1
|
Rueda-Maíllo F, Garrido-Jurado I, Kotta-Loizou I, Quesada-Moraga E. A mycoviral infection drives virulence and ecological fitness of the entomopathogenic fungus Beauveria bassiana. J Invertebr Pathol 2024; 209:108251. [PMID: 39644991 DOI: 10.1016/j.jip.2024.108251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Entomopathogenic ascomycetes are important natural regulators of insect pest populations and an increasingly adopted microbial control option. Fungal virulence in entomopathogenic ascomycetes can be modified by mycoviruses, viruses that infect fungi, whereas the possible role of these viruses on the physical and biochemical properties of the virus-containing fungal strains and on their ecological fitness has remained largely unexplored. Here, utilizing a Beauveria bassiana strain naturally infected with two mycoviruses, Beauveria bassiana partitivirus 2 (BbPV-2) and Beauveria bassiana polymycovirus 1 (BbPmV-1), we found that the mycovirus-containing strain is hypervirulent towards the experimental insect Galleria mellonella and shows major physical and biochemical changes in spore size, isoelectric point, and Pr1 activity, but even more impactful, the mycoviral infection confers a significant environmental- abiotic and biotic stress tolerance to the fungus. Hence, mycovirus infection expanded the temperature range for fungal growth and germination, and improved tolerance to osmotic stress, water stress, and UV-B radiation. Similarly, the antagonistic activity of the mycovirus-containing strain against Trichoderma harzianum was increased as compared to the mycovirus-free one. Taken together, these data suggest for the first time a mycovirus related adaptation of key traits indicators of environmental competence of a beneficial fungus, rendering these mycoviruses as potent tools for entomopathogenic fungal strain selection and development as mycoinsecticides.
Collapse
Affiliation(s)
- F Rueda-Maíllo
- Department of Agronomy, Maria de Maeztu Excellence Unit DAUCO, ETSIAM, University of Cordoba, Campus Universitario Rabanales 14071, Cordoba, Spain
| | - I Garrido-Jurado
- Department of Agronomy, Maria de Maeztu Excellence Unit DAUCO, ETSIAM, University of Cordoba, Campus Universitario Rabanales 14071, Cordoba, Spain
| | - I Kotta-Loizou
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, AL10 9AB, Hatfield, United Kingdom; Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, SW7 2AZ, London, United Kingdom
| | - E Quesada-Moraga
- Department of Agronomy, Maria de Maeztu Excellence Unit DAUCO, ETSIAM, University of Cordoba, Campus Universitario Rabanales 14071, Cordoba, Spain.
| |
Collapse
|
2
|
Sui L, Lu Y, Xu M, Liu J, Zhao Y, Li Q, Zhang Z. Insect hypovirulence-associated mycovirus confers entomopathogenic fungi with enhanced resistance against phytopathogens. Virulence 2024; 15:2401978. [PMID: 39263889 PMCID: PMC11404608 DOI: 10.1080/21505594.2024.2401978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/12/2024] [Accepted: 08/31/2024] [Indexed: 09/13/2024] Open
Abstract
Mycoviruses can alter the biological characteristics of host fungi, including change virulence or pathogenicity of phytopathogens and entomopathogenic fungi (EPF). However, most studies on the mycoviruses found in EPF have focused on the effects of the viruses on the virulence of host fungi towards insect pests, with relatively few reports on the effects to the host fungi with regard to plant disease resistance in hosts. The present study investigated the effects of the mycovirus Beauveria bassiana chrysovirus 2 (BbCV2) virus infection on host biological characteristics, evaluated antagonistic activity of BbCV2 against two phytopathogenic fungi (Sclerotinia sclerotiorum and Botrytis cinerea), and transcriptome analysis was used to reveal the interactions between viruses and hosts. Our results showed that BbCV2 virus infection increased B. bassiana's growth rate, spore production, and biomass, it also enhanced the capacity of host fungi and their metabolic products to inhibit phytopathogenic fungi. BbCV2 virus infection reduced the contents of the two pathogens in tomato plants significantly, and transcriptome analysis revealed that the genes related to competition for ecological niches and nutrition, mycoparasitism and secondary metabolites in B. bassiana were significantly up-regulated after viral infection. These findings indicated that the mycovirus infection is an important factor to enhance the ability of B. bassiana against plant disease after endophytic colonization. We suggest that mycovirus infection causes a positive effect on B. bassiana against phytopathogens, which should be considered as a potential strategy to promote the plant disease resistance of EPF.
