1
|
Ahmad S, Leng Q, Hou G, Liang Y, Li Y, Qu Y. Biological Traits and Comprehensive Genomic Analysis of Novel Enterococcus faecalis Bacteriophage EFP6. Microorganisms 2024; 12:1202. [PMID: 38930584 PMCID: PMC11206139 DOI: 10.3390/microorganisms12061202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/21/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Enterococcus faecalis is a prevalent opportunistic pathogen associated with chicken embryonic and neonatal chick mortality, posing a significant challenge in poultry farming. In the current study, E. faecalis strain EF6, isolated from a recent hatchery outbreak, served as the host bacterium for the isolation of a novel phage EFP6, capable of lysing E. faecalis. Transmission electron microscopy revealed a hexagonal head and a short tail, classifying EFP6 as a member of the Autographiviridae family. EFP6 showed sensitivity to ultraviolet radiation and resistance to chloroform. The lytic cycle duration of EFP6 was determined to be 50 min, highlighting its efficacy in host eradication. With an optimal multiplicity of infection of 0.001, EFP6 exhibited a narrow lysis spectrum and strong specificity towards host strains. Additionally, EFP6 demonstrated optimal growth conditions at 40 °C and pH 8.0. Whole genome sequencing unveiled a genome length of 18,147 bp, characterized by a GC concentration of 33.21% and comprising 25 open reading frames. Comparative genomic assessment underscored its collinearity with related phages, notably devoid of lysogenic genes, thus ensuring genetic stability. This in-depth characterization forms the basis for understanding the biological attributes of EFP6 and its potential utilization in phage therapy, offering promising prospects for mitigating E. faecalis-associated poultry infections.
Collapse
Affiliation(s)
| | | | | | | | | | - Yonggang Qu
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China; (S.A.); (Q.L.); (G.H.); (Y.L.); (Y.L.)
| |
Collapse
|
2
|
Śliwka P, Weber-Dąbrowska B, Żaczek M, Kuźmińska-Bajor M, Dusza I, Skaradzińska A. Characterization and Comparative Genomic Analysis of Three Virulent E. coli Bacteriophages with the Potential to Reduce Antibiotic-Resistant Bacteria in the Environment. Int J Mol Sci 2023; 24:ijms24065696. [PMID: 36982770 PMCID: PMC10059673 DOI: 10.3390/ijms24065696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/26/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
The emerging global crisis of antibiotic resistance demands new alternative antibacterial solutions. Although bacteriophages have been used to combat bacterial infections for over a century, a dramatic boost in phage studies has recently been observed. In the development of modern phage applications, a scientific rationale is strongly required and newly isolated phages need to be examined in detail. In this study, we present the full characterization of bacteriophages BF9, BF15, and BF17, with lytic activity against extended-spectrum β-lactamases (ESBLs)- and AmpC β-lactamases (AmpC)-producing Escherichia coli, the prevalence of which has increased significantly in livestock in recent decades, representing a great hazard to food safety and a public health risk. Comparative genomic and phylogenetic analysis indicated that BF9, BF15, and BF17 represent the genera Dhillonvirus, Tequatrovirus, and Asteriusvirus, respectively. All three phages significantly reduced in vitro growth of their bacterial host and retained the ability to lyse bacteria after preincubation at wide ranges of temperature (−20–40 °C) and pH (5–9). The results described herein indicate the lytic nature of BF9, BF15, and BF17, which, along with the absence of genes encoding toxins and bacterial virulence factors, represents an undoubted asset in terms of future phage application.
Collapse
Affiliation(s)
- Paulina Śliwka
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | - Maciej Żaczek
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | - Marta Kuźmińska-Bajor
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - Izabela Dusza
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - Aneta Skaradzińska
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
- Correspondence: ; Tel.: +48-71-320-7791
| |
Collapse
|
3
|
Dkhili S, Ribeiro M, Ghariani S, Yahia HB, Hillion M, Poeta P, Slama KB, Hébraud M, Igrejas G. Bacteriophages as Antimicrobial Agents? Proteomic Insights on Three Novel Lytic Bacteriophages Infecting ESBL-Producing Escherichia coli. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:626-640. [PMID: 34559008 DOI: 10.1089/omi.2021.0122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
With the emergence of multiresistant bacteria, the use of bacteriophages is gaining renewed interest as potential antimicrobial agents. The aim of this study was to analyze the structure of three lytic bacteriophages infecting Escherichia coli (SD1, SD2, and SD3) using a gel-based proteomics approach and the cellular response of this bacterium to phage SD1 infection at the proteome level. The combination of the results of 1-DE and 2-DE followed by mass spectrometry led to the identification of 3, 14, and 9 structure proteins for SD1, SD2, and SD3 phages, respectively. Different protein profiles with common proteins were noticed. We also analyzed phage-induced effects by comparing samples from infected cells to those of noninfected cells. We verified important changes in E. coli proteins expression during phage SD1 infection, where there was an overexpression of proteins involved in stress response. Our results indicated that viral infection caused bacterial oxidative stress and bacterial cells response to stress was orchestrated by antioxidant defense mechanisms. This article makes an empirical scientific contribution toward the concept of bacteriophages as potential antimicrobial agents. With converging ecological threats in the 21st century, novel approaches to address the innovation gaps in antimicrobial development are more essential than ever. Further research on bacteriophages is called for in this broader context of planetary health and integrative biology.
