1
|
Marchant WG, Brown JK, Gautam S, Ghosh S, Simmons AM, Srinivasan R. Non-Feeding Transmission Modes of the Tomato Yellow Leaf Curl Virus by the Whitefly Bemisia tabaci Do Not Contribute to Reoccurring Leaf Curl Outbreaks in Tomato. INSECTS 2024; 15:760. [PMID: 39452336 PMCID: PMC11508932 DOI: 10.3390/insects15100760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/01/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
Tomato yellow leaf curl virus (TYLCV) causes significant yield loss in tomato production in the southeastern United States and elsewhere. TYLCV is transmitted by the whitefly Bemisia tabaci cryptic species in a persistent, circulative, and non-propagative manner. Unexpectedly, transovarial and sexual transmission of TYLCV has been reported for one strain from Israel. In this study, the potential contribution of the B. tabaci B cryptic species transovarial and sexual transmission of TYLCV (Israel strain, Georgia variant, Georgia, USA) to reoccurring outbreaks was investigated by conducting whitefly-TYLCV transmission assays and virus DNA detection using end point PCR, DNA quantitation via real-time PCR, and virion detection by immunocapture PCR. TYLCV DNA was detectable in four, two, and two percent of first-generation fourth-instar nymphs, first-generation adults, and second-generation adults, respectively, following transovarial acquisition. Post-mating between viruliferous counterparts, the virus's DNA was detected in four percent of males and undetectable in females. The accumulation of TYLCV DNA in whiteflies from the transovarial and/or sexual experiments was substantially lower (100 to 1000-fold) compared with whitefly adults allowed a 48-hr acquisition-access period on plants infected with TYLCV. Despite the detection of TYLCV DNA in whiteflies from the transovarial and/or mating experiments, the virions were undetectable by immunocapture PCR-a technique specifically designed to detect virions. Furthermore, tomato test plants exposed to whitefly adults that presumably acquired TYLCV transovarially or through mating remained free of detectable TYLCV DNA. Collectively, the extremely low levels of TYLCV DNA and complete absence of virions detected in whiteflies and the inability of the B. tabaci cryptic species B to transmit TYLCV to test tomato plants following transovarial and mating acquisition indicate that neither transovarial nor sexual transmission of TYLCV are probable or epidemiologically relevant for TYLCV persistence in this pathosystem.
Collapse
Affiliation(s)
- Wendy G. Marchant
- Department of Entomology, University of Georgia, Griffin, GA 30223, USA; (W.G.M.); (S.G.); (S.G.)
| | - Judith K. Brown
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA;
| | - Saurabh Gautam
- Department of Entomology, University of Georgia, Griffin, GA 30223, USA; (W.G.M.); (S.G.); (S.G.)
| | - Saptarshi Ghosh
- Department of Entomology, University of Georgia, Griffin, GA 30223, USA; (W.G.M.); (S.G.); (S.G.)
| | - Alvin M. Simmons
- Agriculture Research Service, United States Department of Agriculture, Charleston, SC 29414, USA;
| | - Rajagopalbabu Srinivasan
- Department of Entomology, University of Georgia, Griffin, GA 30223, USA; (W.G.M.); (S.G.); (S.G.)
| |
Collapse
|
2
|
Bupi N, Sangaraju VK, Phan LT, Lal A, Vo TTB, Ho PT, Qureshi MA, Tabassum M, Lee S, Manavalan B. An Effective Integrated Machine Learning Framework for Identifying Severity of Tomato Yellow Leaf Curl Virus and Their Experimental Validation. RESEARCH (WASHINGTON, D.C.) 2023; 6:0016. [PMID: 36930763 PMCID: PMC10013792 DOI: 10.34133/research.0016] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/03/2022] [Accepted: 11/07/2022] [Indexed: 01/13/2023]
Abstract
Tomato yellow leaf curl virus (TYLCV) dispersed across different countries, specifically to subtropical regions, associated with more severe symptoms. Since TYLCV was first isolated in 1931, it has been a menace to tomato industrial production worldwide over the past century. Three groups were newly isolated from TYLCV-resistant tomatoes in 2022; however, their functions are unknown. The development of machine learning (ML)-based models using characterized sequences and evaluating blind predictions is one of the major challenges in interdisciplinary research. The purpose of this study was to develop an integrated computational framework for the accurate identification of symptoms (mild or severe) based on TYLCV sequences (isolated in Korea). For the development of the framework, we first extracted 11 different feature encodings and hybrid features from the training data and then explored 8 different classifiers and developed their respective prediction models by using randomized 10-fold cross-validation. Subsequently, we carried out a systematic evaluation of these 96 developed models and selected the top 90 models, whose predicted class labels were combined and considered as reduced features. On the basis of these features, a multilayer perceptron was applied and developed the final prediction model (IML-TYLCVs). We conducted blind prediction on 3 groups using IML-TYLCVs, and the results indicated that 2 groups were severe and 1 group was mild. Furthermore, we confirmed the prediction with virus-challenging experiments of tomato plant phenotypes using infectious clones from 3 groups. Plant virologists and plant breeding professionals can access the user-friendly online IML-TYLCVs web server at https://balalab-skku.org/IML-TYLCVs, which can guide them in developing new protection strategies for newly emerging viruses.
