1
|
Characterization of a Panel of Cross-Reactive Hantavirus Nucleocapsid Protein-Specific Monoclonal Antibodies. Viruses 2023; 15:v15020532. [PMID: 36851747 PMCID: PMC9958643 DOI: 10.3390/v15020532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Hantaviruses are emerging pathogens with a worldwide distribution that can cause life-threatening diseases in humans. Monoclonal antibodies (MAbs) against hantavirus nucleocapsid (N) proteins are important tools in virus diagnostics, epidemiological studies and basic research studies on virus replication and pathogenesis. Here, we extend the collection of previously generated MAbs raised against a segment of Puumala orthohantavirus (PUUV) N protein harbored on virus-like particles (VLPs) and MAbs against N proteins of Sin Nombre orthohantavirus/Andes orthohantavirus by generating nine novel MAbs against N proteins of Dobrava-Belgrade orthohantavirus (DOBV), Tula orthohantavirus (TULV), Thottapalayam thottimvirus (TPMV) and PUUV. In order to have a wide collection of well-described hantavirus-specific MAbs, the cross-reactivity of novel and previously generated MAbs was determined against N proteins of 15 rodent- and shrew-borne hantaviruses by different immunological methods. We found that all MAbs, excluding TPMV-specific MAbs, demonstrated different cross-reactivity patterns with N proteins of hantaviruses and recognized native viral antigens in infected mammalian cells. This well-characterized collection of cross-reactive hantavirus-specific MAbs has a potential application in various fields of hantavirus research, diagnostics and therapy.
Collapse
|
2
|
Rift Valley Fever Virus Non-Structural Protein S Is Associated with Nuclear Translocation of Active Caspase-3 and Inclusion Body Formation. Viruses 2022; 14:v14112487. [PMID: 36366585 PMCID: PMC9698985 DOI: 10.3390/v14112487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/06/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022] Open
Abstract
Rift Valley fever phlebovirus (RVFV) causes Rift Valley fever (RVF), an emerging zoonotic disease that causes abortion storms and high mortality rates in young ruminants as well as severe or even lethal complications in a subset of human patients. This study investigates the pathomechanism of intranuclear inclusion body formation in severe RVF in a mouse model. Liver samples from immunocompetent mice infected with virulent RVFV 35/74, and immunodeficient knockout mice that lack interferon type I receptor expression and were infected with attenuated RVFV MP12 were compared to livers from uninfected controls using histopathology and immunohistochemistry for RVFV nucleoprotein, non-structural protein S (NSs) and pro-apoptotic active caspase-3. Histopathology of the livers showed virus-induced, severe hepatic necrosis in both mouse strains. However, immunohistochemistry and immunofluorescence revealed eosinophilic, comma-shaped, intranuclear inclusions and an intranuclear (co-)localization of RVFV NSs and active caspase-3 only in 35/74-infected immunocompetent mice, but not in MP12-infected immunodeficient mice. These results suggest that intranuclear accumulation of RVFV 35/74 NSs is involved in nuclear translocation of active caspase-3, and that nuclear NSs and active caspase-3 are involved in the formation of the light microscopically visible inclusion bodies.
