1
|
Shao Y, Lu Y, Li S, Lin S, Tang J, Tan C, Gong Z, Wang W, Liu G, Chen J. Characterization of a highly pathogenic porcine Teschoviruses 5 emerged in Western China. Virology 2025; 603:110398. [PMID: 39798333 DOI: 10.1016/j.virol.2025.110398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/25/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Porcine teschovirus (PTV) is a devastating virus that targets the central nervous system and led to great economic losses in Europe between the 1920s and 1960s. Since 1973, PTV variants with lower pathogenicity have been prevalent globally, whereas highly pathogenic PTV strains have rarely emerged. In 2022, diarrhea with high mortality occurred on a pig farm in Gansu China. Virome analysis revealed that PTV was enriched among diarrheal samples. A PTV strain was then isolated and characterized by TEM, IFA, and growth kinetic features. Phylogenetic analyses revealed that the isolate shared an identity of approximately 90% with the most related PTV strain and with various mutant clusters among VP1. Further animal tests demonstrated that the isolate can result in serious respiratory distress, watery diarrhea, paralysis and high mortality in challenged pigs. H&E staining revealed the presence of lymphocyte cells infiltration and hemorrhage in the tissues. Overall, a PTV variant with high mortality was identified in western China, which could result in interstitial pneumonia, hemorrhage, and diarrhea. Although most PTV strains are associated with asymptomatic infection now, the sporadic occurrence of highly pathogenic PTVs is worthy of alarm.
Collapse
Affiliation(s)
- Yongheng Shao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China; College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yabin Lu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China; College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, 830052, China
| | - Shuxian Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China; College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, 830052, China
| | - Shengyu Lin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China; College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jiao Tang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China; College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Chen Tan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Zhenli Gong
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Wenhui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Guangliang Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
| | - Jianing Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Bhat S, Kattoor JJ, Sircar S, VinodhKumar OR, Thomas P, Ghosh S, Malik YS. Detection and Molecular Characterization of Porcine Teschoviruses in India: Identification of New Genotypes. Indian J Microbiol 2024; 64:963-972. [PMID: 39282184 PMCID: PMC11399526 DOI: 10.1007/s12088-023-01173-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/30/2023] [Indexed: 09/18/2024] Open
Abstract
Porcine Teschoviruses (PTVs) are ubiquitous enteric viral pathogens that infect pigs and wild boars worldwide. PTVs have been responsible for causing the severe clinical disease (Teschen disease) to asymptomatic infections. However, to date, limited information is available on large-scale epidemiological data and molecular characterization of PTVs in several countries. In this study, we report epidemiological data on PTVs based on screening of 534 porcine fecal samples from different states of India and a RT-PCR based detection of PTVs shows a percent positivity of 8.24% (44/534). The PTV prevalence varied among different regions of the country with the highest detection rates observed in the state of Karnataka (38.1%). Phylogenetic analysis based on VP1 gene reveals the presence of PTV genotype 6 and 13 along with some unassigned novel genotypes which did not cluster with any of the established PTV genotypes (PTV 1-PTV 13). Indian PTV 6 strains are genetically closest to the Spanish strains (85.7-94.4%) whereas PTV 13 and novel genotype strains were found to be more similar to the Chinese strains (88.1-99.1%). Using recombination detection software, no Indian PTVs found to be recombinant on VP1 gene and selection pressure analysis revealed the purifying selection in the several sites of the VP1 gene of PTVs. The Bayesian analysis of Indian PTVs shows 1.16 × 10-4 substitution/site/year as the mean evolutionary rate. Further, isolation of the novel PTV strains from India and more detailed investigation much needed to know the evolutionary history of PTV strains circulating in porcine populations in India.