Collapse
Affiliation(s)
- Sadika Dkhili
- Laboratoire des Microorganismes et Biomolécules actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisie.,Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, Tunis, Tunisie
| | - Miguel Ribeiro
- Department of Genetics and Biotechnology and University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Lisbon, Portugal
| | - Salma Ghariani
- Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, Tunis, Tunisie
| | - Houssem Ben Yahia
- Laboratoire des Microorganismes et Biomolécules actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisie.,Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, Tunis, Tunisie
| | - Mélanie Hillion
- University Clermont Auvergne, INRAE, UMR0454 Microbiology Digestive Environment Health (MEDiS), Saint-Genès Champanelle, France.,INRAE, Metabolism Exploration Platform, Proteomic Component (PFEMcp), Saint-Genès Champanelle, France
| | - Patricia Poeta
- Department of Genetics and Biotechnology and University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Karim Ben Slama
- Laboratoire des Microorganismes et Biomolécules actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisie.,Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, Tunis, Tunisie
| | - Michel Hébraud
- University Clermont Auvergne, INRAE, UMR0454 Microbiology Digestive Environment Health (MEDiS), Saint-Genès Champanelle, France.,INRAE, Metabolism Exploration Platform, Proteomic Component (PFEMcp), Saint-Genès Champanelle, France
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology and University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Lisbon, Portugal
| |
Collapse
|
4
|
Isolation and characterization of the novel Pseudomonas stutzeri bacteriophage 8P. Arch Virol 2021; 166:601-606. [PMID: 33392816 DOI: 10.1007/s00705-020-04912-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/23/2020] [Indexed: 10/22/2022]
Abstract
Bacteriophage 8P was isolated with a Pseudomonas stutzeri strain isolated from an oil reservoir as its host bacterium. The phage genome comprises 63,753 base pairs with a G+C content of 64.35. The phage encodes 63 predicted proteins, and 27 of them were functionally assigned. No tRNA genes were found. Comparative genomics analysis showed that 8P displayed some relatedness to F116-like phages (78% identity, 20% query coverage). The genome has very low sequence similarity to the other phage genomes in the GenBank database and Viral Sequence Database. Based on whole-genome analysis and transmission electron microscopy imaging, 8P is proposed to be a member of a new species in the genus Hollowayvirus, family Podoviridae.
Collapse
|
5
|
Olsen NS, Forero-Junco L, Kot W, Hansen LH. Exploring the Remarkable Diversity of Culturable Escherichia coli Phages in the Danish Wastewater Environment. Viruses 2020; 12:E986. [PMID: 32899836 PMCID: PMC7552041 DOI: 10.3390/v12090986] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Phages drive bacterial diversity, profoundly influencing microbial communities, from microbiomes to the drivers of global biogeochemical cycling. Aiming to broaden our understanding of Escherichiacoli (MG1655, K-12) phages, we screened 188 Danish wastewater samples and isolated 136 phages. Ninety-two of these have genomic sequences with less than 95% similarity to known phages, while most map to existing genera several represent novel lineages. The isolated phages are highly diverse, estimated to represent roughly one-third of the true diversity of culturable virulent dsDNA Escherichia phages in Danish wastewater, yet almost half (40%) are not represented in metagenomic databases, emphasising the importance of isolating phages to uncover diversity. Seven viral families, Myoviridae, Siphoviridae, Podoviridae,Drexlerviridae,Chaseviridae,Autographviridae, and Microviridae, are represented in the dataset. Their genomes vary drastically in length from 5.3 kb to 170.8 kb, with a guanine and cytosine (GC) content ranging from 35.3% to 60.0%. Hence, even for a model host bacterium, substantial diversity remains to be uncovered. These results expand and underline the range of coliphage diversity and demonstrate how far we are from fully disclosing phage diversity and ecology.