Collapse
Affiliation(s)
- Li Sui
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling, Jilin, China
| | - Yang Lu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling, Jilin, China
| | - Mengnan Xu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling, Jilin, China
- College of Life Sciences, Jilin Normal University, Siping, China
| | - Jianfeng Liu
- College of Life Sciences, Jilin Normal University, Siping, China
| | - Yu Zhao
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling, Jilin, China
| | - Qiyun Li
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling, Jilin, China
- College of Life Sciences, Jilin Normal University, Siping, China
- College of Agriculture, Jilin Agricultural Science and Technology University, Jilin, China
| | - Zhengkun Zhang
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling, Jilin, China
- College of Life Sciences, Jilin Normal University, Siping, China
| |
Collapse
|
3
|
Xu M, Liu H, Jia X, Zou X, Lu Y, Sui L, Li Q, Zhang Z, Liu J. The complete genome sequences of a negative single-stranded RNA virus and a double-stranded RNA virus coinfecting the entomopathogenic fungus Beauveria bassiana Vuillemin. Arch Virol 2024; 169:42. [PMID: 38332318 DOI: 10.1007/s00705-024-05985-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/11/2024] [Indexed: 02/10/2024]
Abstract
Beauveria bassiana Vuillemin is an entomopathogenic fungus that has been developed as a biological insecticide. B. bassiana can be infected by single or multiple mycoviruses, most of which are double-stranded RNA (dsRNA) viruses, while infections with single-stranded RNA (ssRNA) viruses, especially negative single-stranded RNA (-ssRNA) viruses, have been observed less frequently. In the present study, we sequenced and analyzed the complete genomes of two new different mycoviruses coinfecting a single B. bassiana strain: a -ssRNA virus which we have named "Beauveria bassiana negative-strand RNA virus 1" (BbNSRV1), and a dsRNA virus, which we have named "Beauveria bassiana orthocurvulavirus 1" (BbOCuV1). The genome of BbNSRV1 consists of a single segment of negative-sense, single-stranded RNA with a length of 6169 nt, containing a single open reading frame (ORF) encoding a putative RNA-dependent RNA polymerase (RdRp) with 1949 aa (220.1 kDa). BLASTx analysis showed that the RdRp had the highest sequence similarity (59.79%) to that of Plasmopara viticola lesion associated mononegaambi virus 2, a member of the family Mymonaviridae. This is the first report of a -ssRNA mycovirus infecting B. bassiana. The genome of BbOCuV1 consists of two dsRNA segments, 2164 bp and 1765 bp in length, respectively, with dsRNA1 encoding a protein with conserved RdRp motifs and 70.75% sequence identity to the putative RdRp of the taxonomically unassigned mycovirus Fusarium graminearum virus 5 (FgV5), and the dsRNA2 encoding a putative coat protein with sequence identity 64.26% to the corresponding protein of the FgV5. Phylogenetic analysis indicated that BbOCuV1 belongs to a taxonomically unassigned group of dsRNA mycoviruses related to members of the families Curvulaviridae and Partitiviridae. Hence, it might be the member of a new family that remains to be named and formally recognized.
Collapse
Affiliation(s)
- Mengnan Xu
- Jilin Normal University, Siping, 136000, China
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of agriculture and rural affairs, Changchun, 130033, China
| | - Hongyu Liu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of agriculture and rural affairs, Changchun, 130033, China
- Jilin Agricultural University, Changchun, 130118, China
| | - Xue Jia
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of agriculture and rural affairs, Changchun, 130033, China
- Jilin Agricultural University, Changchun, 130118, China
| | - Xiaowei Zou
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of agriculture and rural affairs, Changchun, 130033, China
| | - Yizhuo Lu
- Jilin Normal University, Siping, 136000, China
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of agriculture and rural affairs, Changchun, 130033, China
| | - Li Sui
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of agriculture and rural affairs, Changchun, 130033, China
| | - Qiyun Li
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of agriculture and rural affairs, Changchun, 130033, China
- Jilin Agricultural University, Changchun, 130118, China
- Jilin Agricultural Science and Technology University, Jilin, 132101, China
| | - Zhengkun Zhang
- Jilin Normal University, Siping, 136000, China.
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of agriculture and rural affairs, Changchun, 130033, China.
- Jilin Agricultural University, Changchun, 130118, China.
| | | |
Collapse
|
4
|
Hough B, Steenkamp E, Wingfield B, Read D. Fungal Viruses Unveiled: A Comprehensive Review of Mycoviruses. Viruses 2023; 15:1202. [PMID: 37243288 PMCID: PMC10224137 DOI: 10.3390/v15051202] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/07/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Mycoviruses (viruses of fungi) are ubiquitous throughout the fungal kingdom and are currently classified into 23 viral families and the genus botybirnavirus by the International Committee on the Taxonomy of Viruses (ICTV). The primary focus of mycoviral research has been on mycoviruses that infect plant pathogenic fungi, due to the ability of some to reduce the virulence of their host and thus act as potential biocontrol against these fungi. However, mycoviruses lack extracellular transmission mechanisms and rely on intercellular transmission through the hyphal anastomosis, which impedes successful transmission between different fungal strains. This review provides a comprehensive overview of mycoviruses, including their origins, host range, taxonomic classification into families, effects on their fungal counterparts, and the techniques employed in their discovery. The application of mycoviruses as biocontrol agents of plant pathogenic fungi is also discussed.
Collapse
Affiliation(s)
| | | | - Brenda Wingfield
- Forestry & Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics & Microbiology, University of Pretoria, Pretoria 0002, South Africa; (B.H.); (E.S.); (D.R.)
| | | |
Collapse
|
5
|
Li Y, Liu S, Guo K, Ding W, Wang R. Virome of Pseudostellaria heterophylla: Identification and characterization of three novel carlaviruses and one novel amalgavirus associated with viral diseases of Pseudostellaria heterophylla. Front Microbiol 2022; 13:955089. [PMID: 36246219 PMCID: PMC9559581 DOI: 10.3389/fmicb.2022.955089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
Pseudostellaria heterophylla is a traditional Chinese herbal medicine, which has been cultivated for hundreds of years. Viral diseases of P. heterophylla occur widely and limit the yield and quality of this medicinal plant. In this study, five leaf samples of P. heterophylla with typical viral symptoms were collected from four main producing regions that are distributed in Fujian, Guizhou, and Anhui Provinces in China and analyzed by next-generation sequencing. Comprehensive bioinformatics analyses revealed that nine viruses in five genera Carlavirus, Potyvirus, Fabavirus, Cucumovirus, and Amalgavirus infected P. heterophylla. Among these viruses, three novel and two known carlaviruses, tentatively designated Pseudostellaria heterophylla carlavirus 1, 2, and 3 (PhCV1, PhCV2, and PhCV3), Jasmine virus C isolate Ph (Ph-JVC) and Stevia carlavirus 1 isolate Ph (Ph-StCV1), respectively, were first identified in P. heterophylla. PhCV1-3 share a similar genomic organization and clear sequence homology with members in the genus Carlavirus and could potentially be classified as new species of this genus. One novel amalgavirus, tentatively designated P. heterophylla amalgavirus 1 (PhAV1), was first identified in P. heterophylla. It had a typical genomic organization of the genus Amalgavirus. In PhAV1, the + 1 programmed ribosomal frameshifting, which is prevalent in most amalgaviruses, was identified and used in the expression of RNA-dependent RNA polymerase (RdRp). Combined with a phylogenetic analysis, PhAV1 could potentially be classified as new species of the genus Amalgavirus. In addition, multiple Broad bean wilt virus 2 (BBWV2) variants, Turnip mosaic virus (TuMV), and Cucumber mosaic virus (CMV), which have been reported in P. heterophylla, were also detected in this study. The distribution of PhCV1-3, Ph-JVC, Ph-StCV1, TuMV, BBWV2, and CMV in four production regions in Fujian, Guizhou, and Anhui Provinces was determined. This study increased our understanding of P. heterophylla virome and provided valuable information for the development of a molecular diagnostic technique and control of viral diseases in P. heterophylla.