Collapse
Affiliation(s)
- Sudipta Bhat
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, 243 122 India
| | - Jobin Jose Kattoor
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, 243 122 India
- Animal Disease Diagnostic Laboratory, Purdue University, West Lafayette, IN 47907 USA
| | - Shubhankar Sircar
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, 243 122 India
- Department of Animal Sciences, Washington State University, Pullman, WA 99164 USA
| | - O R VinodhKumar
- Division of Epidemiology, ICAR-Indian Veterinary Research Institute, Bareilly, 243 122 India
| | - Prasad Thomas
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Bareilly, 243 122 India
| | - Souvik Ghosh
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, P.O. 334, Basseterre, Saint Kitts and Nevis
| | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, 243 122 India
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141001 India
| |
Collapse
|
3
|
Zhao F, Ma X, Yang J, Wei Z, Li J, Jiang Y, Cui W, Shan Z, Tang L. Investigation of Transmission and Evolution of PEDV Variants and Co-Infections in Northeast China from 2011 to 2022. Animals (Basel) 2024; 14:2168. [PMID: 39123693 PMCID: PMC11311072 DOI: 10.3390/ani14152168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a rapidly evolving virus that causes outbreaks in pig herds worldwide. Mutations in the S protein of PEDV have led to the emergence of new viral variants, which can reduce vaccine immunity against prevalent strains. To understand the infection and variation pattern of PEDV in China, an extensive epidemiological survey was conducted in northeast China from 2015 to 2022. The genetic diversity of enteroviruses co-infected with PEDV and the PEDV S gene was analyzed, common mutation patterns that may have led to changes in PEDV virulence and infectivity in recent years were identified, and structural changes in the surface of the S protein resulting from mutations in the PEDV S gene from 2011 to 2022 were reviewed. Of note, two distinct mutations in the emerging 2022 HEB strain were identified. These findings provide a basis for a better understanding of PEDV co-infection and genetic evolution in northeast China.
Collapse
Affiliation(s)
- Feipeng Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (F.Z.); (X.M.); (J.Y.); (Z.W.); (J.L.); (Y.J.); (W.C.)
| | - Xin’ao Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (F.Z.); (X.M.); (J.Y.); (Z.W.); (J.L.); (Y.J.); (W.C.)
| | - Jianfeng Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (F.Z.); (X.M.); (J.Y.); (Z.W.); (J.L.); (Y.J.); (W.C.)
| | - Zhiying Wei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (F.Z.); (X.M.); (J.Y.); (Z.W.); (J.L.); (Y.J.); (W.C.)
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (F.Z.); (X.M.); (J.Y.); (Z.W.); (J.L.); (Y.J.); (W.C.)
- Northeast Science Observation Station for Animal Pathogen Biology, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (F.Z.); (X.M.); (J.Y.); (Z.W.); (J.L.); (Y.J.); (W.C.)
- Northeast Science Observation Station for Animal Pathogen Biology, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (F.Z.); (X.M.); (J.Y.); (Z.W.); (J.L.); (Y.J.); (W.C.)
- Northeast Science Observation Station for Animal Pathogen Biology, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Zhifu Shan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (F.Z.); (X.M.); (J.Y.); (Z.W.); (J.L.); (Y.J.); (W.C.)
- Northeast Science Observation Station for Animal Pathogen Biology, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (F.Z.); (X.M.); (J.Y.); (Z.W.); (J.L.); (Y.J.); (W.C.)
- Northeast Science Observation Station for Animal Pathogen Biology, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| |
Collapse
|
4
|
Bhat S, Ansari MI, Kattoor JJ, Sircar S, Dar PS, Deol P, Vinodh Kumar OR, Thomas P, Ghosh S, El Zowalaty ME, Malik YS. Emerging porcine Enterovirus G infections, epidemiological, complete genome sequencing, evolutionary and risk factor analysis in India. Virology 2024; 590:109906. [PMID: 38096748 DOI: 10.1016/j.virol.2023.109906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 01/03/2024]
Abstract
The current study reports the in-depth analysis of the epidemiology, risk factors, and molecular characterization of a complete genome of Enterovirus G (EV-G) isolated from Indian pigs. We analysed several genes of EV-G isolates collected from various provinces in India, using phylogenetic analysis, recombination detection, SimPlot, and selection pressure analyses. Our analysis of 534 porcine faecal samples revealed that 11.61% (62/534) of the samples were positive for EV-G. While the G6 genotype was the most predominant, our findings showed that Indian EV-G strains also clustered with EV-G types G1, G6, G8, and G9. Furthermore, Indian EV-G strains exhibited the highest nucleotide similarity with Vietnamese (81.3%) and Chinese EV-G isolates (80.3%). Moreover, we identified a recombinant Indian EV-G strain with a putative origin from a Japanese isolate and South Korean EV-G isolate. In summary, our findings provide significant insights into the epidemiology, genetic diversity, and evolution of EV-G in India.
