1
|
Wang W, Huang Y, Zhang Y, Qiao Y, Shi J, Huang J, Huang T, Wei T, Mo M, He X, Wei P. The complete protections induced by the oil emulsion vaccines of the novel variant infectious bursal disease viruses against the homologous challenges indicating the important roles of both VP2 and VP1 in the antigenicity and pathogenicity of the virus. Front Vet Sci 2024; 11:1466099. [PMID: 39268520 PMCID: PMC11390553 DOI: 10.3389/fvets.2024.1466099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 09/15/2024] Open
Abstract
Novel variant infectious bursal disease virus (nvIBDV) is an emerging genotype (A2dB1b) that can cause severe and prolonged immunosuppression in young chickens. Despite current commercial vaccines being proven to lack complete protection against nvIBDV, it remains unclear whether the oil emulsion inactivated vaccines (OEVs) of the homologous and heterologous virus or booster immunization can provide effective protection. In this study, OEVs with two types of nvIBDV isolates QZ191002 (A-nv/B-nv) and YL160304 (A-nv/B-HLJ0504-like) were prepared and evaluated the protective effects of OEVs plus the booster immunizations with different current commercial vaccines against the challenge of nvIBDVs. The results from vaccination-challenge experiments showed that nvIBDV could break through the protection provided by only one immunization dose of the commercial vaccines, with the protection rates ranging from 40% to 60%. Interestingly, even with booster immunization with different commercial vaccines, the protection rates could only be increased to 60%-80%. As expected, only the OEVs of the homologous virus could provide 100% protection against the homologous nvIBDV, which could induce high-level specific antibodies, ameliorate target organ damage, and significantly reduce the viral load of the bursal in the challenged chickens. Notably, YL160304-OEV performed better than QZ191002-OEV, providing 100% protection not only against the challenge of homologous strain but also against that of heterologous QZ191002 strain. Antibody levels of the immunized chickens gradually increased after a short decline and reached the highest level on the age of 28 days. Similarly, the percentages of lymphocytes CD4+, CD8+ T, and B in peripheral blood lymphocytes (PBLs) were significantly increased on 21 d and 28 d. Notably, despite the nvIBDV, OEVs initially induced a delayed responses in the early stages but ultimately reach higher levels of CD4+ and CD8+ T lymphocytes. The results of study suggest that even booster immunization with different commercial vaccines cannot provide complete protection against nvIBDV, while the OEVs made by the nvIBDVs can provide full protection. Moreover, YL160304-OEV exhibits a broader protective spectrum against different nvIBDV strains, making it a potential candidate for the development of new vaccine.
Collapse
Affiliation(s)
- Weiwei Wang
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Yu Huang
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Yan Zhang
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Yuanzheng Qiao
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Jun Shi
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Jianni Huang
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Teng Huang
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Tianchao Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Meilan Mo
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Xiumiao He
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Ping Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| |
Collapse
|
2
|
Ul-Rahman A, Rabani M, Shabbir MZ. A comparative evaluation of transcriptome changes in lung and spleen tissues of chickens infected with velogenic and mesogenic Avian Orthoavulavirus 1. Microb Pathog 2023; 174:105956. [PMID: 36572195 DOI: 10.1016/j.micpath.2022.105956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Newcastle disease is an acute, highly contagious disease responsible for severe economic losses to the poultry industry worldwide. Clinical assessment of different pathotypes of AOaV-1 strains is well-elucidated in chickens. However, a paucity of data exists for a comparative assessment of avian innate immune responses in birds after infection with two different pathotypes of AOaV-1. We compared early immune responses in chickens infected with a duck-originated velogenic strain (high virulent: genotype VII) and a pigeon-originated mesogenic stain (moderate virulent; genotype VI). Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) identified 4737 differentially expressed genes (DEGs) in the transcriptional profiles of lung and spleen tissues of chickens infected with both pathotypes. More DEGs were expressed in spleen tissue infected with velogenic strain compared to spleen or lung exposed to mesogenic strain. An enriched expression was observed for genes involved in metabolic processes and cellular components, including innate immune-associated signaling pathways. Most DEGs were involved in RIG-I, Toll-like, NF-Kappa B, and MAPK signaling pathways to activate interferon-stimulated genes (ISGs). This study provided a comparative insight into complicated molecular mechanisms and associated DEGs involved in early immune responses of birds to two different AOaV-1 strains.
Collapse
Affiliation(s)
- Aziz Ul-Rahman
- Department of Pathobiology, Faculty of Veterinary and Animal Sciences, MNS University of Agriculture, Multan, 66000, Pakistan
| | - Masood Rabani
- Institute of Microbiology, University of Veterinary and Animal Sciences Lahore, 54600, Pakistan
| | - Muhammad Zubair Shabbir
- Institute of Microbiology, University of Veterinary and Animal Sciences Lahore, 54600, Pakistan.
