1
|
He Q, Zhang Y, Gong W, Zeng H, Wang L. Genetic Evolution of Hepatitis E Virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1417:59-72. [PMID: 37223859 DOI: 10.1007/978-981-99-1304-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Comparative analysis of the genomic sequences of multiple hepatitis E virus (HEV) isolates has revealed extensive genomic diversity among them. Recently, a variety of genetically distinct HEV variants have also been isolated and identified from large numbers of animal species, including birds, rabbits, rats, ferrets, bats, cutthroat trout, and camels, among others. Furthermore, it has been reported that recombination in HEV genomes takes place in animals and in human patients. Also, chronic HEV infection in immunocompromised individuals has revealed the presence of viral strains carrying insertions from human genes. This paper reviews current knowledge on the genomic variability and evolution of HEV.
Collapse
Affiliation(s)
- Qiyu He
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yulin Zhang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wanyun Gong
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hang Zeng
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ling Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
2
|
Hartard C, Gantzer C, Bronowicki JP, Schvoerer E. Emerging hepatitis E virus compared with hepatitis A virus: A new sanitary challenge. Rev Med Virol 2019; 29:e2078. [PMID: 31456241 DOI: 10.1002/rmv.2078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022]
Abstract
Hepatitis A (HAV) and E (HEV) viruses are able to cause liver disease in humans. Among the five classical hepatotropic viruses, they are mainly transmitted via the fecal-oral route. Historically, many similarities have thus been described between them according to their incidence and their pathogenicity, especially in countries with poor sanitary conditions. However, recent advances have provided new insights, and the gap is widening between them. Indeed, while HAV infection incidence tends to decrease in developed countries along with public health improvement, HEV is currently considered as an underdiagnosed emerging pathogen. HEV autochthonous infections are increasingly observed and are mainly associated with zoonotic transmissions. Extra hepatic signs resulting in neurological or renal impairments have also been reported for HEV, as well as a chronic carrier state in immunocompromised patients, arguing in favor of differential pathogenesis between those two viruses. Recent molecular tools have allowed studies of viral genome variability and investigation of links between viral plasticity and clinical evolution. The identification of key functional mutations in viral genomes may improve the knowledge of their clinical impact and is analyzed in depth in the present review.
Collapse
Affiliation(s)
- Cédric Hartard
- Laboratoire de Virologie, CHRU de Nancy Brabois, Vandœuvre-lès-Nancy, France.,Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, Vandoeuvre-lès-Nancy, France.,CNRS, LCPME UMR 7564, Nancy, France.,Faculté des Sciences et Technologies, Institut Jean Barriol, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Christophe Gantzer
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, Vandoeuvre-lès-Nancy, France.,CNRS, LCPME UMR 7564, Nancy, France.,Faculté des Sciences et Technologies, Institut Jean Barriol, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | | | - Evelyne Schvoerer
- Laboratoire de Virologie, CHRU de Nancy Brabois, Vandœuvre-lès-Nancy, France.,Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, Vandoeuvre-lès-Nancy, France.,CNRS, LCPME UMR 7564, Nancy, France.,Faculté des Sciences et Technologies, Institut Jean Barriol, Université de Lorraine, Vandœuvre-lès-Nancy, France
| |
Collapse
|
3
|
Meister TL, Bruening J, Todt D, Steinmann E. Cell culture systems for the study of hepatitis E virus. Antiviral Res 2019; 163:34-49. [PMID: 30653997 DOI: 10.1016/j.antiviral.2019.01.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/08/2019] [Accepted: 01/13/2019] [Indexed: 12/26/2022]
Abstract
Hepatitis E virus (HEV) is the causative agent of hepatitis E in humans and is the leading cause of enterically-transmitted viral hepatitis worldwide. Increasing numbers of HEV infections, together with no available specific anti-HEV treatment, contributes to the pathogen's major health burden. A robust cell culture system is required for virologic studies and the development of new antiviral drugs. Unfortunately, like other hepatitis viruses, HEV is difficult to propagate in conventional cell lines. Many different cell culture systems have been tested using various HEV strains, but viral replication usually progresses very slowly, and infection with low virion counts results in non-productive HEV replication. However, recent progress involving generation of cDNA clones and passaging primary patient isolates in distinct cell lines has improved in vitro HEV propagation. This review describes various approaches to cultivate HEV in cellular and animal models and how these systems are used to study HEV infections and evaluate anti-HEV drug candidates.
Collapse
Affiliation(s)
- Toni L Meister
- Ruhr-University Bochum, Faculty of Medicine, Department of Molecular and Medical Virology, Bochum, Germany
| | - Janina Bruening
- Ruhr-University Bochum, Faculty of Medicine, Department of Molecular and Medical Virology, Bochum, Germany
| | - Daniel Todt
- Ruhr-University Bochum, Faculty of Medicine, Department of Molecular and Medical Virology, Bochum, Germany.
| | - Eike Steinmann
- Ruhr-University Bochum, Faculty of Medicine, Department of Molecular and Medical Virology, Bochum, Germany.
| |
Collapse
|
4
|
Abstract
Hepatitis E virus (HEV) possesses many of the features of other positive-stranded RNA viruses but also adds HEV-specific nuances, making its virus-host interactions unique. Slow virus replication kinetics and fastidious growth conditions, coupled with the historical lack of an efficient cell culture system to propagate the virus, have left many gaps in our understanding of its structure and replication cycle. Recent advances in culturing selected strains of HEV and resolving the 3D structure of the viral capsid are filling in knowledge gaps, but HEV remains an extremely understudied pathogen. Many steps in the HEV life cycle and many aspects of HEV pathogenesis remain unknown, such as the host and viral factors that determine cross-species infection, the HEV-specific receptor(s) on host cells, what determines HEV chronicity and the ability to replicate in extrahepatic sites, and what regulates processing of the open reading frame 1 (ORF1) nonstructural polyprotein.