Collapse
Affiliation(s)
- Nikoline S. Olsen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark;
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark;
| | - Laura Forero-Junco
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark;
| | - Witold Kot
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark;
| | - Lars H. Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark;
| |
Collapse
|
6
|
Olsen NS, Hendriksen NB, Hansen LH, Kot W. A New High-Throughput Screening Method for Phages: Enabling Crude Isolation and Fast Identification of Diverse Phages with Therapeutic Potential. PHAGE (NEW ROCHELLE, N.Y.) 2020; 1:137-148. [PMID: 36147828 PMCID: PMC9041460 DOI: 10.1089/phage.2020.0016] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Bacteriophage therapy and application of phages for biocontrol necessitate acquisition of suitable phages. The exclusivity of phage-host relations and the risk of phage resistance instigate a need to rapidly isolate and characterize novel phages and continually build sizeable phage libraries. Current methods for phage isolation are both laborious and time consuming, suitable for the isolation of a limited number of phages. The high-throughput screening method for phages upscales and organizes enrichment of phages for fast isolation and identification of potentially hundreds of distinct phages against single hosts. This enables screening of hundreds of samples, in multiple simultaneous setups with varying parameters, increasing the likelihood of isolating multiple distinct phages specific for the given conditions. The efficiency of the method is emphasized by our screening of 200 environmental samples, resulting in the identification of an abundance of unique phage species virulent to Escherichia coli, Salmonella enterica, Enterococcus faecalis, and Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Nikoline S. Olsen
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | | | - Lars H. Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Witold Kot
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
7
|
Manohar P, Tamhankar AJ, Lundborg CS, Ramesh N. Isolation, characterization and in vivo efficacy of Escherichia phage myPSH1131. PLoS One 2018; 13:e0206278. [PMID: 30356310 PMCID: PMC6200275 DOI: 10.1371/journal.pone.0206278] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022] Open
Abstract
Phage therapy is the use of lytic bacteriophages to cure infections caused by bacteria. The aim of this study is to isolate and to characterize the bacteriophages against Escherichia coli isolated from clinical samples. For isolation of bacteriophages, water samples were collected from the Ganges River, and phage enrichment method was followed for phage isolation. Microbiological, genomic and lyophilization experiments were carried out to characterize the bacteriophage. Galleria mellonella was used to study the potential of phages against E. coli infection. Escherichia phage myPSH1131 belonging to Podoviridae family and found to have broad host range infectivity (n = 31) to infect Enterohemorrhagic E. coli (n = 9), Enteropathogenic E. coli (n = 6), Enterotoxigenic E. coli (n = 3), Enteroaggregative E. coli (n = 3), Uropathogenic E. coli (n = 9) and one unknown E. coli. The genome size is 76,163 base pairs (97 coding regions) and their genes show high similarity to SU10 phage. Lyophilization studies showed that the use of 1M sucrose, 2% gelatin and the combination of both 0.5M sucrose plus 1% gelatin could restore phage viability up to 20 months at 4°C. For in vivo studies, it was observed that a single phage dose can reduce the E. coli infection but to achieve 100% survival rate the infected larvae should be treated with three phage doses (20 μL, 103 PFU/mL) at 6 hours interval. The characterized Escherichia phage myPSH1131 was found to have broad host range activity against E. coli pathogens and in vivo studies showed that multiple doses are required for effective treatment.
Collapse
Affiliation(s)
- Prasanth Manohar
- Antibiotic Resistance and Phage Therapy Laboratory, School of Bioscience and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Ashok J. Tamhankar
- Global Health-Health Systems and Policy (HSP): Medicines, focusing antibiotics, Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
- Indian Initiative for Management of Antibiotic Resistance, Deonar, Mumbai, India
| | - Cecilia Stalsby Lundborg
- Global Health-Health Systems and Policy (HSP): Medicines, focusing antibiotics, Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
| | - Nachimuthu Ramesh
- Antibiotic Resistance and Phage Therapy Laboratory, School of Bioscience and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
- * E-mail:
| |
Collapse
|
8
|
Sváb D, Falgenhauer L, Rohde M, Chakraborty T, Tóth I. Complete genome sequence of C130_2, a novel myovirus infecting pathogenic Escherichia coli and Shigella strains. Arch Virol 2018; 164:321-324. [PMID: 30238162 DOI: 10.1007/s00705-018-4042-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/04/2018] [Indexed: 12/20/2022]
Abstract
The genome sequence of a novel virulent bacteriophage, named " C130_2", that is morphologically a member of the family Myoviridae is reported. The 41,775-base-pair double-stranded DNA genome of C130_2 contains 59 ORFs but exhibits overall low sequence similarity to bacteriophage genomes for which sequences are publicly available. Phylogenetic analysis indicated that C130_2 represents a new phage type. C130_2 could be propagated well on enterohemorrhagic Escherichia coli (EHEC) O157:H7 and other pathogenic E. coli strains, as well as on strains of various Shigella species.