Collapse
|
6
|
Molecular characterization of a novel double-stranded RNA virus infecting the entomopathogenic fungus Metarhizium brunneum. Arch Microbiol 2022; 204:606. [PMID: 36074193 DOI: 10.1007/s00203-022-03224-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/20/2022] [Accepted: 08/26/2022] [Indexed: 11/02/2022]
Abstract
There are four dsRNAs segments present in the entomopathogenic fungus Metarhizium brunneum strain RCEF0766. The genomic segments dsRNA1 and dsRNA3 are of a novel virus, "Metarhizium brunneum bipartite mycovirus 1" (MbBV1), while dsRNA2 and dsRNA4 are the components of the Metarhizium brunneum partitivirus 2 (MbPV2), a member in genus Gammapartitivirus of the family Partitiviridae based on molecular analysis and RT-PCR. This suggests that the strain RCEF0766 was co-infected by two different mycoviruses. The complete genome sequence of MbBV1 was elucidated by high-throughput sequencing and RLM-RACE. MbBV1 consists of two dsRNAs (1987 and 1642 bp) encode open-reading frames (ORFs). The ORF1 in dsRNA 1 encode is a putative RNA-dependent RNA polymerase (RdRp) with the molecular weight of 68.08 kDa, while ORF2 in dsRNA 2 encodes a hypothetical protein with the molecular weight of 33.07 kDa. The deduced proteins of ORF1 and ORF2 have the highest identity to those of Erysiphe necator-associated bipartite virus 1 (76.88% and 65.30%). Based on the amino acid sequence of RdRp, MbBV1 is phylogenetically clustered together with the unassigned mycoviruses and represents a distinct lineage. Our study proposes that MbBV1 is a novel mycovirus with bisegmented dsRNA genomes and should be considered a new member of the unassigned group.
Collapse
|
7
|
Vendrell-Mir P, Perroud PF, Haas FB, Meyberg R, Charlot F, Rensing SA, Nogué F, Casacuberta JM. A vertically transmitted amalgavirus is present in certain accessions of the bryophyte Physcomitrium patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1786-1797. [PMID: 34687260 DOI: 10.1111/tpj.15545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
In the last few years, next-generation sequencing techniques have started to be used to identify new viruses infecting plants. This has allowed to rapidly increase our knowledge on viruses other than those causing symptoms in economically important crops. Here we used this approach to identify a virus infecting Physcomitrium patens that has the typical structure of the double-stranded RNA endogenous viruses of the Amalgaviridae family, which we named Physcomitrium patens amalgavirus 1, or PHPAV1. PHPAV1 is present only in certain accessions of P. patens, where its RNA can be detected throughout the cell cycle of the plant. Our analysis demonstrates that PHPAV1 can be vertically transmitted through both paternal and maternal germlines, in crosses between accessions that contain the virus with accessions that do not contain it. This work suggests that PHPAV1 can replicate in genomic backgrounds different from those that actually contain the virus and opens the door for future studies on virus-host coevolution.
Collapse
Affiliation(s)
- Pol Vendrell-Mir
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Bellaterra, Barcelona, 08193, Spain
| | - Pierre-François Perroud
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Fabian B Haas
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Rabea Meyberg
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Florence Charlot
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Stefan A Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Fabien Nogué
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Josep M Casacuberta
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Bellaterra, Barcelona, 08193, Spain
| |
Collapse
|
8
|
Kang Q, Li L, Li J, Zhang S, Xie J, Li Q, Zhang Z. A novel polymycovirus with defective RNA isolated from the entomopathogenic fungus Beauveria bassiana Vuillemin. Arch Virol 2021; 166:3487-3492. [PMID: 34623502 DOI: 10.1007/s00705-021-05238-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
A novel double-stranded RNA virus was isolated and identified from Beauveria bassiana Vuillemin, derived from the muscardine cadaver of an Ostrinia furnacalis larva in China. The virus contains six dsRNAs, and each viral dsRNA contains only one open reading frame (ORF). As in other polymycoviruses, dsRNA1 encodes an RNA-dependent RNA polymerase (RdRp), dsRNA3 encodes a methyltransferase (MTR), and dsRNA4 encodes a proline-alanine-serine-rich protein. A BLASTp search revealed that the viral RdRp domain showed 79.43%, 79.04%, and 59.05% sequence identity to Beauveria bassiana polymycovirus 2 and 3 (BbPmV-2, BbPmV-3) and Magnaporthe oryzae polymycovirus 1 (MoPmV-1), respectively. Phylogenetic analysis based on RdRp sequences showed that the phylogenetically closest relatives of this virus are BbPmV-2, BbPmV-3, and MoPmV-1. This virus, along with previously ill-defined polymycoviruses (BbPmV-2 and BbPmV-3), appears to belong to an as-yet-unestablished species. The findings further suggest that the virus is a new member of the genus Polymycovirus within the family Polymycoviridae, and we have named it "Beauveria bassiana polymycovirus 4" (BbPmV-4). However, the sixth dsRNA is a defective RNA with the same sequence as that of dsRNA4 except for a deletion of 312 bp from nt 185 to nt 496, but it still contains a complete ORF. To our knowledge, this is the first report of the existence of a defective RNA in a polymycovirus.