Collapse
Affiliation(s)
- Sudipta Bhat
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly 243122, India
| | - Mohd Ikram Ansari
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly 243122, India; Department of Biosciences, Integral University Lucknow, India
| | - Jobin Jose Kattoor
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly 243122, India; Department of Comparative Pathobiology, Animal Disease Diagnostic Laboratory, Purdue University, West Lafayette, IN 47907, USA
| | - Shubhankar Sircar
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly 243122, India; Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Parvaiz Sikander Dar
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly 243122, India
| | - Pallavi Deol
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly 243122, India; Institute for Modeling Collaboration and Innovation and Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - O R Vinodh Kumar
- Division of Epidemiology, ICAR-Indian Veterinary Research Institute, Bareilly 243122, India
| | - Prasad Thomas
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Bareilly 243122, India
| | - Souvik Ghosh
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine,Basseterre P.O. 334, Saint Kitts and Nevis, West Indies
| | - Mohamed E El Zowalaty
- Veterinary Medicine and Food Security Research Group, Medical Laboratory Sciences Program, Faculty of Health Sciences, Abu Dhabi Women Campus, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates.
| | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly 243122, India; College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141001, India.
| |
Collapse
|
5
|
Liang W, Wu X, Ding Z, Zhong S, Qian X, Ye P, Liu H, Chen Z, Zhang J, Cao H, Hu G, Luo J, Li Z, Ding N, Hu R. Identification of a novel porcine Teschovirus 2 strain as causative agent of encephalomyelitis in suckling piglets with high mortality in China. BMC Vet Res 2023; 19:2. [PMID: 36597091 PMCID: PMC9810521 DOI: 10.1186/s12917-022-03549-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Porcine Teschovirus (PTV), also named Teschovirus A, is prevalent in pig populations, mainly causing neurological symptoms, diarrhea, pneumonia, and reproductive failure, however the morbidity and mortality are usually low in pig farms. CASE PRESENTATION In this study, we reported a PTV outbreak investigation in one large-scale pig farm in China with severe symptoms including diarrhea, lethargy, locomotor ataxia, nystagmus, paralysis of the hind limbs, and coma in piglets. More importantly, the mortality reached 38% in suckling pigs, which is remarkably high in PTV history. A novel PTV strain, named HeNZ1, was isolated from cerebral samples of one suckling pig and the genome sequence was obtained by NGS sequencing. Phylogenetic and evolutionary divergence analyses revealed that HeNZ1 belongs to PTV genotype 2. Surprisingly, the VP1 coding region of HeNZ1 shares the highest sequence similarity with European PTV-2 strains, instead of China domestic PTV-2 strains, implying it may not derive from China local PTV-2 strains. Multiple sequence alignment and B cell epitope prediction of PTV VP1 and VP2 protein revealed 10 B cell epitopes, 5 mutant clusters and 36 unique mutation sites, of which 19 unique mutation sites are located in B cell epitopes and exposed on the surface of VP1 or VP2, implying significant antigenic drift potential of HeNZ1. CONCLUSION These results indicate that HeNZ1 is a highly virulent PTV-2 strain, which capable of causing severe neurological symptoms and high mortality in piglets. Bioinformatic analysis suggest that HeNZ1 is genetically and antigenically different from other Chinese PTV-2 strains. Overall, current case expanded our understanding of PTV-2 clinical spectrum and revealed the emergence of a highly virulent PTV-2 strain with substantial genetic diversity and antigenic drift potential in VP1 and VP2.