| |
Collapse
|
3
|
Diaz-Beneitez E, Cubas-Gaona LL, Candelas-Rivera O, Benito-Zafra A, Sánchez-Aparicio MT, Miorin L, Rodríguez JF, García-Sastre A, Rodríguez D. Interaction between chicken TRIM25 and MDA5 and their role in mediated antiviral activity against IBDV infection. Front Microbiol 2022; 13:1068328. [PMID: 36519174 PMCID: PMC9742432 DOI: 10.3389/fmicb.2022.1068328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2023] Open
Abstract
Infectious Bursal Disease Virus (IBDV) is the causative agent of an immunosuppressive disease that affects domestic chickens (Gallus gallus) severely affecting poultry industry worldwide. IBDV infection is characterized by a rapid depletion of the bursal B cell population by apoptosis and the atrophy of this chief lymphoid organ. Previous results from our laboratory have shown that exposure of infected cells to type I IFN leads to an exacerbated apoptosis, indicating an important role of IFN in IBDV pathogenesis. It has been described that recognition of the dsRNA IBDV genome by MDA5, the only known cytoplasmic pattern recognition receptor for viral RNA in chickens, leads to type I IFN production. Here, we confirm that TRIM25, an E3 ubiquitin ligase that leads to RIG-I activation in mammalian cells, significantly contributes to positively regulate MDA5-mediated activation of the IFN-inducing pathway in chicken DF-1 cells. Ectopic expression of chTRIM25 together with chMDA5 or a deletion mutant version exclusively harboring the CARD domains (chMDA5 2CARD) enhances IFN-β and NF-ĸB promoter activation. Using co-immunoprecipitation assays, we show that chMDA5 interacts with chTRIM25 through the CARD domains. Moreover, chTRIM25 co-localizes with both chMDA5 and chMDA5 2CARD, but not with chMDA5 mutant proteins partially or totally lacking these domains. On the other hand, ablation of endogenous chTRIM25 expression reduces chMDA5-induced IFN-β and NF-ĸB promoter activation. Interestingly, ectopic expression of either wild-type chTRIM25, or a mutant version (chTRIM25 C59S/C62S) lacking the E3 ubiquitin ligase activity, restores the co-stimulatory effect of chMDA5 in chTRIM25 knockout cells, suggesting that the E3-ubiquitin ligase activity of chTRIM25 is not required for its downstream IFN-β and NF-ĸB activating function. Also, IBDV-induced expression of IFN-β, Mx and OAS genes was reduced in chTRIM25 knockout as compared to wild-type cells, hence contributing to the enhancement of IBDV replication. Enhanced permissiveness to replication of other viruses, such as avian reovirus, Newcastle disease virus and vesicular stomatitis virus was also observed in chTRIM25 knockout cells. Additionally, chTRIM25 knockout also results in reduced MAVS-induced IFN-β promoter stimulation. Nonetheless, similarly to its mammalian counterpart, chTRIM25 overexpression in wild-type DF-1 cells causes the degradation of ectopically expressed chMAVS.
Collapse
Affiliation(s)
- Elisabet Diaz-Beneitez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | | | - Oscar Candelas-Rivera
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Ana Benito-Zafra
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Maria Teresa Sánchez-Aparicio
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - José F. Rodríguez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine, New York, NY, United States
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pathology, Molecular and Cell-Based MedicineI at Mount Sinai, Icahn School of Medicine, New York, NY, United States
| | - Dolores Rodríguez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| |
Collapse
|
4
|
Zhang S, Zheng S. Host Combats IBDV Infection at Both Protein and RNA Levels. Viruses 2022; 14:v14102309. [PMID: 36298864 PMCID: PMC9607458 DOI: 10.3390/v14102309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 01/24/2023] Open
Abstract
Infectious bursal disease (IBD) is an acute, highly contagious, and immunosuppressive avian disease caused by infectious bursal disease virus (IBDV). In recent years, with the emergence of IBDV variants and recombinant strains, IBDV still threatens the poultry industry worldwide. It seems that the battle between host and IBDV will never end. Thus, it is urgent to develop a more comprehensive and effective strategy for the control of this disease. A better understanding of the mechanisms underlying virus-host interactions would be of help in the development of novel vaccines. Recently, much progress has been made in the understanding of the host response against IBDV infection. If the battle between host and IBDV at the protein level is considered the front line, at the RNA level, it can be taken as a hidden line. The host combats IBDV infection at both the front and hidden lines. Therefore, this review focuses on our current understanding of the host response to IBDV infection at both the protein and RNA levels.
Collapse
Affiliation(s)
- Shujun Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Correspondence: ; Tel.: +86-(10)-6273-4681
| |
Collapse
|
5
|
Trapp J, Rautenschlein S. Infectious bursal disease virus' interferences with host immune cells: What do we know? Avian Pathol 2022; 51:303-316. [PMID: 35616498 DOI: 10.1080/03079457.2022.2080641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractInfectious bursal disease virus (IBDV) induces one of the most important immunosuppressive diseases in chickens leading to high economic losses due increased mortality and condemnation rates, secondary infections and the need for antibiotic treatment. Over 400 publications have been listed in PubMed.gov in the last five years pointing out the research interest in this disease and the development of improved preventive measures. While B cells are the main target cells of the virus, also other immune and non-immune cell populations are affected leading a multifaceted impact on the normally well orchestrated immune system in IBDV-infected birds. Recent studies clearly revealed the contribution of innate immune cells as well as T cells to a cytokine storm and subsequent death of affected birds in the acute phase of the disease. Transcriptomics identified differential regulation of immune related genes between different chicken genotypes as well as virus strains, which may be associated with a variable disease outcome. The recent availability of primary B cell culture systems allowed a closer look into virus-host interactions during IBDV-infection. The new emerging field of research with transgenic chickens will open up new opportunities to understand the impact of IBDV on the host also under in vivo conditions, which will help to understand the complex virus-host interactions further.
Collapse
Affiliation(s)
- Johanna Trapp
- Clinic for Poultry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| |
Collapse
|
6
|
Figueiredo F, Kristoffersen H, Bhat S, Zhang Z, Godfroid J, Peruzzi S, Præbel K, Dalmo RA, Xu X. Immunostimulant Bathing Influences the Expression of Immune- and Metabolic-Related Genes in Atlantic Salmon Alevins. BIOLOGY 2021; 10:980. [PMID: 34681079 PMCID: PMC8533105 DOI: 10.3390/biology10100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 12/03/2022]
Abstract
Disease resistance of fish larvae may be improved by bath treatment in water containing immunostimulants. Pattern recognition receptors, such as TLR3, TLR7, and MDA5, work as an "early warning" to induce intracellular signaling and facilitate an antiviral response. A single bath of newly hatched larvae, with Astragalus, upregulated the expression of IFNα, IFNc, ISG15, MDA5, PKR, STAT1, TLR3, and TLR7 immune genes, on day 4 post treatment. Similar patterns were observed for Hyaluronic acid and Poly I:C. Increased expression was observed for ISG15, MDA5, MX, STAT1, TLR3, TLR7, and RSAD2, on day 9 for Imiquimod. Metabolic gene expression was stimulated on day 1 after immunostimulant bath in ULK1, MYC, SLC2A1, HIF1A, MTOR, and SIX1, in Astragalus, Hyaluronic acid, and Imiquimod. Expression of NOS2 in Poly I:C was an average fourfold above that of control at the same timepoint. Throughout the remaining sampling days (2, 4, 9, 16, 32, and 45 days post immunostimulant bath), NOS2 and IL1B were consistently overexpressed. In conclusion, the immunostimulants induced antiviral gene responses, indicating that a single bath at an early life stage could enable a more robust antiviral defense in fish. Additionally, it was demonstrated, based on gene expression data, that cell metabolism was perturbed, where several metabolic genes were co-regulated with innate antiviral genes.