Collapse
Affiliation(s)
- Scott P Kenney
- Food Animal Health Research Program, The Ohio State University, Wooster, Ohio 44691
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| |
Collapse
|
5
|
Wendon, J, Cordoba J, Dhawan A, Larsen FS, Manns M, Samuel D, Simpson KJ, Yaron I, Bernardi M. EASL Clinical Practical Guidelines on the management of acute (fulminant) liver failure. J Hepatol 2017; 66:1047-1081. [PMID: 28417882 DOI: 10.1016/j.jhep.2016.12.003] [Citation(s) in RCA: 569] [Impact Index Per Article: 71.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 12/07/2016] [Indexed: 02/06/2023]
Abstract
The term acute liver failure (ALF) is frequently applied as a generic expression to describe patients presenting with or developing an acute episode of liver dysfunction. In the context of hepatological practice, however, ALF refers to a highly specific and rare syndrome, characterised by an acute abnormality of liver blood tests in an individual without underlying chronic liver disease. The disease process is associated with development of a coagulopathy of liver aetiology, and clinically apparent altered level of consciousness due to hepatic encephalopathy. Several important measures are immediately necessary when the patient presents for medical attention. These, as well as additional clinical procedures will be the subject of these clinical practice guidelines.
Collapse
|
6
|
van Tong H, Hoan NX, Wang B, Wedemeyer H, Bock CT, Velavan TP. Hepatitis E Virus Mutations: Functional and Clinical Relevance. EBioMedicine 2016; 11:31-42. [PMID: 27528267 PMCID: PMC5049923 DOI: 10.1016/j.ebiom.2016.07.039] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 07/29/2016] [Indexed: 02/07/2023] Open
Abstract
Hepatitis E virus (HEV) infection is a major cause of acute hepatitis and affects more than 20 million individuals, with three million symptomatic cases and 56,000 recognized HEV-related deaths worldwide. HEV is endemic in developing countries and is gaining importance in developed countries, due to increased number of autochthone cases. Although HEV replication is controlled by the host immune system, viral factors (especially specific viral genotypes and mutants) can modulate HEV replication, infection and pathogenesis. Limited knowledge exists on the contribution of HEV genome variants towards pathogenesis, susceptibility and to therapeutic response. Nonsynonymous substitutions can modulate viral proteins structurally and thus dysregulate virus-host interactions. This review aims to compile knowledge and discuss recent advances on the casual role of HEV heterogeneity and its variants on viral morphogenesis, pathogenesis, clinical outcome and antiviral resistance. HEV causes acute hepatitis and recently comes into focus because of persistent infection in immunocompromised patients. HEV variability can be associated with clinical pathogenesis and transmission dynamics. Mutations in the HEV genome can influence HEV physiology and virus-host interaction. HEV mutations and variability are likely associated with fulminant hepatic failure and chronic hepatitis E. The Y1320H and G1634R/K mutations in the RdRp domain contribute to antiviral resistance through enhancing HEV replication.
We searched MEDLINE database and PubMed for articles from 1980 through June 30, 2016. Search terms used in various combinations were “hepatitis E”, “hepatitis E virus”, “hepatitis E virus infection”, “hepatitis E virus mutation”, “HEV variability”, “HEV genotype”, “HEV drug resistance”, “HEV replication” and “ribavirin”. Articles resulting from these searches and relevant references cited in those articles were selected based on their related topics and were reviewed. Abstracts and reports from meetings were also included. Articles published in English were included.
Collapse
Affiliation(s)
- Hoang van Tong
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.
| | - Nghiem Xuan Hoan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Bo Wang
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - C-Thomas Bock
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany.
| | | |
Collapse
|
7
|
Zhang Y, Gong W, Zeng H, Wang L. Genetic Evolution of Hepatitis E Virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 948:73-88. [PMID: 27738980 DOI: 10.1007/978-94-024-0942-0_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Comparative analysis of the genomic sequences of multiple hepatitis E virus (HEV) isolates has revealed extensive genomic diversity among them. Recently, a variety of genetically distinct HEV variants have also been isolated and identified from large numbers of animal species, including birds, rabbits, rats, ferrets, bats, cutthroat trout, and camels, among others. Furthermore, it has been reported that recombination in HEV genomes takes place in animals and in human patients. Also, chronic HEV infection in immunocompromised individuals has revealed the presence of viral strains carrying insertions from human genes. This paper reviews the current knowledge on the genomic variability and evolution of HEV.
Collapse
Affiliation(s)
- Yulin Zhang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Wanyun Gong
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Hang Zeng
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Ling Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|