Collapse
|
3
|
Rift Valley Fever Virus Propagates in Human Villous Trophoblast Cell Lines and Induces Cytokine mRNA Responses Known to Provoke Miscarriage. Viruses 2021; 13:v13112265. [PMID: 34835071 PMCID: PMC8625252 DOI: 10.3390/v13112265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 02/05/2023] Open
Abstract
The mosquito-borne Rift Valley fever (RVF) is a prioritised disease that has been listed by the World Health Organization for urgent research and development of counteraction. Rift Valley fever virus (RVFV) can cause a cytopathogenic effect in the infected cell and induce hyperimmune responses that contribute to pathogenesis. In livestock, the consequences of RVFV infection vary from mild symptoms to abortion. In humans, 1–3% of patients with RVFV infection develop severe disease, manifested as, for example, haemorrhagic fever, encephalitis or blindness. RVFV infection has also been associated with miscarriage in humans. During pregnancy, there should be a balance between pro-inflammatory and anti-inflammatory mediators to create a protective environment for the placenta and foetus. Many viruses are capable of penetrating that protective environment and infecting the foetal–maternal unit, possibly via the trophoblasts in the placenta, with potentially severe consequences. Whether it is the viral infection per se, the immune response, or both that contribute to the pathogenesis of miscarriage remains unknown. To investigate how RVFV could contribute to pathogenesis during pregnancy, we infected two human trophoblast cell lines, A3 and Jar, representing normal and transformed human villous trophoblasts, respectively. They were infected with two RVFV variants (wild-type RVFV and RVFV with a deleted NSs protein), and the infection kinetics and 15 different cytokines were analysed. The trophoblast cell lines were infected by both RVFV variants and infection caused upregulation of messenger RNA (mRNA) expression for interferon (IFN) types I–III and inflammatory cytokines, combined with cell line-specific mRNA expression of transforming growth factor (TGF)-β1 and interleukin (IL)-10. When comparing the two RVFV variants, we found that infection with RVFV lacking NSs function caused a hyper-IFN response and inflammatory response, while the wild-type RVFV suppressed the IFN I and inflammatory response. The induction of certain cytokines by RVFV infection could potentially lead to teratogenic effects that disrupt foetal and placental developmental pathways, leading to birth defects and other pregnancy complications, such as miscarriage.
Collapse
|
4
|
NO Synthesis in Immune-Challenged Locust Hemocytes and Potential Signaling to the CNS. INSECTS 2021; 12:insects12100951. [PMID: 34680720 PMCID: PMC8539611 DOI: 10.3390/insects12100951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 01/22/2023]
Abstract
Simple Summary Insects, in the same way as vertebrates, are exposed to a broad variety of pathogens but lack their adaptive immune system. Relying on their innate immune system, they respond to pathogens by phagocytosis, melanization, and the synthesis of antimicrobial or cytotoxic compounds. In this study, we evaluated the production of the cytotoxic gaseous radical nitric oxide (NO) in hemocytes, the immune cells of the model insect Locusta migratoria in response to various immune stimuli. Both sessile and circulating hemocytes responded to gram-negative Escherichia coli and gram-positive Streptococcus suis injection with a strong increase in NO production. In contrast, the gram-positive bacterium Staphylococcus aureus elicited only a minor response. In addition, bacteria were encapsulated by hemocytes. Since NO is an important neurotransmitter, NO-producing hemocytes were tested on the locust central nervous system (CNS) in an embryo culture model. CNS neurons responded with a distinct increase in production of the second messenger, cGMP. This is indicative of the influence of the immune response on the CNS. Our findings show that NO production in hemocytes and capsule formation need complex stimuli and contribute to the understanding of neuroimmune interactions in insects. Abstract Similar to vertebrates, insects are exposed to a broad variety of pathogens. The innate insect immune system provides several response mechanisms such as phagocytosis, melanization, and the synthesis of antimicrobial or cytotoxic compounds. The cytotoxic nitric oxide (NO), which is also a neurotransmitter, is involved in the response to bacterial infections in various insects but has rarely been shown to be actually produced in hemocytes. We quantified the NO production in hemocytes of Locusta migratoria challenged with diverse immune stimuli by immunolabeling the by-product of NO synthesis, citrulline. Whereas in untreated adult locusts less than 5% of circulating hemocytes were citrulline-positive, the proportion rose to over 40% after 24 hours post injection of heat-inactivated bacteria. Hemocytes surrounded and melanized bacteria in locust nymphs by forming capsules. Such sessile hemocytes also produced NO. As in other insect species, activated hemocytes were found dorsally, close to the heart. In addition, we frequently observed citrulline-positive hemocytes and capsules near the ventral nerve cord. Neurites in the CNS of sterile locust embryos responded with elevation of the second messenger cGMP after contact with purified adult NO-producing hemocytes as revealed by immunofluorescence. We suggest that hemocytes can mediate a response in the CNS of an infected animal via the NO/cGMP signaling pathway.