Collapse
Affiliation(s)
- Filipe Figueiredo
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (H.K.); (S.B.); (K.P.); (X.X.)
| | - Harald Kristoffersen
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (H.K.); (S.B.); (K.P.); (X.X.)
| | - Shripathi Bhat
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (H.K.); (S.B.); (K.P.); (X.X.)
| | - Zuobing Zhang
- College of Life Sciences, Shanxi University, Taiyuan 030006, China;
| | - Jacques Godfroid
- Department of Arctic and Marine Biology, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (J.G.); (S.P.)
| | - Stefano Peruzzi
- Department of Arctic and Marine Biology, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (J.G.); (S.P.)
| | - Kim Præbel
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (H.K.); (S.B.); (K.P.); (X.X.)
| | - Roy Ambli Dalmo
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (H.K.); (S.B.); (K.P.); (X.X.)
| | - Xiaoli Xu
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (H.K.); (S.B.); (K.P.); (X.X.)
| |
Collapse
|
7
|
Wang W, Huang Y, Zhang Y, Qiao Y, Deng Q, Chen R, Chen J, Huang T, Wei T, Mo M, He X, Wei P. The emerging naturally reassortant strain of IBDV (genotype A2dB3) having segment A from Chinese novel variant strain and segment B from HLJ 0504-like very virulent strain showed enhanced pathogenicity to three-yellow chickens. Transbound Emerg Dis 2021; 69:e566-e579. [PMID: 34581009 DOI: 10.1111/tbed.14336] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/11/2021] [Accepted: 09/20/2021] [Indexed: 01/25/2023]
Abstract
Novel variant infectious bursal disease virus (nvIBDV) is an emerging pathotype that can cause sub-clinical disease with severe, prolonged immunosuppression in young chickens. At present, two major pathotypes, including vvIBDV and nvIBDV, are prevailing in China. In this study, we propose that the nvIBDV is a new genotype (A2dB1b) and also first isolated and characterized a nvIBDV reassortant strain YL160304 (A2dB3) with segments A and B derived, respectively, from the nvIBDV and the HLJ-0504-like vvIBDV from yellow chickens in southern China. The YL160304 causes more extensive cytotropism and can infect specific-pathogen-free chicken embryos with severe subcutaneous hemorrhage. The pathogenicity of YL160304 to 4-week-old three-yellow chickens was determined and compared with those of the nvIBDV QZ191002 and the HLJ-0504-like vvIBDV NN1172. Weight gain was significantly reduced in all the challenged birds. No clinical signs and associated mortality were observed in the birds challenged with QZ191002, while the mortalities in the birds challenged with NN1172 and YL160304 were 30% (3/10) and 10% (1/10), respectively. At 7 days postchallenge, the bursa was severely damaged and the percentage of peripheral blood B lymphocyte (PBBL) decreased significantly in all the challenged birds and the quantity of the viral RNA detected in the bursa was in accordance with the results of the histomorphometry and the depletion of PBBL. This study not only confirmed the emerging epidemic of the novel variant and its reassortant strains, but also discovered that the naturally reassortant nvIBDV strain with the segment B of HLJ 0504-like vvIBDV can significantly enhance the pathogenicity to chickens.
Collapse
Affiliation(s)
- Weiwei Wang
- Institute for Poultry Science and Health, Guangxi University, Nanning, P. R. China
| | - Yu Huang
- Institute for Poultry Science and Health, Guangxi University, Nanning, P. R. China
| | - Yan Zhang
- Institute for Poultry Science and Health, Guangxi University, Nanning, P. R. China
| | - Yuanzheng Qiao
- Institute for Poultry Science and Health, Guangxi University, Nanning, P. R. China
| | - Qiaomu Deng
- Institute for Poultry Science and Health, Guangxi University, Nanning, P. R. China
| | - Rui Chen
- School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, P. R. China.,Guangxi Key Laboratory Cultivation Base for Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning, P. R. China
| | - Jinnan Chen
- School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, P. R. China.,Guangxi Key Laboratory Cultivation Base for Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning, P. R. China
| | - Teng Huang
- Institute for Poultry Science and Health, Guangxi University, Nanning, P. R. China
| | - Tianchao Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, P. R. China
| | - Meilan Mo
- Institute for Poultry Science and Health, Guangxi University, Nanning, P. R. China
| | - Xiumiao He
- School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, P. R. China.,Guangxi Key Laboratory Cultivation Base for Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning, P. R. China
| | - Ping Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, P. R. China
| |
Collapse
|
8
|
Uribe-Diaz S, Nazeer N, Jaime J, Vargas-Bermúdez DS, Yitbarek A, Ahmed M, Rodríguez-Lecompte JC. Folic acid enhances proinflammatory and antiviral molecular pathways in chicken B-lymphocytes infected with a mild infectious bursal disease virus. Br Poult Sci 2021; 63:1-13. [PMID: 34287101 DOI: 10.1080/00071668.2021.1958298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
1. This study evaluated the effect of folic acid (FA) supplementation on the proinflammatory and antiviral molecular pathways of B-lymphocytes infected with a modified live IBDV (ST-12) mild vaccine strain during a timed post-infection analysis.2. A chicken B-lymphocytes (DT-40) cell line was cultured in triplicate at a concentration of 5 × 105 cells per well in 24-well plates; and was divided into three groups: 1: No virus, FA; 2: Virus, no FA; 3: Virus + FA at a concentration of 3.96 mM. The experiment was repeated three times.3. Cells in groups 2 and 3 were infected with a modified live IBDV (ST-12) mild vaccine strain at one multiplicity of infection (MOI: 1). After 1 hour of virus adsorption, samples were collected at 0, 3, 6, 12, 24 and 36 hours post-infection (hpi).4. The modified live IBDV (ST-12) mild vaccine strain triggered a B-lymphocyte specific immune response associated with the upregulation of genes involved in virus recognition (Igß), virus sensing (TLR-2, TLR-3, TLR-4 and MDA5), signal transduction and regulation (TRIF, MyD88 and IRF7), and the antiviral effector molecules (IFN-α, OAS, PKR, and viperin).5. FA supplementation modulated IBDV replication and regulated the proinflammatory and antiviral downstream molecular pathways.6. In conclusion, the low virulent pathotype serotype I modified live IBDV (ST-12) mild vaccine strain was able to trigger and mount an immune response in chicken B-lymphocytes without affecting B-cell viability. FA supplementation modulated B lymphocytes response and improved their innate immune proinflammatory and antiviral response molecular pathways.
