and may benefit the future development of vaccines. Several influenza A (H1N1) pandemic 2009 (pdm09) HA escape mutants have been recently described. However, the HA antigenic sites of the previous seasonal A/Brisbane/59/2007 (H1N1) (Bris07) virus remain poorly documented. Here, we produced mAbs against pdm09 and Bris07 HA proteins expressed in human HEK293 cells. Escape mutants were generated using mAbs that exhibited HA inhibition and neutralizing activities. The resulting epitope mapping of the pdm09 HA protein revealed 11 escape mutations including three that were previously described (G172E, N173D and K256E) and eight novel ones (T89R, F128L, G157E, K180E, A212E, R269K, N311T and G478E). Among the six HA mutations that were part of predicted antigenic sites (Ca1, Ca2, Cb, Sa or Sb), three (G172E, N173D and K180E) were within the Sa site. Eight escape mutations (H54N, N55D, N55K, L60H, N203D, A231T, V314I and K464E) were obtained for Bris07 HA, and all but one (N203D, Sb site) were outside the predicted antigenic sites. Our results suggest that the Sa antigenic site is immunodominant in pdm09 HA, whereas the N203D mutation (Sb site), present in three different Bris07 escape mutants, appears as the immunodominant epitope in that strain. The fact that some mutations were not part of predicted antigenic sites reinforces the necessity of further characterizing the HA of additional H1N1 strains.
Collapse
Affiliation(s)
- Miguel Retamal
- Research Center in Infectious Diseases of the CHUQ-CHUL and Laval University, Québec City, QC, Canada
| | - Yacine Abed
- Research Center in Infectious Diseases of the CHUQ-CHUL and Laval University, Québec City, QC, Canada
| | - Jacques Corbeil
- Research Center in Infectious Diseases of the CHUQ-CHUL and Laval University, Québec City, QC, Canada
| | - Guy Boivin
- Research Center in Infectious Diseases of the CHUQ-CHUL and Laval University, Québec City, QC, Canada
| |
Collapse
|