Collapse
|
5
|
Rissmann M, Lenk M, Stoek F, Szentiks CA, Eiden M, Groschup MH. Replication of Rift Valley Fever Virus in Amphibian and Reptile-Derived Cell Lines. Pathogens 2021; 10:pathogens10060681. [PMID: 34072763 PMCID: PMC8228813 DOI: 10.3390/pathogens10060681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 11/29/2022] Open
Abstract
Rift Valley fever phlebovirus (RVFV) is a zoonotic arthropod-borne virus, which has led to devastating epidemics in African countries and on the Arabian Peninsula. Results of in-vivo, in-vitro and field studies suggested that amphibians and reptiles may play a role as reservoir hosts of RVFV, promoting its maintenance during inter-epidemic periods. To elucidate this hypothesis, we examined two newly established reptile-derived cell lines (Egyptian cobra and Chinese pond turtle) and five previously generated reptile- and amphibian-derived cell lines for their replicative capacity for three low- and high-pathogenic RVFV strains. At different time points after infection, viral loads (TCID50), genome loads and the presence of intracellular viral antigen (immunofluorescence) were assessed. Additionally, the influence of temperatures on the replication was examined. Except for one cell line (read-eared slider), all seven cell lines were infected by all three RVFV strains. Two different terrapin-derived cell lines (Common box turtle, Chinese pond turtle) were highly susceptible. A temperature-dependent replication of RVFV was detected for both amphibian and reptile cells. In conclusion, the results of this study indicate the general permissiveness of amphibian and reptile cell lines to RVFV and propose a potential involvement of terrapins in the virus ecology.
Collapse
Affiliation(s)
- Melanie Rissmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Insel Riems, 17493 Greifswald, Germany; (M.R.); (F.S.); (M.E.)
| | - Matthias Lenk
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Insel Riems, 17493 Greifswald, Germany;
| | - Franziska Stoek
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Insel Riems, 17493 Greifswald, Germany; (M.R.); (F.S.); (M.E.)
| | - Claudia A. Szentiks
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany;
| | - Martin Eiden
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Insel Riems, 17493 Greifswald, Germany; (M.R.); (F.S.); (M.E.)
| | - Martin H. Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Insel Riems, 17493 Greifswald, Germany; (M.R.); (F.S.); (M.E.)
- Correspondence:
| |
Collapse
|
6
|
Serological and Molecular Investigation of Batai Virus Infections in Ruminants from the State of Saxony-Anhalt, Germany, 2018. Viruses 2021; 13:v13030370. [PMID: 33652882 PMCID: PMC7996813 DOI: 10.3390/v13030370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 12/20/2022] Open
Abstract
Arthropod-borne Batai virus (BATV) is an Orthobunyavirus widely distributed throughout European livestock and has, in the past, been linked to febrile diseases in humans. In Germany, BATV was found in mosquitoes and in one captive harbor seal, and antibodies were recently detected in various ruminant species. We have, therefore, conducted a follow-up study in ruminants from Saxony-Anhalt, the most affected region in Eastern Germany. A total of 325 blood samples from apparently healthy sheep, goats, and cattle were tested using a BATV-specific qRT-PCR and SNT. Even though viral RNA was not detected, the presence of antibodies was confirmed in the sera of all three species: sheep (16.5%), goats (18.3%), and cattle (41.4%). Sera were further analyzed by a glycoprotein Gc-based indirect ELISA to evaluate Gc-derived antibodies as a basis for a new serological test for BATV infections. Interestingly, the presence of neutralizing antibodies was not directly linked to the presence of BATV Gc antibodies. Overall, our results illustrate the high frequency of BATV infections in ruminants in Eastern Germany.