Collapse
Affiliation(s)
- S Uribe-Diaz
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada.,Department of Chemistry, University of Prince Edward Island, Charlottetown, Canada
| | - N Nazeer
- Department of Chemistry, University of Prince Edward Island, Charlottetown, Canada
| | - J Jaime
- Bogotá. Faculty of Veterinary Medicine and Zootechnic. Animal Health Department; Infectiology and Immunology Research Centre (CI3V), National University of Colombia, Bogotá, Colombia
| | - D S Vargas-Bermúdez
- Bogotá. Faculty of Veterinary Medicine and Zootechnic. Animal Health Department; Infectiology and Immunology Research Centre (CI3V), National University of Colombia, Bogotá, Colombia
| | - A Yitbarek
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - M Ahmed
- Department of Chemistry, University of Prince Edward Island, Charlottetown, Canada
| | - J C Rodríguez-Lecompte
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada
| |
Collapse
|
9
|
Thomrongsuwannakij T, Charoenvisal N, Chansiripornchai N. Comparison of two attenuated infectious bursal disease vaccine strains focused on safety and antibody response in commercial broilers. Vet World 2021; 14:70-77. [PMID: 33642788 PMCID: PMC7896881 DOI: 10.14202/vetworld.2021.70-77] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/23/2020] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Infectious bursal disease (IBD) or Gumboro disease is one of the most detrimental diseases in the poultry industry worldwide. Previous scientific studies have shown that live IBD vaccination might induce transient immunosuppression, leading to suboptimal vaccine responses, and therefore lack of protection against other infectious diseases; therefore, selecting an IBD vaccine in commercial farms is a concern. This study aims to compare two commercially attenuated IBD vaccines (intermediate and intermediate-plus strains) in terms of safety and antibody response to IBD and Newcastle disease viruses (NDV) in commercial broilers. Materials and Methods: Overall, 216 Cobb broiler chickens were divided into three groups based on the IBD vaccine strain administered: V217 strain (Group 1), M.B. strain (Group 2), and an unvaccinated group (Group 3). Groups 1 and 2 were orally vaccinated with Hitchner B1 NDV vaccine strain 7 days after IBD vaccination. Blood samples were collected at IBD vaccination day (15 days of age) and at 7, 14, 21, and 28 days post-IBD vaccination. The immunosuppressive effects of the IBD vaccination were determined by NDV antibody response, the bursa:body weight (B:BW) ratio, and the histopathological lesion scores of the bursa of Fabricius. Phylogenetic analysis was also performed. Results: Phylogenetic analysis revealed that the M.B. strain belonged to a very virulent IBD strain, whereas the V217 strain belonged to a classical IBD virus strain. NDV antibody titers of the two vaccinated groups increased after ND vaccination, reaching their maximum at 14 days post-ND vaccination and decreasing thereafter. The V217 group presented the highest NDV humoral response from 7 days post-vaccination (dpv) to the end of the study. The mean NDV antibody titer of the V217 group was significantly (p<0.05) higher than that of the M.B. group at 14 dpv. In addition, the V217 strain-induced lower bursal lesions post-IBD vaccination and a higher B: BW ratio at 7 and 21 dpv compared to the M.B. group. The higher B: BW ratio, lower bursal lesions, and higher ND antibody response present in the V217 group indicate that the V217 strain induces lower immunosuppressive effects compared to the M.B. strain. Conclusion: The results of this study indicate that IBD vaccine selection merits consideration, as avoiding the immunosuppressive effects induced by live IBD vaccination and the consequent impact on response to other vaccines is important.
Collapse
Affiliation(s)
| | - Nataya Charoenvisal
- Avian Health Research Unit, Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Niwat Chansiripornchai
- Avian Health Research Unit, Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
10
|
Jaime J, Vargas-Bermúdez DS, Yitbarek A, Reyes J, Rodríguez-Lecompte JC. Differential immunomodulatory effect of vitamin D (1,25 (OH) 2 D 3) on the innate immune response in different types of cells infected in vitro with infectious bursal disease virus. Poult Sci 2020; 99:4265-4277. [PMID: 32867971 PMCID: PMC7598002 DOI: 10.1016/j.psj.2020.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/11/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022] Open
Abstract
It has been demonstrated that vitamin D (Vit D) included in diets offers a beneficial effect by improving innate immune responses in chickens. However, its mechanisms of action and the effect on immunosuppressive pathogens, such as infectious bursal disease virus, are not yet known. In the present study, we have studied the immunomodulatory effect of Vit D on the innate immune response in 3 cell lines: fibroblast cells (DF-1), macrophages (HD11), and B cells (DT-40) infected with IBDV (intermediate vaccine) at 2 multiplicity of infections (MOI) (1 and 0.1). Genes associated with innate immune responses (TLR-3, TLR-21, MDA-5, MyD88, TRIF, IRF-7, INF-α, INF-β, PKR, OAS, viperin, IL-1β, IL-6, and IL-12) were evaluated at different time points (3, 6, 12, 24, and 36 h after infection, h.p.i). Virus production reached a maximum at 24 h.p.i., which was significantly (P < 0.05) higher in DF-1 cells, followed by HD-11 and DT-40 cells. Mainly in HD-11 cells, there was a significant (P < 0.05) effect of Vit D supplementation on receptors TLR-3, TLR-21, and MDA-5 after 12 h.p.i, independent of MOI. DT-40 cells showed the highest antiviral activity, with a significant (P < 0.05) effect on IRF-7, IFN-β, OAS, and PKR gene expression, where expression of IRF-7 and IFN-β correlated positively with Vit D supplementation, while OAS and PKR were independent of Vit D. Proinflammatory cytokines were significantly (P < 0.05) upregulated and found to be Vit D and MOI dependent. In conclusion, this study demonstrated the capacity of IBDV to trigger a strong innate immune response in chicken cells and contributes to the understanding of the activation pathways of innate immunity induced by IBDV and further shows the benefitial effect of Vit D supplementation as an immunomodulator.