Collapse
Affiliation(s)
- Wenqi Liang
- grid.411859.00000 0004 1808 3238Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045 Jiangxi China ,grid.411859.00000 0004 1808 3238Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045 Jiangxi China
| | - Xiangdong Wu
- grid.411859.00000 0004 1808 3238Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045 Jiangxi China
| | - Zhen Ding
- grid.411859.00000 0004 1808 3238Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045 Jiangxi China
| | - Shengwei Zhong
- grid.411859.00000 0004 1808 3238Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045 Jiangxi China
| | - Xinjie Qian
- grid.411859.00000 0004 1808 3238Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045 Jiangxi China
| | - Pei Ye
- grid.411859.00000 0004 1808 3238Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045 Jiangxi China
| | - Hao Liu
- grid.411859.00000 0004 1808 3238Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045 Jiangxi China
| | - Zheng Chen
- grid.411859.00000 0004 1808 3238Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045 Jiangxi China
| | - Jinhua Zhang
- grid.411859.00000 0004 1808 3238Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045 Jiangxi China
| | - Huabin Cao
- grid.411859.00000 0004 1808 3238Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045 Jiangxi China ,grid.411859.00000 0004 1808 3238Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045 Jiangxi China
| | - Guoliang Hu
- grid.411859.00000 0004 1808 3238Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045 Jiangxi China ,grid.411859.00000 0004 1808 3238Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045 Jiangxi China
| | - Junrong Luo
- grid.411859.00000 0004 1808 3238Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045 Jiangxi China ,grid.411859.00000 0004 1808 3238Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045 Jiangxi China
| | - Zuohua Li
- grid.257160.70000 0004 1761 0331College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 China
| | - Nengshui Ding
- grid.411859.00000 0004 1808 3238State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045 China ,Key Laboratory of Swine Nutrition and Feed Science of Fujian Province, Aonong Group, Zhangzhou, 363000 China
| | - Ruiming Hu
- grid.411859.00000 0004 1808 3238Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045 Jiangxi China ,grid.411859.00000 0004 1808 3238Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045 Jiangxi China
| |
Collapse
|
6
|
Sawant PM, Atre N, Kulkarni A, Gopalkrishna V. Detection and molecular characterization of porcine enterovirus G15 and teschovirus from India. Pathog Dis 2021; 78:5874254. [PMID: 32691821 DOI: 10.1093/femspd/ftaa039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/17/2020] [Indexed: 11/13/2022] Open
Abstract
Porcine enterovirus G (EV-G) and teschovirus (PTV) generally cause asymptomatic infections. Although both viruses have been reported from various countries, they are rarely detected from India. To detect these viruses in Western India, fecal samples (n = 26) of diarrheic piglets aged below three months from private pig farms near Pune (Maharashtra) were collected. The samples were screened by reverse transcription-polymerase chain reaction using conserved enterovirus specific primers from 5' untranslated region. For genetic characterization of detected EV-G strain, nearly complete genome, and for PTV, partial VP1 gene were sequenced. EV-G strain showed the highest identity in a VP1 gene at nucleotide (78.61%) and amino acid (88.65%) level with EV-G15, prototype strain. However, its complete genome was homologous with the nucleotide (78.38% identity) and amino acid (91.24% identity) level to Ishi-Ka2 strain (LC316832), unassigned EV-G genotype detected from Japan. The nearly complete genome of EV-G15 consisted of 7398 nucleotides excluding the poly(A) tail and has an open reading frame that encodes a 2170 amino acid polyprotein. Genetic analysis of the partial VP1 gene of teschovirus identified porcine teschovirus 4 (PTV-4) and putative PTV-17 genotype. To the best of our knowledge, this is the first report on nearly full genome characterization of EV-G15, and detection of PTV-4 and putative PTV-17 genotypes from India. Further, detection and characterization of porcine enteroviruses are needed for a comprehensive understanding of their genetic diversity and their association with symptomatic infections from other geographical regions of India.