Collapse
Affiliation(s)
- Qin Kang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China.,Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Le Li
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.,College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Jincang Li
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Songbai Zhang
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Qiyun Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China. .,Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Zhengkun Zhang
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| |
Collapse
|
9
|
Li L, Kang Q, Zhang S, Hai D, Lu Y, Sui L, Zhang Z, Li Q. The complete genome sequence of a novel chrysovirus from the entomopathogenic fungus Beauveria bassiana Vuillemin. Arch Virol 2021; 166:3443-3447. [PMID: 34553285 DOI: 10.1007/s00705-021-05215-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
Beauveria bassiana, an entomopathogenic fungus, is used for arthropod pest control worldwide. Here, we report the discovery and characterization of a novel double-stranded RNA (dsRNA) mycovirus, Beauveria bassiana chrysovirus 2 (BbCV-2), isolated from a Chinese B. bassiana strain. The genome sequence of the virus was determined by metagenomic sequencing, RT-PCR, and RACE cloning and was found to consist of four dsRNA segments that are 3441 bp, 2779 bp, 2925 bp, and 2688 bp long, respectively. Each dsRNA segment contains a single ORF. The ORF of dsRNA1 encodes a 1114-amino-acid (aa) protein (123.4 kDa) with a conserved RNA-dependent RNA polymerase (RdRp) motif, the sequence of which showed the highest identity of only 16.13% to that of Beauveria bassiana chrysovirus-1 (BbCV-1). The ORF of dsRNA2 encodes an 805-aa coat protein (CP) (84.7 kDa). The ORFs of dsRNAs 3 and 4 encodes proteins of undetermined function. The virus is a new member of the family Chrysoviridae from B. bassiana.
Collapse
Affiliation(s)
- Le Li
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, People's Republic of China.,College of Plant Protection, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Qin Kang
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, People's Republic of China.,Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Songbai Zhang
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, Hubei, People's Republic of China
| | - Du Hai
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Yang Lu
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, People's Republic of China
| | - Li Sui
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, People's Republic of China
| | - Zhengkun Zhang
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, People's Republic of China.
| | - Qiyun Li
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, People's Republic of China. .,College of Plant Protection, Jilin Agricultural University, Changchun, 130118, People's Republic of China. .,Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
10
|
Filippou C, Diss RM, Daudu JO, Coutts RHA, Kotta-Loizou I. The Polymycovirus-Mediated Growth Enhancement of the Entomopathogenic Fungus Beauveria bassiana Is Dependent on Carbon and Nitrogen Metabolism. Front Microbiol 2021; 12:606366. [PMID: 33603722 PMCID: PMC7884332 DOI: 10.3389/fmicb.2021.606366] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
Polymycoviridae is a growing family of mycoviruses whose members typically have non-conventional capsids and multi-segmented, double-stranded (ds) RNA genomes. Beauveria bassiana polymycovirus (BbPmV) 1 is known to enhance the growth and virulence of its fungal host, the entomopathogenic ascomycete and popular biological control agent B. bassiana. Here we report the complete sequence of BbPmV-3, which has six genomic dsRNA segments. Phylogenetic analysis of RNA-dependent RNA polymerase (RdRp) protein sequences revealed that BbPmV-3 is closely related to the partially sequenced BbPmV-2 but not BbPmV-1. Nevertheless, both BbPmV-3 and BbPmV-1 have similar effects on their respective host isolates ATHUM 4946 and EABb 92/11-Dm, affecting pigmentation, sporulation, and radial growth. Production of conidia and radial growth are significantly enhanced in virus-infected isolates as compared to virus-free isogenic lines on Czapek-Dox complete and minimal media that contain sucrose and sodium nitrate. However, this polymycovirus-mediated effect on growth is dependent on the carbon and nitrogen sources available to the host fungus. Both BbPmV-3 and BbPmV-1 increase growth of ATHUM 4946 and EABb 92/11-Dm when sucrose is replaced by lactose, trehalose, glucose, or glycerol, while the effect is reversed on maltose and fructose. Similarly, both BbPmV-3 and BbPmV-1 decrease growth of ATHUM 4946 and EABb 92/11-Dm when sodium nitrate is replaced by sodium nitrite, potassium nitrate, or ammonium nitrate. In conclusion, the effects of polymycoviruses on B. bassiana are at least partially mediated via its metabolic pathways.