Collapse
Affiliation(s)
- J Jaime
- Universidad Nacional de Colombia, sede Bogotá. Facultad de Medicina Veterinaria y de Zootecnia. Departamento de Salud Animal. Centro de Investigación en Inmunología e Infectología Veterinaria (CI(3)V), Bogotá CP 11001, Colombia
| | - D S Vargas-Bermúdez
- Universidad Nacional de Colombia, sede Bogotá. Facultad de Medicina Veterinaria y de Zootecnia. Departamento de Salud Animal. Centro de Investigación en Inmunología e Infectología Veterinaria (CI(3)V), Bogotá CP 11001, Colombia
| | - A Yitbarek
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph N1G 2W1, ON, Canada
| | - J Reyes
- Grupo de investigacion Biogenesis, Universidad de Antioquia, Medellín, Colombia
| | - J C Rodríguez-Lecompte
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada, C1A 4P3.
| |
Collapse
|
11
|
Nitric Oxide Production and Fc Receptor-Mediated Phagocytosis as Functional Readouts of Macrophage Activity upon Stimulation with Inactivated Poultry Vaccines In Vitro. Vaccines (Basel) 2020; 8:vaccines8020332. [PMID: 32580391 PMCID: PMC7350413 DOI: 10.3390/vaccines8020332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022] Open
Abstract
Vaccine batches must pass routine quality control to confirm that their ability to induce protection against disease is consistent with batches of proven efficacy from development studies. For poultry vaccines, these tests are often performed in laboratory chickens by vaccination-challenge trials or serological assays. The aim of this study was to investigate innate immune responses against inactivated poultry vaccines and identify candidate immune parameters for in vitro quality tests as alternatives for animal-based quality tests. For this purpose, we set up assays to measure nitric oxide production and phagocytosis by the macrophage-like cell line HD11, upon stimulation with inactivated poultry vaccines for infectious bronchitis virus (IBV), Newcastle disease virus (NDV), and egg drop syndrome virus (EDSV). In both assays, macrophages became activated after stimulation with various toll-like receptor agonists. Inactivated poultry vaccines stimulated HD11 cells to produce nitric oxide due to the presence of mineral oil adjuvant. Moreover, inactivated poultry vaccines were found to enhance Fc receptor-mediated phagocytosis due to the presence of allantoic fluid in the vaccine antigen preparations. We showed that inactivated poultry vaccines stimulated nitric oxide production and Fc receptor-mediated phagocytosis by chicken macrophages. Similar to antigen quantification methods, the cell-based assays described here can be used for future assessment of vaccine batch-to-batch consistency. The ability of the assays to determine the immunopotentiating properties of inactivated poultry vaccines provides an additional step in the replacement of current in vivo batch-release quality tests.
Collapse
|
12
|
Mohd Isa F, Ahmed Al-Haj N, Mat Isa N, Ideris A, Powers C, Oladapo O, Nair V, Omar AR. Differential expression of immune-related genes in the bursa of Fabricius of two inbred chicken lines following infection with very virulent infectious bursal disease virus. Comp Immunol Microbiol Infect Dis 2020; 68:101399. [PMID: 31837598 DOI: 10.1016/j.cimid.2019.101399] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/11/2019] [Accepted: 11/14/2019] [Indexed: 10/25/2022]
Abstract
Among different inbred chickens' lines, we previously showed that lines P and N of Institute for Animal Health, Compton, UK are the most susceptible and the least affected lines, respectively, following infection with very virulent infectious bursal disease virus (vvIBDV). In this study, the differential expressions of 29 different immune-related genes were characterized. Although, birds from both lines succumbed to infection, line P showed greater bursal lesion scores and higher viral copy numbers compared to line N. Interestingly, line N showed greater down-regulation of B cell related genes (BLNK, TNFSF13B and CD72) compared to line P. While up-regulation of T-cell related genes (CD86 and CTLA4) and Th1 associated cytokines (IFNG, IL2, IL12A and IL15) were documented in both lines, the expression levels of these genes were different in the two lines. Meanwhile, the expression of IFN-related genes IFNB, STAT1, and IRF10, but not IRF5, were up-regulated in both lines. The expression of pro-inflammatory cytokines (IL1B, IL6, IL18, and IL17) and chemokines (CXCLi2, CCL4, CCL5 and CCR5) were up-regulated in both lines with greater increase documented in line P compared to line N. Strikingly, the expression of IL12B was detected only in line P whilst the expression of IL15RA was detected only in line N. In conclusion, the bursal immunopathology of IBDV correlates more with expression of proinflammatory response related genes and does not related to expression of B-cell related genes.
Collapse
Affiliation(s)
- Farhanah Mohd Isa
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Nagi Ahmed Al-Haj
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Nurulfiza Mat Isa
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia; Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Aini Ideris
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia; Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia
| | - Claire Powers
- Viral Oncogenesis Group, The Pirbright Institute, Pirbright, Woking, UK; The Jenner Institute, The Centre for Cellular and Molecular Physiology, Roosevelt Drive, Oxford, United Kingdom
| | | | - Venugopal Nair
- Viral Oncogenesis Group, The Pirbright Institute, Pirbright, Woking, UK
| | - Abdul Rahman Omar
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia; Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia.