Collapse
Affiliation(s)
- Domonkos Sváb
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Linda Falgenhauer
- Institute of Medical Microbiology, Justus Liebig University Giessen and German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Giessen, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, HZI, Braunschweig, Germany
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus Liebig University Giessen and German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Giessen, Germany
| | - István Tóth
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
9
|
Amarillas L, Chaidez C, González-Robles A, Lugo-Melchor Y, León-Félix J. Characterization of novel bacteriophage phiC119 capable of lysing multidrug-resistant Shiga toxin-producing Escherichia coli O157:H7. PeerJ 2016; 4:e2423. [PMID: 27672499 PMCID: PMC5028729 DOI: 10.7717/peerj.2423] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/09/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Shiga toxin-producing Escherichia coli (STEC) is one of the most common and widely distributed foodborne pathogens that has been frequently implicated in gastrointestinal and urinary tract infections. Moreover, high rates of multiple antibiotic-resistant E. coli strains have been reported worldwide. Due to the emergence of antibiotic-resistant strains, bacteriophages are considered an attractive alternative to biocontrol pathogenic bacteria. Characterization is a preliminary step towards designing a phage for biocontrol. METHODS In this study, we describe the characterization of a bacteriophage designated phiC119, which can infect and lyse several multidrug-resistant STEC strains and some Salmonella strains. The phage genome was screened to detect the stx-genes using PCR, morphological analysis, host range was determined, and genome sequencing were carried out, as well as an analysis of the cohesive ends and identification of the type of genetic material through enzymatic digestion of the genome. RESULTS Analysis of the bacteriophage particles by transmission electron microscopy showed that it had an icosahedral head and a long tail, characteristic of the family Siphoviridae. The phage exhibits broad host range against multidrug-resistant and highly virulent E. coli isolates. One-step growth experiments revealed that the phiC119 phage presented a large burst size (210 PFU/cell) and a latent period of 20 min. Based on genomic analysis, the phage contains a linear double-stranded DNA genome with a size of 47,319 bp. The phage encodes 75 putative proteins, but lysogeny and virulence genes were not found in the phiC119 genome. CONCLUSION These results suggest that phage phiC119 may be a good biological control agent. However, further studies are required to ensure its control of STEC and to confirm the safety of phage use.
Collapse
Affiliation(s)
- Luis Amarillas
- Laboratorio de Biología Molecular y Genómica Funcional, Centro de Investigación en Alimentación y Desarrollo, A. C., Culiacán, Sinaloa, México; Laboratorio de Genética, Instituto de Investigación Lightbourn, A. C., Cd. Jiménez, Chihuahua, México
| | - Cristóbal Chaidez
- Inocuidad Alimentaria, Centro de Investigación en Alimentación y Desarrollo, A. C. , Culiacán, Sinaloa , México
| | - Arturo González-Robles
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional , Ciudad de México , México
| | - Yadira Lugo-Melchor
- Laboratorio de Biología Molecular de la Unidad de Servicios Analíticos y Metrológicos, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A. C. , Guadalajara, Jalisco , México
| | - Josefina León-Félix
- Laboratorio de Biología Molecular y Genómica Funcional, Centro de Investigación en Alimentación y Desarrollo, A. C. , Culiacán, Sinaloa , México
| |
Collapse
|
10
|
Casjens SR, Grose JH. Contributions of P2- and P22-like prophages to understanding the enormous diversity and abundance of tailed bacteriophages. Virology 2016; 496:255-276. [PMID: 27372181 DOI: 10.1016/j.virol.2016.05.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 11/24/2022]
Abstract
We identified 9371 tailed phage prophages of 20 known types in reported complete genome sequences of 3298 bacteria in the Salmonella genus. These include 4758 P2 type and 744 P22 type prophages. The latter prophage types were found in the genome sequences of 127 and 24 bacterial host genera, increasing the known host ranges of phages in these groups by 114 and 20 genera, respectively. These prophage nucleotide sequences displayed much more diversity than was previously known from the 48 P2 and 24 P22 type authentic phages whose genomes have been sequenced. More detailed analysis of these prophage sequences indicated that major capsid protein (MCP) gene exchange between tailed phage clusters or types is extremely rare and that P22 prophage-encoded tailspikes correspond perfectly with their hosts' surface polysaccharide structure; thus, MCP and tailspike sequences accurately predict tailed phage type (and thus lifestyle) and host cell surface polysaccharide structure, respectively.
Collapse
Affiliation(s)
- Sherwood R Casjens
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, University of Utah, Salt Lake City, UT 84112, United States; Department of Biology, University of Utah, Salt Lake City, UT 84112, United States.
| | - Julianne H Grose
- Microbiology and Molecular Biology Department, Brigham Young University, Provo, UT 84602, United States.
| |
Collapse
|