Collapse
Affiliation(s)
- Charalampos Filippou
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Department of Clinical, Pharmaceutical and Biological Science, University of Hertfordshire, Hatfield, United Kingdom
| | - Rebecca M Diss
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - John O Daudu
- Department of Clinical, Pharmaceutical and Biological Science, University of Hertfordshire, Hatfield, United Kingdom
| | - Robert H A Coutts
- Department of Clinical, Pharmaceutical and Biological Science, University of Hertfordshire, Hatfield, United Kingdom
| | - Ioly Kotta-Loizou
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
11
|
Hu Z, Guo J, Da Gao B, Zhong J. A novel mycovirus isolated from the plant-pathogenic fungus Alternaria dianthicola. Arch Virol 2020; 165:2105-2109. [DOI: 10.1007/s00705-020-04700-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/14/2020] [Indexed: 11/27/2022]
|
12
|
Yang G, Hu F, Shi N, Wang P, Huang B. A novel non-segmented double-stranded RNA virus isolated from the basal fungus Conidiobolus sp. Arch Virol 2020; 165:1919-1923. [DOI: 10.1007/s00705-020-04692-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/07/2020] [Indexed: 12/01/2022]
|
13
|
Complete genome sequence of a novel partitivirus from the entomogenous fungus Beauveria bassiana in China. Arch Virol 2019; 164:3141-3144. [DOI: 10.1007/s00705-019-04428-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/10/2019] [Indexed: 11/25/2022]
|
14
|
Liu C, Li M, Redda ET, Mei J, Zhang J, Wu B, Jiang X. A novel double-stranded RNA mycovirus isolated from Trichoderma harzianum. Virol J 2019; 16:113. [PMID: 31511029 PMCID: PMC6737671 DOI: 10.1186/s12985-019-1213-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 08/05/2019] [Indexed: 11/24/2022] Open
Abstract
Background Trichoderma spp. are used extensively in agriculture as biological control agents to prevent soil-borne plant diseases. In recent years, mycoviruses from fungi have attracted increasing attention due to their effects on their hosts, but Trichoderma mycoviruses have not been the subject of extensive study. We sought to discover novel mycoviruses from Trichoderma spp. and to determine the effects of the biocontrol function of Trichoderma spp. Methods Mycoviruses were screened by dsRNA extraction and metagenomic analysis. RT-PCR, 5′ RACE, and 3′ RACE were used to obtain the genome sequence. MEGA software was used to classify the new mycovirus. The effects of the identified mycovirus on the biological properties of the host strain 525 were evaluated using cucumber plants and Fusarium oxysporum f. sp. cucumerinum. Results A novel mycovirus, Trichoderma harzianum mycovirus 1 (ThMV1) (accession number MH155602), was discovered in Trichoderma harzianum strain 525, a soil-borne fungus collected from Inner Mongolia, China. The mycovirus exhibited a double-stranded RNA (dsRNA) genome with a complete genome sequence of 3160 base pairs and two open reading frames (ORFs) on the negative strand. Phylogenetic analysis indicated that it belongs to an unclassified family of dsRNA mycoviruses. The removal of ThMV1 from the host 525 strain reduced host biomass production and improved the biocontrol capability of the host for Fusarium oxysporum f. sp. cucumerinum. At same time, the presence of ThMV1 improved the growth of cucumber. Conclusion ThMV1 is a new unclassified mycovirus found in T. harzianum. It not only affects the phenotype of the host strain but also reduces its biocontrol function, which sheds light on the interaction between the mycovirus and Trichoderma spp. Electronic supplementary material The online version of this article (10.1186/s12985-019-1213-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chenchen Liu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 West Yuanmingyuan Rd., Haidian District, Beijing, 100193, People's Republic of China
| | - Mei Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 West Yuanmingyuan Rd., Haidian District, Beijing, 100193, People's Republic of China
| | - Estifanos Tsegaye Redda
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 West Yuanmingyuan Rd., Haidian District, Beijing, 100193, People's Republic of China
| | - Jie Mei
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 West Yuanmingyuan Rd., Haidian District, Beijing, 100193, People's Republic of China
| | - Jiantai Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 West Yuanmingyuan Rd., Haidian District, Beijing, 100193, People's Republic of China
| | - Beilei Wu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 West Yuanmingyuan Rd., Haidian District, Beijing, 100193, People's Republic of China.
| | - Xiliang Jiang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 West Yuanmingyuan Rd., Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
15
|
Molecular characterization of a novel mycovirus from the plant pathogenic fungus Colletotrichum gloeosporioides. Arch Virol 2019; 164:2859-2863. [DOI: 10.1007/s00705-019-04354-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 06/28/2019] [Indexed: 11/25/2022]
|
16
|
Sutela S, Poimala A, Vainio EJ. Viruses of fungi and oomycetes in the soil environment. FEMS Microbiol Ecol 2019; 95:5542194. [DOI: 10.1093/femsec/fiz119] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/30/2019] [Indexed: 12/17/2022] Open
Abstract
ABSTRACTSoils support a myriad of organisms hosting highly diverse viromes. In this minireview, we focus on viruses hosted by true fungi and oomycetes (members of Stamenopila, Chromalveolata) inhabiting bulk soil, rhizosphere and litter layer, and representing different ecological guilds, including fungal saprotrophs, mycorrhizal fungi, mutualistic endophytes and pathogens. Viruses infecting fungi and oomycetes are characterized by persistent intracellular nonlytic lifestyles and transmission via spores and/or hyphal contacts. Almost all fungal and oomycete viruses have genomes composed of single-stranded or double-stranded RNA, and recent studies have revealed numerous novel viruses representing yet unclassified family-level groups. Depending on the virus–host combination, infections can be asymptomatic, beneficial or detrimental to the host. Thus, mycovirus infections may contribute to the multiplex interactions of hosts, therefore likely affecting the dynamics of fungal communities required for the functioning of soil ecosystems. However, the effects of fungal and oomycete viruses on soil ecological processes are still mostly unknown. Interestingly, new metagenomics data suggest an extensive level of horizontal virus transfer between plants, fungi and insects.