Collapse
|
7
|
Gutjahr B, Keller M, Rissmann M, von Arnim F, Jäckel S, Reiche S, Ulrich R, Groschup MH, Eiden M. Two monoclonal antibodies against glycoprotein Gn protect mice from Rift Valley Fever challenge by cooperative effects. PLoS Negl Trop Dis 2020; 14:e0008143. [PMID: 32160203 PMCID: PMC7089562 DOI: 10.1371/journal.pntd.0008143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 03/23/2020] [Accepted: 02/15/2020] [Indexed: 11/22/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a zoonotic arbovirus that causes severe disease in humans and ruminants. The infection is characterized by abortions in pregnant animals, high mortality in neonates as well as febrile illness in humans that develop in 1% of cases encephalitis or hemorrhagic fever. There is presently no specific antiviral treatment for RVFV infection available. In this study, two monoclonal antibodies (mAbs), raised against glycoprotein Gn, were applied in a therapeutic study. Treatment of RVFV infected mice with neutralizing mAb Gn3 alone at two different time points (30 minutes before or 30 minutes after virus challenge) showed only moderate efficacy of about 58.3% survival in both applications. However, a combination therapy together with non-neutralizing mAb Gn32 demonstrated complete protection (100% survival) when applied 30 minutes after the lethal challenge dose. The increase of mAb efficacy is probably based on cooperative neutralization effects. These data suggest that a combination therapy with mAbs Gn3 and Gn32 could be an effective treatment option against RVFV infection.
Collapse
Affiliation(s)
- Benjamin Gutjahr
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Markus Keller
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Melanie Rissmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Felicitas von Arnim
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Susanne Jäckel
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
- Saxon State Laboratory of Health and Veterinary Affairs, Dresden, Germany
| | - Sven Reiche
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Reiner Ulrich
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
- Institute of Veterinary Pathology, Leipzig University, Leipzig, Germany
| | - Martin H. Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Martin Eiden
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
8
|
MVA Vectored Vaccines Encoding Rift Valley Fever Virus Glycoproteins Protect Mice against Lethal Challenge in the Absence of Neutralizing Antibody Responses. Vaccines (Basel) 2020; 8:vaccines8010082. [PMID: 32059491 PMCID: PMC7157666 DOI: 10.3390/vaccines8010082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 01/01/2023] Open
Abstract
In vitro neutralizing antibodies have been often correlated with protection against Rift Valley fever virus (RVFV) infection. We have reported previously that a single inoculation of sucrose-purified modified vaccinia Ankara (MVA) encoding RVFV glycoproteins (rMVAGnGc) was sufficient to induce a protective immune response in mice after a lethal RVFV challenge. Protection was related to the presence of glycoprotein specific CD8+ cells, with a low-level detection of in vitro neutralizing antibodies. In this work we extended those observations aimed to explore the role of humoral responses after MVA vaccination and to study the contribution of each glycoprotein antigen to the protective efficacy. Thus, we tested the efficacy and immune responses in BALB/c mice of recombinant MVA viruses expressing either glycoprotein Gn (rMVAGn) or Gc (rMVAGc). In the absence of serum neutralizing antibodies, our data strongly suggest that protection of vaccinated mice upon the RVFV challenge can be achieved by the activation of cellular responses mainly directed against Gc epitopes. The involvement of cellular immunity was stressed by the fact that protection of mice was strain dependent. Furthermore, our data suggest that the rMVA based single dose vaccination elicits suboptimal humoral immune responses against Gn antigen since disease in mice was exacerbated upon virus challenge in the presence of rMVAGnGc or rMVAGn immune serum. Thus, Gc-specific cellular immunity could be an important component in the protection after the challenge observed in BALB/c mice, contributing to the elimination of infected cells reducing morbidity and mortality and counteracting the deleterious effect of a subneutralizing antibody immune response.