| |
Collapse
|
13
|
Liu A, Li H, Qi X, Wang Q, Yang B, Wu T, Yan N, Li Y, Pan Q, Gao Y, Gao L, Liu C, Zhang Y, Cui H, Li K, Wang Y, Wang X. Macrophage Migration Inhibitory Factor Triggers Inflammatory Responses During Very Virulent Infectious Bursal Disease Virus Infection. Front Microbiol 2019; 10:2225. [PMID: 31632367 PMCID: PMC6779731 DOI: 10.3389/fmicb.2019.02225] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 09/11/2019] [Indexed: 12/31/2022] Open
Abstract
Infectious bursal disease (IBD) is one of the main threats to the poultry industry worldwide. In China, very virulent IBD virus (vvIBDV) is the main prevalent virus strain, causing inflammation, immunosuppression, and high mortality in young chickens. To determine whether this acute inflammation can trigger lesions or even death in chickens, it is important to study the mechanism of vvIBDV pathogenicity. Thus, in the current study, we investigated the inflammation response, bursal lesions, and mortality in chickens caused by vvIBDV at different time points postinfection. Results showed an upregulation of proinflammatory cytokines, including interleukin-1β and interleukin-18, and macrophage infiltration in bursa in response to vvIBDV infection. High-throughput proteomic sequencing based on isobaric tags for relative and absolute quantitation showed that chicken macrophage migration inhibitory factor (chMIF) was upregulated uniquely in primary bursal cells infected with vvIBDV compared with infection by nonpathogenic attenuated IBDV. We confirmed that chMIF was upregulated by vvIBDV infection both in vivo and in vitro. Moreover, chMIF was extracellularly secreted by infected DT40 and primary bursal cells. Further experiments revealed that the secreted chMIF could induce migration of peripheral blood mononuclear cells and promote transcription of proinflammatory cytokines in chicken primary macrophages. Notably, these effects of chMIF could be reduced by using an MIF specific inhibitor. Thus, our study elucidates critical molecular determinants underlying vvIBDV-mediated initiation of acute inflammation, which might be pivotal to understand the mechanism of vvIBDV pathogenicity.
Collapse
Affiliation(s)
- Aijing Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hui Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaole Qi
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qi Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Bo Yang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tiantian Wu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Nana Yan
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yue Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qing Pan
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yulong Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Li Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changjun Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yanping Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyu Cui
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Kai Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yongqiang Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaomei Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
14
|
|
15
|
Lee CC, Tung CY, Wu CC, Lin TL. AVIAN INNATE IMMUNITY WITH AN EMPHASIS ON CHICKEN MELANOMA DIFFERENTIATION-ASSOCIATED GENE 5 (MDA5). ACTA ACUST UNITED AC 2019. [DOI: 10.1142/s1682648519300016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Avian species have immune system to fight invading pathogens. The immune system comprises innate and adaptive immunity. Innate immunity relies on pattern recognition receptors to sense particular molecules present in pathogens, i.e. pathogen-associated molecular patterns (PAMPs), or danger signals in the environment, i.e. danger-associated molecular patterns (DAMPs). Cytoplasmic retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) and nucleotide-binding oligomerization domain-like receptors (NLRs) are the sensors recognizing cytoplasmic PAMP and/or DAMP. Among common avian species, chickens do not have RIG-I whereas ducks and finches do. Therefore, the other RLR member, melanoma differentiation-associated gene 5 (MDA5), is believed to play an important role to recognize intracellular pathogens in chickens. Chicken MDA5 has been identified and its function determined. Chicken MDA5 maintains the same domain architecture compared with MDA5 analogs in other animal species. The expression of chicken MDA5 was upregulated when a synthetic double-stranded RNA (dsRNA), polyriboinosinic:polyribocytidylic acids (poly(I:C)), was transfected into chicken cells, whereas that did not change when cells were incubated with poly(I:C). The enhanced expression of chicken MDA5 in chicken cells upregulated the expression of chicken interferon-[Formula: see text] (IFN-[Formula: see text]). The infection of dsRNA infectious bursal disease virus (IBDV) in non-immune cells triggered the activation of chicken MDA5 signaling pathway, leading to the production of IFN-[Formula: see text] and subsequent response of IFN-stimulated genes. Furthermore, in immune cells like macrophages, chicken MDA5 participated in sensing the infection of IBDV by activating downstream antiviral genes and molecules and modulating adaptive immunity.On the contrary, one of cytoplasmic NLR member, NLR family pyrin domain containing 3 (NLRP3), was cloned and functionally characterized in chicken cells. Chicken NLRP3 conserved the same domain architecture compared with NLRP3 analogs in other animal species. Chicken NLRP3 was highly expressed in kidney, bursa of Fabricius and spleen. The production of mature chicken interleukin 1 [Formula: see text] (IL-1[Formula: see text] in chicken macrophages was stimulated by lipopolysaccharide (LPS) treatment followed by short ATP exposure.In summary, chicken MDA5 was a cytoplasmic dsRNA sensor that mediated the production of type I IFN upon ligand engagement, whereas NLRP3 sensed danger signals, such as ATP, in the cytoplasm and cleaved pro-IL-1[Formula: see text] to produce mature IL-1[Formula: see text]. Chicken MDA5 was not only involved in the activation of innate immune responses in non-immune and immune cells, but it also participated in modulating adaptive immunity in immune cells. Chicken NLRP3 participated in the production of mature chicken IL-1[Formula: see text] upon ligand engagement.
Collapse
Affiliation(s)
- Chih-Chun Lee
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
- Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chun-Yu Tung
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Ching Ching Wu
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan 10617, R. O. C
| | - Tsang Long Lin
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
16
|
Feng M, Xie T, Li Y, Zhang N, Lu Q, Zhou Y, Shi M, Sun J, Zhang X. A balanced game: chicken macrophage response to ALV-J infection. Vet Res 2019; 50:20. [PMID: 30841905 PMCID: PMC6404279 DOI: 10.1186/s13567-019-0638-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/09/2019] [Indexed: 12/13/2022] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) infection can cause tumors and immunosuppression in infected chickens. Macrophages play a central role in host defense against invading pathogens. In this study, we discovered an interesting phenomenon: ALV-J replication is weakened from 3 hours post-infection (hpi) to 36 hpi, which was verified using Western blotting and RT-PCR. To further investigate the interaction between ALV-J and macrophages, transcriptome analysis was performed to analyze the host genes’ function in chicken primary monocyte-derived macrophages (MDM). Compared to the uninfected control, 624 up-regulated differentially expressed genes (DEG) and 341 down-regulated DEG at 3 hpi, and 174 up-regulated DEG and 87 down-regulated DEG at 36 hpi were identified in chicken MDM, respectively. ALV-J infection induced strong innate immune responses in chicken MDM at 3 hpi, instead of 36 hpi, according to the analysis results of Gene Ontology and KEGG pathway. Importantly, the host factors, such as up-regulated MIP-3α, IL-1β, iNOS, K60, IRG1, CH25H, NFKBIZ, lysozyme and OASL were involved in the host defense response during the course of ALV-J infection. On the contrary, up-regulated EX-FABP, IL4I1, COX-2, NFKBIA, TNFAIP3 and the Jak STAT pathway inhibitors including CISH, SOCS1 and SOCS3 are beneficial to ALV-J survival in chicken macrophages. We speculated that ALV-J tropism for macrophages helps to establish a latent infection in chicken MDM from 6 to 36 hpi. The present study provides a comprehensive view of the interactions between macrophages and ALV-J. It suggests the mechanisms of defense of chicken macrophages against ALV-J invasion and how ALV-J escape the host innate immune responses.