Collapse
Affiliation(s)
- Suvi Sutela
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Anna Poimala
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Eeva J Vainio
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| |
Collapse
|
17
|
Gilbert KB, Holcomb EE, Allscheid RL, Carrington JC. Hiding in plain sight: New virus genomes discovered via a systematic analysis of fungal public transcriptomes. PLoS One 2019; 14:e0219207. [PMID: 31339899 PMCID: PMC6655640 DOI: 10.1371/journal.pone.0219207] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/18/2019] [Indexed: 11/25/2022] Open
Abstract
The distribution and diversity of RNA viruses in fungi is incompletely understood due to the often cryptic nature of mycoviral infections and the focused study of primarily pathogenic and/or economically important fungi. As most viruses that are known to infect fungi possess either single-stranded or double-stranded RNA genomes, transcriptomic data provides the opportunity to query for viruses in diverse fungal samples without any a priori knowledge of virus infection. Here we describe a systematic survey of all transcriptomic datasets from fungi belonging to the subphylum Pezizomycotina. Using a simple but effective computational pipeline that uses reads discarded during normal RNA-seq analyses, followed by identification of a viral RNA-dependent RNA polymerase (RdRP) motif in de novo assembled contigs, 59 viruses from 44 different fungi were identified. Among the viruses identified, 88% were determined to be new species and 68% are, to our knowledge, the first virus described from the fungal species. Comprehensive analyses of both nucleotide and inferred protein sequences characterize the phylogenetic relationships between these viruses and the known set of mycoviral sequences and support the classification of up to four new families and two new genera. Thus the results provide a deeper understanding of the scope of mycoviral diversity while also increasing the distribution of fungal hosts. Further, this study demonstrates the suitability of analyzing RNA-seq data to facilitate rapid discovery of new viruses.
Collapse
Affiliation(s)
- Kerrigan B. Gilbert
- Donald Danforth Plant Science Center, Saint Louis, Missouri, United States of America
| | - Emily E. Holcomb
- Donald Danforth Plant Science Center, Saint Louis, Missouri, United States of America
| | - Robyn L. Allscheid
- Donald Danforth Plant Science Center, Saint Louis, Missouri, United States of America
| | - James C. Carrington
- Donald Danforth Plant Science Center, Saint Louis, Missouri, United States of America
| |
Collapse
|
18
|
Lee JS, Goh CJ, Park D, Hahn Y. Identification of a novel plant RNA virus species of the genus Amalgavirus in the family Amalgaviridae from chia (Salvia hispanica). Genes Genomics 2019; 41:10.1007/s13258-019-00782-1. [PMID: 30649686 DOI: 10.1007/s13258-019-00782-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/03/2019] [Indexed: 01/30/2023]
Abstract
BACKGROUND Chia (Salvia hispanica) is a flowering plant in the family Lamiaceae, which produces seeds that are a rich source of various nutritional compounds. OBJECTIVE To identify a novel RNA virus potentially associated with chia. METHODS Transcriptome data obtained from developing chia seeds were assembled into contigs. Sequence contigs containing an open reading frame (ORF) that showed amino acid identities with a viral RNA-dependent RNA polymerase (RdRp) were identified and analyzed. RESULTS A genomic sequence of a novel plant RNA virus named Salvia hispanica RNA virus 1 (ShRV1) was identified in a chia seed transcriptome dataset. The ShRV1 genome sequence has two ORFs that showed high sequence identities with ORFs of known members of the genus Amalgavirus in the family Amalgaviridae. Amalgaviridae is a family of positive-sense double-stranded non-segmented RNA viruses that infect plants, fungi, and animals. The ShRV1 genome encodes two proteins: a putative replication factory matrix-like protein from ORF1 and an RdRp from the fused ORF of ORF1 and ORF2 by a + 1 programmed ribosomal frameshifting (PRF) mechanism. A conserved + 1 PRF motif sequence UUU_CGU was found at the ORF1/ORF2 boundary. A comparison of 31 amalgavirus ORF1 + 2 fusion proteins revealed that only three positions were repeatedly used as a + 1 PRF site during amalgavirus evolution. CONCLUSION ShRV1 is a novel virus found to be associated with chia and may be useful for studying the molecular features of amalgaviruses.
Collapse
Affiliation(s)
- Ji Seok Lee
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, South Korea
| | - Chul Jun Goh
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, South Korea
| | - Dongbin Park
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, South Korea
| | - Yoonsoo Hahn
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, South Korea.
| |
Collapse
|
19
|
Roossinck MJ. Evolutionary and ecological links between plant and fungal viruses. THE NEW PHYTOLOGIST 2019; 221:86-92. [PMID: 30084143 DOI: 10.1111/nph.15364] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/21/2018] [Indexed: 06/08/2023]
Abstract
Contents Summary 86 I. Introduction 86 II. Lineages shared by plant and fungal viruses 87 III. Virus transmission between plants and fungi 90 IV. Additional plant virus families identified in fungi by metagenomics 91 Acknowledgements 91 References 91 SUMMARY: Plants and microorganisms have been interacting in both positive and negative ways for millions of years. They are also frequently infected with viruses that can have positive or negative impacts. A majority of virus families with members that infect fungi have counterparts that infect plants, and in some cases the phylogenetic analyses of these virus families indicate transmission between the plant and fungal kingdoms. These similarities reflect the host relationships; fungi are evolutionarily more closely related to animals than to plants but share very few viral signatures with animal viruses. The details of several of these interactions are described, and the evolutionary implications of viral cross-kingdom interactions and horizontal gene transfer are proposed.