Collapse
|
9
|
Balkema-Buschmann A, Rissmann M, Kley N, Ulrich R, Eiden M, Groschup MH. Productive Propagation of Rift Valley Fever Phlebovirus Vaccine Strain MP-12 in Rousettus aegyptiacus Fruit Bats. Viruses 2018; 10:v10120681. [PMID: 30513679 PMCID: PMC6315703 DOI: 10.3390/v10120681] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 12/25/2022] Open
Abstract
Rift Valley fever phlebovirus (RVFV), the causative agent of an emerging zoonotic disease in Africa and Arabia, can infect a variety of species, predominantly ruminants, camelids, and humans. While clinical symptoms are mostly absent in adult ruminants and camelids, RVFV infection may lead to a serious, sometimes fatal disease in humans. Virus transmissions between individuals and between species mainly occur through mosquito bites, but direct or even indirect contact with infectious materials may also result in infection. Although the main reservoir of the virus is not yet identified, small mammals such as rodents and bats may act as amplifying hosts. We therefore inoculated Rousettus aegyptiacus fruit bats that are abundant in northern Africa with the vaccine strain MP-12, in order to elucidate the general competence of this species for virus propagation and transmission. We were able to detect the RVFV genome in the spleen of each of these animals, and re-isolated the virus from the spleen and liver of some animals. Moreover, we were able to identify the Gc RVFV surface antigen in mild subacute multifocal necrotizing hepatic lesions of one bat which was sacrificed 7 days post exposure. These findings demonstrate that Rousettus aegyptiacus fruit bats can propagate RVFV.
Collapse
Affiliation(s)
- Anne Balkema-Buschmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany.
| | - Melanie Rissmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany.
| | - Nils Kley
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany.
| | - Reiner Ulrich
- ²Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| | - Martin Eiden
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany.
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany.
| |
Collapse
|
10
|
Mroz C, Schmidt KM, Reiche S, Groschup MH, Eiden M. Development of monoclonal antibodies to Rift Valley Fever Virus and their application in antigen detection and indirect immunofluorescence. J Immunol Methods 2018; 460:36-44. [PMID: 29894749 DOI: 10.1016/j.jim.2018.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/25/2018] [Accepted: 06/06/2018] [Indexed: 10/14/2022]
Abstract
Rift Valley fever virus is a mosquito-borne virus which is associated with acute hemorrhagic fever leading to large outbreaks among ruminants and humans in Africa and the Arabian Peninsula. RVFV circulates between mosquitoes, ruminants, camels and humans, which requires divergent amplification and maintenance strategies that have not been fully explored on the cellular and molecular level. We therefore assessed monoclonal antibodies for their applicability to monitor the expression pattern and kinetics of viral proteins in different RVFV infected cell species. Sequences of RVFV vaccine strain MP-12 were used in a bacterial expression system to produce recombinant non-structural proteins directed to NSs and NSm. After immunization of balb/c mice a set of monoclonal antibodies were generated and extensively characterized. The kinetics of RVFV proteins in vertebrate (Vero76) and mosquito-derived (C6/36) cells were evaluated with monoclonal antibodies against the nucleocapsid protein (NP) and the glycoproteins (Gn and Gc) as well as with the newly generated NSs and NSm derived monoclonal antibodies. Significant differences of viral protein distribution and accumulation in vertebrate compared to mosquito-derived cells could be demonstrated. Differences were observed for the nonstructural NSm and most intriguingly for the NSs protein indicating significant divergency of replication strategies of RVFV in Vero 76 cells and C6/36 cells. The described monoclonal antibodies are therefore powerful tools to elucidate the discrepancies of virus replication and interaction within the mammalian host compared to the mosquito vector.
Collapse
Affiliation(s)
- Claudia Mroz
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald, Isle of Riems, Germany
| | - Kristina M Schmidt
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald, Isle of Riems, Germany
| | - Sven Reiche
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald, Insel Riems, Germany
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald, Isle of Riems, Germany
| | - Martin Eiden
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald, Isle of Riems, Germany.