Collapse
Affiliation(s)
- Nattanong Bupi
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Vinoth Kumar Sangaraju
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Le Thi Phan
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Aamir Lal
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Thuy Thi Bich Vo
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Phuong Thi Ho
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Muhammad Amir Qureshi
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Marjia Tabassum
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Balachandran Manavalan
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| |
Collapse
|
3
|
Kil EJ, Byun HS, Hwang H, Lee KY, Choi HS, Kim CS, Lee S. Tomato Yellow Leaf Curl Virus Infection in a Monocotyledonous Weed (Eleusine indica). THE PLANT PATHOLOGY JOURNAL 2021; 37:641-651. [PMID: 34897255 PMCID: PMC8666239 DOI: 10.5423/ppj.ft.11.2021.0162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/03/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 05/26/2023]
Abstract
Tomato yellow leaf curl virus (TYLCV) is one of the most important plant viruses belonging to the genus Begomovirus of the family Geminiviridae. To identify natural weed hosts that could act as reservoirs of TYLCV, 100 samples were collected at a TYLCV-affected tomato farm in Iksan from 2013 to 2014. The sample weeds were identified as belonging to 40 species from 18 families. TYLCV was detected in 57 samples belonging to 28 species through polymerase chain reaction using root samples including five species (Eleusine indica, Digitaria ciliaris, Echinochloa crus-galli, Panicum dichotomiflorum, and Setaria faberi) from the family Poaceae. Whitefly Bemisia tabaci-mediated TYLCV transmission from TYLCV-infected E. indica plants to healthy tomatoes was confirmed, and inoculated tomatoes showed typical symptoms, such as leaf curling and yellowing. In addition, TYLCV was detected in leaf and root samples of E. indica plants inoculated by both whitefly-mediated transmission using TYLCV-viruliferous whitefly and agro-inoculation using a TYLCV infectious clone. The majority of mastreviruses infect monocotyledonous plants, but there have also been reports of mastreviruses that can infect dicotyledonous plants, such as the chickpea chlorotic dwarf virus. No exception was reported among begomoviruses known as infecting dicots only. This is the first report of TYLCV as a member of the genus Begomovirus infecting monocotyledonous plants.
Collapse
Affiliation(s)
- Eui-Joon Kil
- Department of Plant Medicals, Andong National University, Andong 36729,
Korea
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419,
Korea
| | - Hee-Seong Byun
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419,
Korea
- Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration, Wanju 55365,
Korea
| | - Hyunsik Hwang
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419,
Korea
- Jungbu Regional Office, Animal and Plant Quarantine Agency, Incheon 22133,
Korea
| | - Kyeong-Yeoll Lee
- Division of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566,
Korea
| | - Hong-Soo Choi
- Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration, Wanju 55365,
Korea
| | - Chang-Seok Kim
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang 25342,
Korea
| | - Sukchan Lee
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419,
Korea
| |
Collapse
|
4
|
Legarrea S, Barman A, Diffie S, Srinivasan R. Virus Accumulation and Whitefly Performance Modulate the Role of Alternate Host Species as Inoculum Sources of Tomato Yellow Leaf Curl Virus. PLANT DISEASE 2020; 104:2958-2966. [PMID: 32897844 DOI: 10.1094/pdis-09-19-1853-re] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/11/2023]
Abstract
Evaluating alternate hosts that facilitate the persistence of a virus in the landscape is key to understanding virus epidemics. In this study, we explored the role of several plant species (eggplant, pepper, and Palmer amaranth) as inoculum sources of tomato yellow leaf curl virus (TYLCV) and as reservoirs for its insect vector, Bemisia tabaci (Gennadius). All inoculated species were infected with TYLCV, but whiteflies acquired fewer viral copies via feeding from pepper and eggplant than from tomato and Palmer amaranth. Further, back-transmission assays to recipient tomato resulted in TYLCV infection only when TYLCV was acquired from Palmer amaranth or tomato. Analysis suggested that the role of plant species as TYLCV inoculum sources may be determined by the accumulation of viral copies in the plant, and consequently in the insect vector. In addition, results showed that all three alternate species could sustain populations of B. tabaci, while differentially influencing fitness of whiteflies. Eggplant was a superior host for whiteflies, whereas whitefly survival was compromised on pepper. Together, we demonstrate that both plant-virus and plant-vector interactions could influence the role of an alternate host in TYLCV epidemics, and in our region of study we highlight the potential risk of hosts such as Palmer amaranth in the spread of TYLCV.