Collapse
Affiliation(s)
- Marilyn J Roossinck
- Department of Plant Pathology and Environmental Microbiology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
20
|
The complete genome sequence of a double-stranded RNA mycovirus from Fusarium graminearum strain HN1. Arch Virol 2017; 162:2119-2124. [DOI: 10.1007/s00705-017-3317-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 02/23/2017] [Indexed: 10/20/2022]
|
21
|
Pyle JD, Keeling PJ, Nibert ML. Amalga-like virus infecting Antonospora locustae, a microsporidian pathogen of grasshoppers, plus related viruses associated with other arthropods. Virus Res 2017; 233:95-104. [PMID: 28267607 DOI: 10.1016/j.virusres.2017.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/18/2017] [Accepted: 02/21/2017] [Indexed: 12/16/2022]
Abstract
A previously reported Expressed Sequence Tag (EST) library from spores of microsporidian Antonospora locustae includes a number of clones with sequence similarities to plant amalgaviruses. Reexamining the sequence accessions from that library, we found additional such clones, contributing to a 3247-nt contig that approximates the length of an amalga-like virus genome. Using A. locustae spores stored from that previous study, and new ones obtained from the same source, we newly visualized the putative dsRNA genome of this virus and obtained amplicons yielding a 3387-nt complete genome sequence. Phylogenetic analyses suggested it as prototype strain of a new genus in family Amalgaviridae. The genome contains two partially overlapping long ORFs, with downstream ORF2 in the +1 frame relative to ORF1 and a proposed motif for +1 ribosomal frameshifting in the region of overlap. Subsequent database searches using the predicted fusion protein sequence of this new amalga-like virus identified related sequences in the transcriptome of a basal hexapod, the springtail species Tetrodontophora bielanensis. We speculate that this second new amalga-like virus (contig length, 3475 nt) likely also derived from a microsporidian, or related organism, which was associated with the springtail specimens at the time of sampling for transcriptome analysis. Other findings of interest include evidence that the ORF1 translation products of these two new amalga-like viruses contain a central region of predicted α-helical coiled coil, as recently reported for plant amalgaviruses, and transcriptome-based evidence for another new amalga-like virus in the transcriptome of another basal hexapod, the two-pronged bristletail species Campodea augens.
Collapse
Affiliation(s)
- Jesse D Pyle
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Harvard Ph.D. Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA 02115, USA
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Max L Nibert
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Harvard Ph.D. Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Kotta-Loizou I, Coutts RHA. Studies on the Virome of the Entomopathogenic Fungus Beauveria bassiana Reveal Novel dsRNA Elements and Mild Hypervirulence. PLoS Pathog 2017; 13:e1006183. [PMID: 28114361 PMCID: PMC5293280 DOI: 10.1371/journal.ppat.1006183] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 02/06/2017] [Accepted: 01/12/2017] [Indexed: 12/20/2022] Open
Abstract
The entomopathogenic fungus Beauveria bassiana has a wide host range and is used as a biocontrol agent against arthropod pests. Mycoviruses have been described in phytopathogenic fungi while in entomopathogenic fungi their presence has been reported only rarely. Here we show that 21.3% of a collection of B. bassiana isolates sourced from worldwide locations, harbor dsRNA elements. Molecular characterization of these elements revealed the prevalence of mycoviruses belonging to the Partitiviridae and Totiviridae families, the smallest reported virus to date, belonging to the family Narnaviridae, and viruses unassigned to a family or genus. Of particular importance is the discovery of members of a newly proposed family Polymycoviridae in B. bassiana. Polymycoviruses, previously designated as tetramycoviruses, consist of four non-conventionally encapsidated capped dsRNAs. The presence of additional non-homologous genomic segments in B. bassiana polymycoviruses and other fungi illustrates the unprecedented dynamic nature of the viral genome. Finally, a comparison of virus-free and virus-infected isogenic lines derived from an exemplar B. bassiana isolate revealed a mild hypervirulent effect of mycoviruses on the growth of their host isolate and on its pathogenicity against the greater wax moth Galleria mellonella, highlighting for the first time the potential of mycoviruses as enhancers of biocontrol agents.
Collapse
Affiliation(s)
- Ioly Kotta-Loizou
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
- * E-mail:
| | - Robert H. A. Coutts
- Geography, Environment and Agriculture Division, Department of Biological and Environmental Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| |
Collapse
|
23
|
Nibert ML, Pyle JD, Firth AE. A +1 ribosomal frameshifting motif prevalent among plant amalgaviruses. Virology 2016; 498:201-208. [PMID: 27596539 PMCID: PMC5052127 DOI: 10.1016/j.virol.2016.07.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 11/28/2022]
Abstract
Sequence accessions attributable to novel plant amalgaviruses have been found in the Transcriptome Shotgun Assembly database. Sixteen accessions, derived from 12 different plant species, appear to encompass the complete protein-coding regions of the proposed amalgaviruses, which would substantially expand the size of genus Amalgavirus from 4 current species. Other findings include evidence for UUU_CGN as a +1 ribosomal frameshifting motif prevalent among plant amalgaviruses; for a variant version of this motif found thus far in only two amalgaviruses from solanaceous plants; for a region of α-helical coiled coil propensity conserved in a central region of the ORF1 translation product of plant amalgaviruses; and for conserved sequences in a C-terminal region of the ORF2 translation product (RNA-dependent RNA polymerase) of plant amalgaviruses, seemingly beyond the region of conserved polymerase motifs. These results additionally illustrate the value of mining the TSA database and others for novel viral sequences for comparative analyses. A number of new plant amalgavirus sequences have been found in the TSA database. They provide support for a prevalent +1 frameshifting motif in amalgaviruses. A variant motif is identified in a subset of these viruses from related plants. The ORF1 product of amalgaviruses has propensity to form α-helical coiled coil. The TSA database is a useful source of new viral sequences for comparative analyses.
Collapse
Affiliation(s)
- Max L Nibert
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Harvard Ph.D. Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA 02115, USA.
| | - Jesse D Pyle
- Harvard Ph.D. Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA 02115, USA.
| | - Andrew E Firth
- Division of Virology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK.