| |
Collapse
|
11
|
Evaluation of Fluorescence Microsphere Immunoassay for Detection of Antibodies to Rift Valley Fever Virus Nucleocapsid Protein and Glycoproteins. J Clin Microbiol 2018; 56:JCM.01626-17. [PMID: 29563201 DOI: 10.1128/jcm.01626-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/08/2018] [Indexed: 11/20/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne, zoonotic virus that infects ruminants, including cattle, sheep, goats, camels, and buffalo. Multiplexing diagnostic assays that can simultaneously detect antibodies against multiple RVFV antigens offer a high-throughput test for disease surveillance and vaccine evaluations. We describe the improvement and evaluation of a previously developed fluorescence microsphere immunoassay (FMIA) for the detection of IgG and IgM antibodies against the RVFV glycoprotein (Gn) and the immunogenic nucleocapsid protein (Np). Well-characterized vaccinated and experimentally infected ruminant sera were used for the evaluation of the assay. Recombinant viral proteins were produced and then coupled to polystyrene magnetic beads for analysis using the Luminex MAGPIX system with xMAP technology. The FMIA was performed in parallel with virus neutralization tests. Our results revealed the highest median fluorescence intensity (MFI) values for the detection of IgG antibodies against RVFV Np, indicating that this antigen would be a good candidate for a screening assay. The Np and Gn targets could differentiate infected animals from animals vaccinated with a candidate subunit vaccine formulation based on the RVFV Gn and Gc proteins. The results presented in this report demonstrate that FMIA provides a rapid and robust serological diagnostic tool for the detection of antibodies against RVFV. The targets developed in this assay provide the basis for the development of a companion diagnostic test for an RVFV Gn/Gc subunit vaccine that is capable of differentiating infected from vaccinated animals (DIVA), as well as a multiplex serodiagnostic assay that can simultaneously screen for several ruminant diseases.
Collapse
|
12
|
Vloet RPM, Vogels CBF, Koenraadt CJM, Pijlman GP, Eiden M, Gonzales JL, van Keulen LJM, Wichgers Schreur PJ, Kortekaas J. Transmission of Rift Valley fever virus from European-breed lambs to Culex pipiens mosquitoes. PLoS Negl Trop Dis 2017; 11:e0006145. [PMID: 29281642 PMCID: PMC5760105 DOI: 10.1371/journal.pntd.0006145] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 01/09/2018] [Accepted: 12/01/2017] [Indexed: 12/21/2022] Open
Abstract
Background Rift Valley fever virus (RVFV) is a mosquito-borne bunyavirus of the genus Phlebovirus that is highly pathogenic to ruminants and humans. The disease is currently confined to Africa and the Arabian Peninsula, but globalization and climate change may facilitate introductions of the virus into currently unaffected areas via infected animals or mosquitoes. The consequences of such an introduction will depend on environmental factors, the availability of susceptible ruminants and the capacity of local mosquitoes to transmit the virus. We have previously demonstrated that lambs native to the Netherlands are highly susceptible to RVFV and we here report the vector competence of Culex (Cx.) pipiens, the most abundant and widespread mosquito species in the country. Vector competence was first determined after artificial blood feeding of laboratory-reared mosquitoes using the attenuated Clone 13 strain. Subsequently, experiments with wild-type RVFV and mosquitoes hatched from field-collected eggs were performed. Finally, the transmission of RVFV from viremic lambs to mosquitoes was studied. Principal findings Artificial feeding experiments using Clone 13 demonstrated that indigenous, laboratory-reared Cx. pipiens mosquitoes are susceptible to RVFV and that the virus can be transmitted via their saliva. Experiments with wild-type RVFV and mosquitoes hatched from field-collected eggs confirmed the vector competence of Cx. pipiens mosquitoes from the Netherlands. To subsequently investigate transmission of the virus under more natural conditions, mosquitoes were allowed to feed on RVFV-infected lambs during the viremic period. We found that RVFV is efficiently transmitted from lambs to mosquitoes, although transmission was restricted to peak viremia. Interestingly, in the mosquito-exposed skin samples, replication of RVFV was detected in previously unrecognized target cells. Significance We here report the vector competence of Cx. pipiens mosquitoes from the Netherlands for RVFV. Both laboratory-reared mosquitoes and well as those hatched from field-collected eggs were found to be competent vectors. Moreover, RVFV was transmitted efficiently from indigenous lambs to mosquitoes, although the duration of host infectivity was found to be shorter than previously assumed. Interestingly, analysis of mosquito-exposed skin samples revealed previously unidentified target cells of the virus. Our findings underscore the value of including natural target species in vector competence experiments. The consequences of first introductions of mosquito-borne viruses into previously unaffected areas depend on environmental factors, the availability of susceptible hosts and local vector populations. We have previously demonstrated that sheep breeds native to the Netherlands are highly susceptible to Rift Valley fever virus (RVFV), a mosquito-borne virus that causes severe outbreaks among domesticated ruminants and humans in Africa and the Arabian Peninsula. To gain further insight into the risk of a future RVFV introduction into the Netherlands, we have now investigated the vector competence of Cx. pipiens, the most abundant mosquito species in the country. Vector competence was first determined after artificial blood feeding and subsequently after feeding on viremic lambs. The results from artificial feeding experiments suggested that indigenous Cx. pipiens mosquitoes are competent vectors. The vector competence of Cx. pipiens was confirmed after feeding on viremic lambs. Transmission from lambs to mosquitoes was found to be very efficient, although largely confined to peak viremia. The localized inflammatory response resulting from mosquito bites was associated with enhanced virus replication in the skin.