Collapse
Affiliation(s)
- Saioa Legarrea
- Department of Entomology, University of Georgia, Tifton, GA 31793
| | - Apurba Barman
- Department of Entomology, University of Georgia, Tifton, GA 31793
| | - Stanley Diffie
- Department of Entomology, University of Georgia, Tifton, GA 31793
| | | |
Collapse
|
5
|
Rodríguez-Negrete EA, Morales-Aguilar JJ, Domínguez-Duran G, Torres-Devora G, Camacho-Beltrán E, Leyva-López NE, Voloudakis AE, Bejarano ER, Méndez-Lozano J. High-Throughput Sequencing Reveals Differential Begomovirus Species Diversity in Non-Cultivated Plants in Northern-Pacific Mexico. Viruses 2019; 11:v11070594. [PMID: 31261973 PMCID: PMC6669537 DOI: 10.3390/v11070594] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/26/2019] [Revised: 05/28/2019] [Accepted: 06/17/2019] [Indexed: 12/24/2022] Open
Abstract
Plant DNA viruses of the genus Begomovirus have been documented as the most genetically diverse in the family Geminiviridae and present a serious threat for global horticultural production, especially considering climate change. It is important to characterize naturally existing begomoviruses, since viral genetic diversity in non-cultivated plants could lead to future disease epidemics in crops. In this study, high-throughput sequencing (HTS) was employed to determine viral diversity of samples collected in a survey performed during 2012–2016 in seven states of Northern-Pacific Mexico, areas of diverse climatic conditions where different vegetable crops are subject to intensive farming. In total, 132 plant species, belonging to 34 families, were identified and sampled in the natural ecosystems surrounding cultivated areas (agro-ecological interface). HTS analysis and subsequent de novo assembly revealed a number of geminivirus-related DNA signatures with 80 to 100% DNA similarity with begomoviral sequences present in the genome databank. The analysis revealed DNA signatures corresponding to 52 crop-infecting and 35 non-cultivated-infecting geminiviruses that, interestingly, were present in different plant species. Such an analysis deepens our knowledge of geminiviral diversity and could help detecting emerging viruses affecting crops in different agro-climatic regions.
Collapse
Affiliation(s)
- Edgar Antonio Rodríguez-Negrete
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave, Sinaloa 81101, Mexico
| | - Juan José Morales-Aguilar
- Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave, Sinaloa 81101, Mexico
| | - Gustavo Domínguez-Duran
- Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave, Sinaloa 81101, Mexico
| | - Gadiela Torres-Devora
- Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave, Sinaloa 81101, Mexico
| | - Erika Camacho-Beltrán
- Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave, Sinaloa 81101, Mexico
| | - Norma Elena Leyva-López
- Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave, Sinaloa 81101, Mexico
| | - Andreas E Voloudakis
- Laboratory of Plant Breeding and Biometry, Agricultural University of Athens, 75 Iera Odos, Athens 11855, Greece
| | - Eduardo R Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Campus Teatinos, 29071 Málaga, Spain
| | - Jesús Méndez-Lozano
- Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave, Sinaloa 81101, Mexico.
| |
Collapse
|
6
|
Li M, Li XJ, Su YL. Flue-cured tobacco confirmed as a reservoir host plant for Tomato yellow leaf curl virus by agro-inoculation and Bemisia tabaci MED-mediated transmission. PLoS One 2017; 12:e0190013. [PMID: 29272279 PMCID: PMC5741240 DOI: 10.1371/journal.pone.0190013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/16/2017] [Accepted: 12/06/2017] [Indexed: 11/18/2022] Open
Abstract
Tomato yellow leaf curl virus (TYLCV) causes great losses in tomato production. In addition to tomato, TYLCV infects many crops or weeds as alternative hosts. These alternative hosts may serve as reservoirs for TYLCV survival and spread. Here, we tested the capability of cultivated, flue-cured tobacco to act as a reservoir host plant for TYLCV. TYLCV DNA was detected in nine flue-cured tobacco cultivars inoculated with an infectious TYLCV clone, although no visible symptoms developed on TYLCV-infected tobacco plants. The percentage of whiteflies with viral DNA increased with an increasing acquisition access period (AAP) and reached 100% after a 12 h AAP on infected tobacco plants. Using infected tobacco plants as virus resources, TYLCV was capable of being transmitted to tobacco and tomato plants by whiteflies, and typical symptoms of TYLCV infection were observed on infected tomato plants but not on infected tobacco plants. Our results suggest that flue-cured tobacco can serve as a reservoir host plant for TYLCV and may play an important role in the spread of TYLCV epidemics in China.