| |
Collapse
|
24
|
A novel monopartite dsRNA virus isolated from the entomopathogenic and nematophagous fungus Purpureocillium lilacinum. Arch Virol 2016; 161:3375-3384. [DOI: 10.1007/s00705-016-3045-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/31/2016] [Indexed: 12/01/2022]
|
25
|
Small RNA-Based Antiviral Defense in the Phytopathogenic Fungus Colletotrichum higginsianum. PLoS Pathog 2016; 12:e1005640. [PMID: 27253323 PMCID: PMC4890784 DOI: 10.1371/journal.ppat.1005640] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/26/2016] [Indexed: 12/21/2022] Open
Abstract
Even though the fungal kingdom contains more than 3 million species, little is known about the biological roles of RNA silencing in fungi. The Colletotrichum genus comprises fungal species that are pathogenic for a wide range of crop species worldwide. To investigate the role of RNA silencing in the ascomycete fungus Colletotrichum higginsianum, knock-out mutants affecting genes for three RNA-dependent RNA polymerase (RDR), two Dicer-like (DCL), and two Argonaute (AGO) proteins were generated by targeted gene replacement. No effects were observed on vegetative growth for any mutant strain when grown on complex or minimal media. However, Δdcl1, Δdcl1Δdcl2 double mutant, and Δago1 strains showed severe defects in conidiation and conidia morphology. Total RNA transcripts and small RNA populations were analyzed in parental and mutant strains. The greatest effects on both RNA populations was observed in the Δdcl1, Δdcl1Δdcl2, and Δago1 strains, in which a previously uncharacterized dsRNA mycovirus [termed Colletotrichum higginsianum non-segmented dsRNA virus 1 (ChNRV1)] was derepressed. Phylogenetic analyses clearly showed a close relationship between ChNRV1 and members of the segmented Partitiviridae family, despite the non-segmented nature of the genome. Immunoprecipitation of small RNAs associated with AGO1 showed abundant loading of 5’U-containing viral siRNA. C. higginsianum parental and Δdcl1 mutant strains cured of ChNRV1 revealed that the conidiation and spore morphology defects were primarily caused by ChNRV1. Based on these results, RNA silencing involving ChDCL1 and ChAGO1 in C. higginsianum is proposed to function as an antiviral mechanism. Colletotrichum sp. comprises a diverse group of fungal pathogens that attack over 3000 plant species worldwide. Understanding the underlying mechanisms that govern fungal development and pathogenicity may enable more effective and sustainable approaches to crop disease management and control. In most organisms, RNA silencing is an important mechanism to control endogenous and exogenous RNA. RNA silencing utilizes small regulatory molecules (small RNAs) produced by proteins called Dicer (DCL), and exercise their function though effector proteins named Argonaute (AGO). Here, we investigated the role of RNA silencing machinery in the fungus Colletotrichum higginsianum, by generating deletions in genes encoding RNA silencing components. Severe defects were observed in both conidiation and conidia morphology in the Δdcl1, Δdcl1Δdcl2, and Δago1 strains. Analysis of transcripts and small RNAs revealed an uncharacterized dsRNA virus persistently infecting C. higginsianum. The virus was shown (1) to be de-repressed in the Δdcl1, Δdcl1Δdcl2 and Δago1 strains, and (2) to cause the conidiation and spore mutant phenotypes. Our results indicate that C. higginsianum employs RNA silencing as an antiviral mechanism to suppress viruses and their debilitating effects.
Collapse
|
26
|
Depierreux D, Vong M, Nibert ML. Nucleotide sequence of Zygosaccharomyces bailii virus Z: Evidence for +1 programmed ribosomal frameshifting and for assignment to family Amalgaviridae. Virus Res 2016; 217:115-24. [PMID: 26951859 DOI: 10.1016/j.virusres.2016.02.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/22/2016] [Accepted: 02/28/2016] [Indexed: 12/19/2022]
Abstract
Zygosaccharomyces bailii virus Z (ZbV-Z) is a monosegmented dsRNA virus that infects the yeast Zygosaccharomyces bailii and remains unclassified to date despite its discovery >20years ago. The previously reported nucleotide sequence of ZbV-Z (GenBank AF224490) encompasses two nonoverlapping long ORFs: upstream ORF1 encoding the putative coat protein and downstream ORF2 encoding the RNA-dependent RNA polymerase (RdRp). The lack of overlap between these ORFs raises the question of how the downstream ORF is translated. After examining the previous sequence of ZbV-Z, we predicted that it contains at least one sequencing error to explain the nonoverlapping ORFs, and hence we redetermined the nucleotide sequence of ZbV-Z, derived from the same isolate of Z. bailii as previously studied, to address this prediction. The key finding from our new sequence, which includes several insertions, deletions, and substitutions relative to the previous one, is that ORF2 in fact overlaps ORF1 in the +1 frame. Moreover, a proposed sequence motif for +1 programmed ribosomal frameshifting, previously noted in influenza A viruses, plant amalgaviruses, and others, is also present in the newly identified ORF1-ORF2 overlap region of ZbV-Z. Phylogenetic analyses provided evidence that ZbV-Z represents a distinct taxon most closely related to plant amalgaviruses (genus Amalgavirus, family Amalgaviridae). We conclude that ZbV-Z is the prototype of a new species, which we propose to assign as type species of a new genus of monosegmented dsRNA mycoviruses in family Amalgaviridae. Comparisons involving other unclassified mycoviruses with RdRps apparently related to those of plant amalgaviruses, and having either mono- or bisegmented dsRNA genomes, are also discussed.
Collapse
Affiliation(s)
- Delphine Depierreux
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Biology, Program in Biochemistry and Molecular and Cellular Biology, University of Namur, Namur BE 5000, Belgium
| | - Minh Vong
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Program in Molecules, Cells and Organisms, Harvard University, Cambridge, MA 02138, USA
| | - Max L Nibert
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
27
|
Zhou Q, Zhong J, Hu Y, Da Gao B. A novel nonsegmented double-stranded RNA mycovirus identified in the phytopathogenic fungus Nigrospora oryzae shows similarity to partitivirus-like viruses. Arch Virol 2015; 161:229-32. [DOI: 10.1007/s00705-015-2644-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 10/09/2015] [Indexed: 12/31/2022]
|
28
|
Addendum to: Molecular characterization of a novel amalgavirus from the entomopathogenic fungus Beauveria bassiana. Arch Virol 2015; 160:2139. [DOI: 10.1007/s00705-015-2476-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|