Collapse
Affiliation(s)
- Min Feng
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Tingting Xie
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong, China
| | - Yuanfang Li
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong, China
| | - Nan Zhang
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qiuyuan Lu
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yaohong Zhou
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Meiqing Shi
- Division of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Xiquan Zhang
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China. .,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong, China.
| |
Collapse
|
17
|
Li GQ, Tian Y, Chen L, Shen JD, Tao ZR, Zeng T, Xu J, Lu LZ. Cloning, expression and bioinformatics analysis of a putative pigeon melanoma differentiation-associated gene 5. Br Poult Sci 2019; 60:94-104. [PMID: 30595037 DOI: 10.1080/00071668.2018.1564241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
1. Melanoma differentiation-associated gene 5 (MDA5) is a critical member of cytosolic pattern recognition receptors (PRRs) that recognise viral RNA and mediate type I interferon secretion in host cells. 2. The objective of the present study was to identify and characterise the structure and expression of pigeon MDA5. 3. The full-length MDA5 cDNA was cloned from pigeon spleen using RT-PCR and RACE. The distribution and expression level of pigeon MDA5 in different tissues were determined by QRT-PCR. 4. The results showed that the full-length pigeon MDA5 cDNA had 3858 nucleotides (containing a 210-bp 5'-UTR, a 3030-bp open reading frame and a 618-bp 3'-UTR) encoding a polypeptide of 1009 amino acids. The deduced amino acid sequence contained six conserved structural domains typical of RIG-I-like receptor (RLR), including two tandem arranged N-terminal caspase activation and recruitment domains (CARDs), a DEAH/DEAD box helicase domain (DExDc), a helicase superfamily c-terminal domain (HELICc), a type III restriction enzyme (ResIII) and a C-terminal regulatory domain (RD). 5. The pigeon MDA5 showed 84.8%, 87.3%, 87.9% and 87.2% amino acid sequence identities with previously described homologues from chicken, duck, goose and Muscovy ducks, respectively, and phylogenetic analysis revealed a close relationship among these MDA5. 6. Pigeon MDA5 transcript was ubiquitously expressed in all seven tissues tested in healthy pigeons and showed a high level in the thymus gland and kidney. 7. These findings lay the foundation for further research on the function and mechanism of MDA5 in innate immune responses related to vaccinations and infectious diseases in the pigeon.
Collapse
Affiliation(s)
- G-Q Li
- a Institute of Animal Science and Veterinary Medicine , Zhejiang Academy of Agricultural Sciences , Hangzhou , China.,b Key Laboratory of Information Traceability for Agricultural Products , Ministry of Agriculture of China , Hangzhou , China
| | - Y Tian
- a Institute of Animal Science and Veterinary Medicine , Zhejiang Academy of Agricultural Sciences , Hangzhou , China.,b Key Laboratory of Information Traceability for Agricultural Products , Ministry of Agriculture of China , Hangzhou , China
| | - L Chen
- a Institute of Animal Science and Veterinary Medicine , Zhejiang Academy of Agricultural Sciences , Hangzhou , China
| | - J-D Shen
- a Institute of Animal Science and Veterinary Medicine , Zhejiang Academy of Agricultural Sciences , Hangzhou , China
| | - Z-R Tao
- a Institute of Animal Science and Veterinary Medicine , Zhejiang Academy of Agricultural Sciences , Hangzhou , China
| | - T Zeng
- a Institute of Animal Science and Veterinary Medicine , Zhejiang Academy of Agricultural Sciences , Hangzhou , China.,b Key Laboratory of Information Traceability for Agricultural Products , Ministry of Agriculture of China , Hangzhou , China
| | - J Xu
- a Institute of Animal Science and Veterinary Medicine , Zhejiang Academy of Agricultural Sciences , Hangzhou , China
| | - L-Z Lu
- a Institute of Animal Science and Veterinary Medicine , Zhejiang Academy of Agricultural Sciences , Hangzhou , China.,b Key Laboratory of Information Traceability for Agricultural Products , Ministry of Agriculture of China , Hangzhou , China
| |
Collapse
|
18
|
Truncated chicken MDA5 enhances the immune response to inactivated NDV vaccine. Vet Immunol Immunopathol 2018; 208:44-52. [PMID: 30712791 DOI: 10.1016/j.vetimm.2018.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 10/27/2018] [Accepted: 11/09/2018] [Indexed: 12/16/2022]
Abstract
Melanoma Differentiation-Associated protein 5 (MDA5) is a cytoplasmic sensor for viral invasion and plays an important role in regulation of the immune response against Newcastle disease virus (NDV) in chickens. MDA5 was used as an adjuvant to enhance the humoral immune response against influenza virus. In the current study, truncated chicken MDA5 [1-483 aa, chMDA5(483aa)] expressed by recombinant adenovirus was administered to specific-pathogen-free (SPF) chickens to improve the immune response induced by inactivated NDV vaccine. A total of 156 SPF chickens were divided into six groups, and after two rounds of immunization, the humoral immune response, cell-mediated immune (CMI) response and the protective efficacy of the vaccines against NDV challenge were evaluated. The results showed that co-administration of chMDA5(483aa) expressed by adenovirus increased the NDV-specific antibody response by 1.7 times and chickens received chMDA5(483aa) also gained a higher level of CMI response. Consistently, the protective efficacy of the inactivated NDV vaccine against virulent NDV (vNDV) challenge was improved by co-administrate with chMDA5(483aa), as indicated by the reduced morbidity and pathological lesions, lower levels of viral load in organs and reduced virus shedding. Our study demonstrated that chMDA5(433aa) expressed by adenovirus could enhance the immune efficacy of inactivated NDV vaccine in chickens and could be a potential adjuvant candidate in developing chicken NDV vaccines.