Collapse
Affiliation(s)
- Pradeep Mahadev Sawant
- Enteric Virus Group, ICMR-National Institute of Virology, 20-A, Ambedkar Road, Pune 411001, Maharashtra, India
| | - Nitin Atre
- Bioinformatics Group, ICMR-National Institute of Virology (Pashan Campus), Pune 411021, Maharashtra, India
| | - Abhijeet Kulkarni
- Bioinformatics Centre, Savitribai Phule Pune University, Pune 411007, Maharashtra, India
| | - Varanasi Gopalkrishna
- Enteric Virus Group, ICMR-National Institute of Virology, 20-A, Ambedkar Road, Pune 411001, Maharashtra, India
| |
Collapse
|
7
|
Leal É, Liang R, Liu Q, Villanova F, Shi L, Liang L, Li J, Witkin SS, Cui S. Regional adaptations and parallel mutations in Feline panleukopenia virus strains from China revealed by nearly-full length genome analysis. PLoS One 2020; 15:e0227705. [PMID: 31945103 PMCID: PMC6964837 DOI: 10.1371/journal.pone.0227705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 12/25/2019] [Indexed: 01/15/2023] Open
Abstract
Protoparvoviruses, widespread among cats and wild animals, are responsible for leukopenia. Feline panleukopenia virus (FPLV) in domestic cats is genetically diverse and some strains may differ from those used for vaccination. The presence of FPLV in two domestic cats from Hebei Province in China was identified by polymerase chain reaction. Samples from these animals were used to isolate FPLV strains in CRFK cells for genome sequencing. Phylogenetic analysis was performed to compare our isolates with available sequences of FPLV, mink parvovirus (MEV) and canine parvovirus (CPV). The isolated strains were closely related to strains of FPLV/MEV isolated in the 1960s. Our analysis also revealed that the evolutionary history of FPLV and MEV is characterized by local adaptations in the Vp2 gene. Thus, it is likely that new FPLV strains are emerging to evade the anti-FPLV immune response.
Collapse
Affiliation(s)
- Élcio Leal
- Chinese Academy of Agricultural Sciences, Institute of Animal Sciences, Beijing, China
- Federal University of Pará, Belém, Pará, Brazil
- * E-mail: (JL); (SC); (EL)
| | - Ruiying Liang
- Chinese Academy of Agricultural Sciences, Institute of Animal Sciences, Beijing, China
- Beijing Observation Station for Veterinary Drug and Veterinary Biotechnology, Ministry of Agriculture, Beijing, China
| | - Qi Liu
- Chinese Academy of Agricultural Sciences, Institute of Animal Sciences, Beijing, China
| | | | - Lijun Shi
- Chinese Academy of Agricultural Sciences, Institute of Animal Sciences, Beijing, China
- Beijing Observation Station for Veterinary Drug and Veterinary Biotechnology, Ministry of Agriculture, Beijing, China
| | - Lin Liang
- Chinese Academy of Agricultural Sciences, Institute of Animal Sciences, Beijing, China
- Beijing Observation Station for Veterinary Drug and Veterinary Biotechnology, Ministry of Agriculture, Beijing, China
| | - Jinxiang Li
- Chinese Academy of Agricultural Sciences, Institute of Animal Sciences, Beijing, China
- * E-mail: (JL); (SC); (EL)
| | - Steven S. Witkin
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, United States of America
- Institute of Tropical Medicine, Sao Paulo, Brazil
| | - Shangjin Cui
- Chinese Academy of Agricultural Sciences, Institute of Animal Sciences, Beijing, China
- Beijing Observation Station for Veterinary Drug and Veterinary Biotechnology, Ministry of Agriculture, Beijing, China
- * E-mail: (JL); (SC); (EL)
| |
Collapse
|
8
|
Recombinant Strains of Human Parechovirus in Rural Areas in the North of Brazil. Viruses 2019; 11:v11060488. [PMID: 31146371 PMCID: PMC6630568 DOI: 10.3390/v11060488] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 02/07/2023] Open
Abstract
We characterized the 24 nearly full-length genomes of human parechoviruses (PeV) from children in the north of Brazil. The initial phylogenetic analysis indicated that 17 strains belonged to genotype 1, 5 to genotype 4, and 1 to genotype 17. A more detailed analysis revealed a high frequency of recombinant strains (58%): A total of 14 of our PeV-As were chimeric, with four distinct recombination patterns identified. Five strains were composed of genotypes 1 and 5 (Rec1/5); five strains shared a complex mosaic pattern formed by genotypes 4, 5, and 17 (Rec4/17/5); two strains were composed of genotypes 1 and 17 (Rec1/17); and two strains were composed of genotype 1 and an undetermined strain (Rec1/und). Coalescent analysis based on the Vp1 gene, which is free of recombination, indicated that the recombinant strains most likely arose in this region approximately 30 years ago. They are present in high frequencies and are circulating in different small and isolated cities in the state of Tocantins. Further studies will be needed to establish whether the detected recombinant strains have been replacing parental strains or if they are co-circulating in distinct frequencies in Tocantins.