Collapse
Affiliation(s)
- Meng Li
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, China
| | - Xiao-Juan Li
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, China
| | - Yun-Lin Su
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Science, Guangzhou, China
| |
Collapse
|
7
|
Campbell P, Cremer J, Roach R, Steele V, Subramaniam S, Sivasubramaniam V, Monsour C, Mullins T, Persley D, Gambley C. Towards area wide management of insect vectored viruses of tomatoes in the Bowen district. Virus Res 2017. [DOI: 10.1016/j.virusres.2017.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022]
|
8
|
Kil EJ, Park J, Choi HS, Kim CS, Lee S. Seed Transmission of Tomato yellow leaf curl virus in White Soybean ( Glycine max). THE PLANT PATHOLOGY JOURNAL 2017; 33:424-428. [PMID: 28811759 PMCID: PMC5538446 DOI: 10.5423/ppj.nt.02.2017.0043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/27/2017] [Accepted: 04/25/2017] [Indexed: 05/26/2023]
Abstract
Tomato yellow leaf curl virus (TYLCV) infection of the common bean (Phaseolus vulgaris) has been reported, but soybean (Glycine max) has not previously been identified as a TYLCV host. Five cultivars of white soybean were agro-inoculated using an infectious TYLCV clone. At 30 days post-inoculation, they showed infection rates of 25% to 100%. Typical TYLCV symptoms were not observed in any inoculated plants. To examine whether TYLCV was transmitted in soybean seeds, DNA was isolated from bundles of five randomly selected seeds from TYLCV-inoculated soybean plants and amplified with a TYLCV-specific primer set. With the exception of one bundle, all bundles of seeds were verified to be TYLCV-infected. Virus dissemination was also confirmed in three of the 14 bunches. Viral replication was also identified in seeds and seedlings. This is the first report demonstrating that soybean is a TYLCV host, and that TYLCV is a seed-transmissible virus in white soybean.
Collapse
Affiliation(s)
- Eui-Joon Kil
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419,
Korea
| | - Jungho Park
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419,
Korea
| | - Hong-Soo Choi
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365,
Korea
| | - Chang-Seok Kim
- Highland Agricultural Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang 25342,
Korea
| | - Sukchan Lee
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419,
Korea
| |
Collapse
|
9
|
Saeed ST, Samad A. Emerging threats of begomoviruses to the cultivation of medicinal and aromatic crops and their management strategies. Virusdisease 2017; 28:1-17. [PMID: 28466050 PMCID: PMC5377872 DOI: 10.1007/s13337-016-0358-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/12/2016] [Accepted: 12/30/2016] [Indexed: 12/01/2022] Open
Abstract
Begomoviruses (family Geminiviridae) are responsible for extreme yield reduction in a number of economically important crops including medicinal and aromatic plants (MAPs). Emergence of new variants of viruses due to recombination and mutations in the genomes, modern cropping systems, introduction of susceptible plant varieties, global trade in agricultural products, and changes in climatic conditions are responsible for aggravating the begomovirus problems during the last two decades. This review summaries the current research work on begomoviruses affecting MAPs and provides various traditional and advanced strategies for the management of begomoviruses and vector in MAPs.