Collapse
Affiliation(s)
- Rianka P. M. Vloet
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, the Netherlands
| | | | | | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University, Wageningen, the Netherlands
| | - Martin Eiden
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald—Insel Riems, Germany
| | - Jose L. Gonzales
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, the Netherlands
| | | | | | - Jeroen Kortekaas
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, the Netherlands
- * E-mail:
| |
Collapse
|
13
|
Rissmann M, Ulrich R, Schröder C, Hammerschmidt B, Hanke D, Mroz C, Groschup MH, Eiden M. Vaccination of alpacas against Rift Valley fever virus: Safety, immunogenicity and pathogenicity of MP-12 vaccine. Vaccine 2016; 35:655-662. [PMID: 28012779 DOI: 10.1016/j.vaccine.2016.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/25/2016] [Accepted: 12/01/2016] [Indexed: 02/07/2023]
Abstract
Rift Valley fever (RVF) is an emerging zoonosis of major public health concern in Africa and Arabia. Previous outbreaks attributed camelids a significant role in the epidemiology of Rift Valley fever virus (RVFV), making them an important target species for vaccination. Using three alpacas as model-organisms for dromedary camels, the safety, immunogenicity and pathogenicity of the MP-12 vaccine were evaluated in this study. To compare both acute and subacute effects, animals were euthanized at 3 and 31days post infection (dpi). Clinical monitoring, analysis of liver enzymes and hematological parameters demonstrated the tolerability of the vaccine, as no significant adverse effects were observed. Comprehensive analysis of serological parameters illustrated the immunogenicity of the vaccine, eliciting high neutralizing antibody titers and antibodies targeting different viral antigens. RVFV was detected in serum and liver of the alpaca euthanized 3dpi, whereas no virus was detectable at 31dpi. Viral replication was confirmed by detection of various RVFV-antigens in hepatocytes by immunohistochemistry and the presence of mild multifocal necrotizing hepatitis. In conclusion, results indicate that MP-12 is a promising vaccine candidate but still has a residual pathogenicity, which requires further investigation.
Collapse
Affiliation(s)
- M Rissmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - R Ulrich
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - C Schröder
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - B Hammerschmidt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - D Hanke
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - C Mroz
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - M H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - M Eiden
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
| |
Collapse
|
14
|
Genetic and antigenic characterization of Bungowannah virus, a novel pestivirus. Vet Microbiol 2015; 178:252-9. [PMID: 26049593 DOI: 10.1016/j.vetmic.2015.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 05/08/2015] [Accepted: 05/21/2015] [Indexed: 01/15/2023]
Abstract
Bungowannah virus, a possible new species within the genus Pestivirus, has been associated with a disease syndrome in pigs characterized by myocarditis with a high incidence of stillbirths. The current analysis of the whole-genome and antigenic properties of this virus confirms its unique identity, and further suggests that this virus is both genetically and antigenically remote from previously recognized pestiviruses. There was no evidence of reactivity with monoclonal antibodies (mAbs) that are generally considered to be pan-reactive with other viruses in the genus, and there was little cross reactivity with polyclonal sera. Subsequently, a set of novel mAbs has been generated which allow detection of Bungowannah virus. The combined data provide convincing evidence that Bungowannah virus is a member of the genus Pestivirus and should be officially recognized as a novel virus species.
Collapse
|