Collapse
|
9
|
Oba M, Naoi Y, Ito M, Masuda T, Katayama Y, Sakaguchi S, Omatsu T, Furuya T, Yamasato H, Sunaga F, Makino S, Mizutani T, Nagai M. Metagenomic identification and sequence analysis of a Teschovirus A-related virus in porcine feces in Japan, 2014-2016. INFECTION GENETICS AND EVOLUTION 2018; 66:210-216. [PMID: 30316885 DOI: 10.1016/j.meegid.2018.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/01/2018] [Accepted: 10/10/2018] [Indexed: 01/04/2023]
Abstract
Porcine Teschoviruses (PTVs) are associated with polioencephalomyelitis and various diseases, including reproductive and gastrointestinal disorders, of pigs and wild boars, and are also detected in the feces of healthy pigs. The genus Teschovirus contains a single species Teschovirus A that currently includes 13 serotypes. In the present study, we identified novel PTVs that are distantly related to Teschovirus A and were found in fecal samples of pigs with or without diarrhea in Japan. Phylogenetic analysis of amino acid (aa) sequences of the complete coding region revealed that these newly identified viruses did not cluster with any strains of PTVs or other strains within the picornavirus supergroup 1, suggesting that the viruses may not belong to Teschovirus A or any genus of the family Picornaviridae. These novel PTVs share a type IV internal ribosomal entry site and conserved characteristic motifs in the coding region, yet exhibit 62.2-79.0%, 86.6-92.8%, 77.1-81.0%, and 84.3-86.7% aa identities to PTV strains in P1, 2C, 3C, and 3D regions, respectively. In contrast, PTV 1-13 strains of the Teschovirus A share 76.5-92.1%, 88.1-99.7%, 93.2-100%, and 95.8-100% aa identities in the P1, 2C, 3C, and 3D, respectively, within the species. These data imply that the newly identified viruses belong to teschoviruses, and may represent a novel species in the genus Teschovirus.
Collapse
Affiliation(s)
- Mami Oba
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Yuki Naoi
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Mika Ito
- Ishikawa Nanbu Livestock Hygiene Service Center, Kanazawa, Ishikawa 920-3101, Japan
| | - Tsuneyuki Masuda
- Kurayoshi Livestock Hygiene Service Center, Kurayoshi, Tottori 683-0017, Japan
| | - Yukie Katayama
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Shoichi Sakaguchi
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Tsutomu Omatsu
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Tetsuya Furuya
- Laboratory of Veterinary Microbiology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Hiroshi Yamasato
- Kurayoshi Livestock Hygiene Service Center, Kurayoshi, Tottori 683-0017, Japan
| | - Fujiko Sunaga
- Laboratory of Infectious Diseases, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Shinji Makino
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, United States
| | - Tetsuya Mizutani
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Makoto Nagai
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Laboratory of Infectious Diseases, Azabu University, Sagamihara, Kanagawa 252-5201, Japan.