Collapse
|
19
|
Peng L, Matthijs MGR, Haagsman HP, Veldhuizen EJA. Avian pathogenic Escherichia coli-induced activation of chicken macrophage HD11 cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 87:75-83. [PMID: 29890365 DOI: 10.1016/j.dci.2018.05.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
Avian pathogenic Escherichia coli (APEC) can cause severe respiratory diseases in poultry. The initial interaction between APEC and chicken macrophages has not been characterized well and it is unclear how effective chicken macrophages are in neutralizing APEC. Therefore, the effect of APEC on activation of chicken macrophage HD11 cells was studied. Firstly, the effect of temperature (37 vs 41 °C) on phagocytosis of APEC by HD11 cells was determined. The results showed that APEC was more susceptible to being phagocytosed by HD11 cells at 41 °C than 37 °C. Subsequently, the capacity of HD11 cells to kill APEC was shown. In addition, HD11 cells produced nitric oxide (NO) at 18 h post-infection and a strong increase in the mRNA expression of IL-8, IL-6, IL-1β and IL-10 was detected, while IFN-β gene expression remained unaffected. Finally, it was shown that the response of HD11 was partially dependent on viability of APEC since stimulation of HD11 cells with heat-killed APEC resulted in a reduced expression level of these cytokines. In conclusion, APEC induces an effector response in chicken macrophages by enhanced NO production and cytokines gene expression.
Collapse
Affiliation(s)
- Lianci Peng
- Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Mieke G R Matthijs
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Henk P Haagsman
- Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Edwin J A Veldhuizen
- Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
20
|
Exacerbated Apoptosis of Cells Infected with Infectious Bursal Disease Virus upon Exposure to Interferon Alpha. J Virol 2018. [PMID: 29540594 DOI: 10.1128/jvi.00364-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Infectious bursal disease virus (IBDV) belongs to the Birnaviridae family and is the etiological agent of a highly contagious and immunosuppressive disease (IBD) that affects domestic chickens (Gallus gallus). IBD or Gumboro disease leads to high rates of morbidity and mortality of infected animals and is responsible for major economic losses to the poultry industry worldwide. IBD is characterized by a massive loss of IgM-bearing B lymphocytes and the destruction of the bursa of Fabricius. The molecular bases of IBDV pathogenicity are still poorly understood; nonetheless, an exacerbated cytokine immune response and B cell depletion due to apoptosis are considered main factors that contribute to the severity of the disease. Here we have studied the role of type I interferon (IFN) in IBDV infection. While IFN pretreatment confers protection against subsequent IBDV infection, the addition of IFN to infected cell cultures early after infection drives massive apoptotic cell death. Downregulation of double-stranded RNA (dsRNA)-dependent protein kinase (PKR), tumor necrosis factor alpha (TNF-α), or nuclear factor κB (NF-κB) expression drastically reduces the extent of apoptosis, indicating that they are critical proteins in the apoptotic response induced by IBDV upon treatment with IFN-α. Our results indicate that IBDV genomic dsRNA is a major viral factor that contributes to the triggering of apoptosis. These findings provide novel insights into the potential mechanisms of IBDV-induced immunosuppression and pathogenesis in chickens.IMPORTANCE IBDV infection represents an important threat to the poultry industry worldwide. IBDV-infected chickens develop severe immunosuppression, which renders them highly susceptible to secondary infections and unresponsive to vaccination against other pathogens. The early dysregulation of the innate immune response led by IBDV infection and the exacerbated apoptosis of B cells have been proposed as the main factors that contribute to virus-induced immunopathogenesis. Our work contributes for the first time to elucidating a potential mechanism driving the apoptotic death of IBDV-infected cells upon exposure to type I IFN. We provide solid evidence about the critical importance of PKR, TNF-α, and NF-κB in this phenomenon. The described mechanism could facilitate the early clearance of infected cells, thereby aiding in the amelioration of IBDV-induced pathogenesis, but it could also contribute to B cell depletion and immunosuppression. The balance between these two opposing effects might be dramatically affected by the genetic backgrounds of both the host and the infecting virus strain.
Collapse
|
21
|
Zhu YY, Xing WX, Shan SJ, Zhang SQ, Li YQ, Li T, An L, Yang GW. Characterization and immune response expression of the Rig-I-like receptor mda5 in common carp Cyprinus carpio. JOURNAL OF FISH BIOLOGY 2016; 88:2188-202. [PMID: 27108774 DOI: 10.1111/jfb.12981] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 03/03/2016] [Indexed: 05/05/2023]
Abstract
In this study, the full-length complementary (c)DNA of common carp Cyprinus carpio melanoma differentiation-associated gene 5 (mda5) was cloned. The complete open reading frame of C. carpio mda5 contained 2982 bp and encodes 993 amino acids. The deduced amino acids contained six functional domains: two caspase activation and recruitment domains (CARD), a conserved restriction domain of bacterial type III restriction enzyme (ResIII), a DExD/H box-containing domain (DEXDc), a helicase super family C-terminal domain (HELICc) and a C-terminal regulatory domain (RD). The mda5 gene was expressed in all tested tissues, with high levels in the gills and spleen, while lower expressed in gonad and blood. The copy numbers of mda5 were increased in the liver, spleen, head kidney and the mucosal-associated immune tissues such as the foregut, hindgut, gills and skin after stimulation with polyinosinic polycytidylic [poly(I:C)] and Aeromonas hydrophila. The myxovirus resistance gene (mx) messenger (m)RNA levels in the spleen, head kidney, foregut and gills were significantly up-regulated after poly(I:C) injection. When injected with poly(I:C), mda5 and mx transcripts were also significantly induced in vitro. These results implied that mda5 might be involved in both antiviral and antibacterial innate immune processes in C. carpio. © 2016 The Authors. Journal of Fish Biology © 2016 The Fisheries Society of the British Isles.
Collapse
Affiliation(s)
- Y Y Zhu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - W X Xing
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - S J Shan
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - S Q Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - Y Q Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - T Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - L An
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - G W Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| |
Collapse
|