Collapse
Affiliation(s)
- Sana Tabanda Saeed
- Department of Plant Pathology, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015 India
| | - Abdul Samad
- Department of Plant Pathology, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015 India
| |
Collapse
|
10
|
Abdel-Sala AM, Mujaddad-U M, El-Saghir SM. Genetic Diversity, Natural Host Range and Molecular Pathogenesis of Begomovirus-associated Betasatellites in Egypt. ACTA ACUST UNITED AC 2016. [DOI: 10.3923/ijv.2017.29.42] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022]
|
11
|
Sohrab SS. The role of corchorus in spreading of tomato yellow leaf curl virus on tomato in Jeddah, Saudi Arabia. Virusdisease 2016; 27:19-26. [PMID: 26925440 PMCID: PMC4758306 DOI: 10.1007/s13337-015-0292-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/22/2015] [Accepted: 11/26/2015] [Indexed: 10/22/2022] Open
Abstract
Corchorus (Corchorus capsularis L. and Corchorus olitorius L.) is one of the most important fiber crops grown in tropical and subtropical regions throughout the world. Field survey was conducted and naturally infected leaf samples were collected from corchorus and tomato plants in Jeddah, Saudi Arabia. The causal virus was transmitted by whiteflies to tomato plants and begomovirus infection was confirmed by Polymerase chain reaction. The complete viral genome and associated betasatellites were amplified, cloned and sequenced from both corchorus and tomato samples. The genetic variability and phylogenetic relationships were determined for both isolates (corchorus and tomato). The complete genome sequences showed highest (99.5 % nt) similarity with tomato yellow leaf curl virus (TYLCV) and formed closest cluster with TYLCV-Tomato reported from Jizan and Al-Qasim, Saudi Arabia and betasatellites sequences showed highest similarity (99.8 % nt) with Tomato yellow leaf curl betasatellites-Jeddah followed by Tomato yellow leaf curl Oman betasatellites and formed closed cluster with TYLCV-Tomato. On the basis of results obtained from whiteflies transmission, sequence similarity and phylogenetic relationships; it is concluded that the identified virus could be a variant of TYLCV circulating in the Kingdom. The significance of this study demonstrated that the corchorus is serving as reservoir and alternative host and playing an important role in spreading the begomovirus associated disease in the Kingdom of Saudi Arabia.
Collapse
Affiliation(s)
- Sayed Sartaj Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Post Box No-80216, Jeddah, 21589 Saudi Arabia
| |
Collapse
|
12
|
Kil EJ, Byun HS, Kim S, Cho S, Cho S, Roh K, Lee KY, Choi HS, Kim CS, Lee S. Tomato yellow leaf curl virus Can Overwinter in Stellaria aquatica, a Winter-Hardy TYLCV-Reservoir Weed. PLANT DISEASE 2015; 99:588-592. [PMID: 30699686 DOI: 10.1094/pdis-04-14-0352-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/09/2023]
Abstract
Tomato yellow leaf curl virus (TYLCV), one of the most serious plant viruses in tropical and subtropical regions, is transmitted to host plants by the vector insect Bemisia tabaci. In order to control TYLCV, it is important to identify weed hosts for overwintering TYLCV. Stellaria aquatica, a winter-hardy weed, was found growing with TYLCV-infected tomato plants in greenhouse production. TYLCV was detected in S. aquatica plants by polymerase chain reaction and Southern blot hybridization analysis. The intergenic region nucleotide sequences amplified from TYLCV-infected tomato plants, TYLCV-viruliferous whiteflies, and S. aquatica were identical. During winter (December to February), TYLCV-viruliferous whiteflies and TYLCV-infected tomato plants were removed or absent from greenhouses. However, S. aquatica plants were observed over a period of 10 months from August to May in such greenhouses, and TYLCV was consistently detected in some of these plants. To investigate the transmission of TYLCV from TYLCV-infected S. aquatica plants to healthy tomato plants by whiteflies, TYLCV-infected S. aquatica plants were transplanted to pots in cages with nonviruliferous whiteflies and healthy tomato plants. After 4 weeks, tomato plants developed typical TYLCV disease symptoms, and TYLCV was detected in both whiteflies and tomato plants. These results show that S. aquatica can act as a winter-hardy reservoir for TYLCV, and suggest that this weed could play an important role in overwintering of TYLCV in tomato greenhouses.
Collapse
Affiliation(s)
- Eui-Joon Kil
- Department of Genetic Engineering and The Institute of Life Science and Technology, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Hee-Seong Byun
- Department of Genetic Engineering, Sungkyunkwan University
| | - Sunhoo Kim
- Department of Genetic Engineering, Sungkyunkwan University
| | - Seungchan Cho
- Department of Genetic Engineering, Sungkyunkwan University
| | - Sungrae Cho
- Department of Genetic Engineering, Sungkyunkwan University
| | - Kangsan Roh
- Department of Genetic Engineering, Sungkyunkwan University
| | - Kyeong-Yeoll Lee
- Institute of Plant Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Hong-Soo Choi
- Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration, Wanju 565-851, Republic of Korea
| | - Chang-Seok Kim
- Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration, Wanju 565-851, Republic of Korea
| | - Sukchan Lee
- Department of Genetic Engineering, Sungkyunkwan University
| |
Collapse
|
13
|
Leke WN, Mignouna DB, Brown JK, Kvarnheden A. Begomovirus disease complex: emerging threat to vegetable production systems of West and Central Africa. ACTA ACUST UNITED AC 2015. [DOI: 10.1186/s40066-014-0020-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022]
|