| |
Collapse
|
10
|
Yang T, Li R, Yao Q, Zhou X, Liao H, Ge M, Yu X. Prevalence of Porcine teschovirus genotypes in Hunan, China: identification of novel viral species and genotypes. J Gen Virol 2018; 99:1261-1267. [DOI: 10.1099/jgv.0.001129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Taotao Yang
- 1College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
- 2College of Life Sciences and Resource Environment, Yichun University, Yichun, Jiangxi 336000, PR China
| | - Runcheng Li
- 1College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Qing Yao
- 1College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Xiaofei Zhou
- 1College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Huayuan Liao
- 1College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Meng Ge
- 1College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Xinglong Yu
- 1College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| |
Collapse
|
11
|
Yang T, Yu X, Luo B, Yan M, Li R, Qu T, Ren X. Epidemiology and molecular characterization of Porcine teschovirus in Hunan, China. Transbound Emerg Dis 2017; 65:480-490. [PMID: 29034572 DOI: 10.1111/tbed.12728] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Indexed: 12/01/2022]
Abstract
Porcine teschoviruses (PTVs) have been shown to be widely distributed in pig populations. In this study, 261 faecal and 91 intestinal content samples collected from pigs at 29 farms in Hunan, China, were tested for the presence of PTV by reverse transcription-polymerase chain reaction (RT-PCR). An overall PTV-positivity rate of 19.03% was detected by RT-PCR, and a high PTV infection rate was circulating in asymptomatic fattening and nursery pigs. In total, 40 PTV isolates (PTV-HuNs) were obtained. Alignment of their coding sequences with those of other known PTVs revealed that the genomic sequence of the polyprotein contains 6,606-6,621 nucleotides, encoding a 2,202-2,207-amino acid sequence. Phylogenetic analyses based on the VP1 gene and capsid protein gene exhibited 13 main lineages corresponding to PTV serotypes 1-13, and seven PTV serotypes (PTV 2-6, 9, and 11) were identified in the isolates obtained in our study; this is the first report of PTV 5, 9 and 11 in China. Recombination analysis among the PTV-HuNs indicated that nine recombination events have occurred, including both inter- and intraserotype events. In addition, results demonstrated that only limited positive selection is acting on the global population of PTV isolates, and purifying selection is predominant. In conclusion, this study revealed a high infection rate of PTVs circulating in asymptomatic fattening and nursery pigs. The 40 PTV-HuNs showed high genetic diversity, and genetic analysis of all available PTV sequences revealed that strong purifying selection and recombination play important roles in the genetic diversity and evolution of the virus.
Collapse
Affiliation(s)
- T Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - X Yu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - B Luo
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - M Yan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - R Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - T Qu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - X Ren
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| |
Collapse
|
12
|
Development of Polioencephalomyelitis in Cesarean-Derived Colostrum-Deprived Pigs Following Experimental Inoculation with Either Teschovirus A Serotype 2 or Serotype 11. Viruses 2017; 9:v9070179. [PMID: 28698455 PMCID: PMC5537671 DOI: 10.3390/v9070179] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/20/2017] [Accepted: 06/27/2017] [Indexed: 11/29/2022] Open
Abstract
Teschovirus encephalomyelitis is a sporadic disease associated with Teschovirus A (PTV) serotype 1 and, less frequently, other serotypes. In recent years, the number of cases submitted to the Iowa State University Veterinary Diagnostic Laboratory with a history of posterior paresis has increased. Submission histories from various regions of the United States suggest a trend for clinical disease to persist in herds and affect a wider age-range of pigs than historically reported. Polioencephalitis and/or myelitis was consistently present and PTV was detected in affected neural tissue by PCR in a portion of cases. Sequencing from two clinical cases identified PTV-2 and PTV-11. To assess neuropathogenicity of these isolates, 5-week-old cesarean derived and colostrum-deprived pigs were assigned to three groups: negative control (n = 4), PTV-2-inoculated (n = 7), and PTV-11-inoculated (n = 7). Three PTV-2-inoculated pigs developed mild incoordination of the hind limbs, one of which progressed to posterior ataxia. While all PTV-11-inoculated pigs showed severe neurological signs consistent with Teschovirus encephalomyelitis, no evidences of neurological signs were observed in sham-inoculated animals. All PTV-2- and PTV-11-inoculated pigs had microscopic lesions consistent with Teschovirus encephalomyelitis. To our knowledge, this is the first description of PTV-11 and experimental study demonstrating the neuropathogenicity of PTV-11 in the United States.
Collapse
|