1
|
França Y, Medeiros RS, Viana E, de Azevedo LS, Guiducci R, da Costa AC, Luchs A. Genetic diversity and evolution of G12P[6] DS-1-like and G12P[9] AU-1-like Rotavirus strains in Brazil. Funct Integr Genomics 2024; 24:92. [PMID: 38733534 DOI: 10.1007/s10142-024-01360-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/31/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
In the early 2000s, the global emergence of rotavirus (RVA) G12P[8] genotype was noted, while G12P[6] and G12P[9] combinations remained rare in humans. This study aimed to characterize and phylogenetically analyze three Brazilian G12P[9] and four G12P[6] RVA strains from 2011 to 2020, through RT-PCR and sequencing, in order to enhance our understanding of the genetic relationship between human and animal-origin RVA strains. G12P[6] strains displayed a DS-1-like backbone, showing a distinct genetic clustering. G12P[6] IAL-R52/2020, IAL-R95/2020 and IAL-R465/2019 strains clustered with 2019 Northeastern G12P[6] Brazilian strains and a 2018 Benin strain, whereas IAL-R86/2011 strain grouped with 2010 Northern G12P[6] Brazilian strains and G2P[4] strains from the United States and Belgium. These findings suggest an African genetic ancestry and reassortments with co-circulating American strains sharing the same DS-1-like constellation. No recent zoonotic reassortment was observed, and the DS-1-like constellation detected in Brazilian G12P[6] strains does not seem to be genetically linked to globally reported intergenogroup G1/G3/G9/G8P[8] DS-1-like human strains. G12P[9] strains exhibited an AU-1-like backbone with two different genotype-lineage constellations: IAL-R566/2011 and IAL-R1151/2012 belonged to a VP3/M3.V Lineage, and IAL-R870/2013 to a VP3/M3.II Lineage, suggesting two co-circulating strains in Brazil. This genetic diversity is not observed elsewhere, and the VP3/M3.II Lineage in G12P[9] strains seems to be exclusive to Brazil, indicating its evolution within the country. All three G12P[9] AU-1-like strains were closely relate to G12P[9] strains from Paraguay (2006-2007) and Brazil (2010). Phylogenetic analysis also highlighted that all South American G12P[9] AU-1-like strains had a common origin and supports the hypothesis of their importation from Asia, with no recent introduction from globally circulating G12P[9] strains or reassortments with local G12 strains P[8] or P[6]. Notably, certain genes in the Brazilian G12P[9] AU-1-like strains share ancestry with feline/canine RVAs (VP3/M3.II, NSP4/E3.IV and NSP2/N3.II), whereas NSP1/A3.VI likely originated from artiodactyls, suggesting a history of zoonotic transmission with human strains. This genomic data adds understanding to the molecular epidemiology of G12P[6] and G12P[9] RVA strains in Brazil, offering insights into their genetic diversity and evolution.
Collapse
Affiliation(s)
- Yasmin França
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo, Brazil
| | | | - Ellen Viana
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo, Brazil
| | | | - Raquel Guiducci
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo, Brazil
| | - Antonio Charlys da Costa
- Medical Parasitology Laboratory (LIM/46), São Paulo Tropical Medicine Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - Adriana Luchs
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo, Brazil.
| |
Collapse
|
2
|
Valusenko-Mehrkens R, Schilling-Loeffler K, Johne R, Falkenhagen A. VP4 Mutation Boosts Replication of Recombinant Human/Simian Rotavirus in Cell Culture. Viruses 2024; 16:565. [PMID: 38675907 PMCID: PMC11054354 DOI: 10.3390/v16040565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Rotavirus A (RVA) is the leading cause of diarrhea requiring hospitalization in children and causes over 100,000 annual deaths in Sub-Saharan Africa. In order to generate next-generation vaccines against African RVA genotypes, a reverse genetics system based on a simian rotavirus strain was utilized here to exchange the antigenic capsid proteins VP4, VP7 and VP6 with those of African human rotavirus field strains. One VP4/VP7/VP6 (genotypes G9-P[6]-I2) triple-reassortant was successfully rescued, but it replicated poorly in the first cell culture passages. However, the viral titer was enhanced upon further passaging. Whole genome sequencing of the passaged virus revealed a single point mutation (A797G), resulting in an amino acid exchange (E263G) in VP4. After introducing this mutation into the VP4-encoding plasmid, a VP4 mono-reassortant as well as the VP4/VP7/VP6 triple-reassortant replicated to high titers already in the first cell culture passage. However, the introduction of the same mutation into the VP4 of other human RVA strains did not improve the rescue of those reassortants, indicating strain specificity. The results show that specific point mutations in VP4 can substantially improve the rescue and replication of recombinant RVA reassortants in cell culture, which may be useful for the development of novel vaccine strains.
Collapse
Affiliation(s)
| | | | | | - Alexander Falkenhagen
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (R.V.-M.); (K.S.-L.); (R.J.)
| |
Collapse
|
3
|
Rakau KG, Nyaga MM, Gededzha MP, Mwenda JM, Mphahlele MJ, Seheri LM, Steele AD. Genetic characterization of G12P[6] and G12P[8] rotavirus strains collected in six African countries between 2010 and 2014. BMC Infect Dis 2021; 21:107. [PMID: 33482744 PMCID: PMC7821174 DOI: 10.1186/s12879-020-05745-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/27/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND G12 rotaviruses were first observed in sub-Saharan Africa in 2004 and since then have continued to emerge and spread across the continent and are reported as a significant human rotavirus genotype in several African countries, both prior to and after rotavirus vaccine introduction. This study investigated the genetic variability of 15 G12 rotavirus strains associated with either P[6] or P[8] identified between 2010 and 2014 from Ethiopia, Kenya, Rwanda, Tanzania, Togo and Zambia. METHODS The investigation was carried out by comparing partial VP7 and partial VP4 sequences of the African G12P[6] and G12P[8] strains with the available GenBank sequences and exploring the recognized neutralization epitopes of these strains. Additionally, Bayesian evolutionary analysis was carried out using Markov Chain Monte Carlo (MCMC) implemented in BEAST to estimate the time to the most recent ancestor and evolutionary rate for these G12 rotavirus strains. RESULTS The findings suggested that the VP7 and VP4 nucleotide and amino acid sequences of the G12 strains circulating in African countries are closely related, irrespective of country of origin and year of detection, with the exception of the Ethiopian strains that clustered distinctly. Neutralization epitope analysis revealed that rotavirus VP4 P[8] genes associated with G12 had amino acid sequences similar to those reported globally including the vaccine strains in RotaTeq and Rotarix. The estimated evolutionary rate of the G12 strains was 1.016 × 10- 3 substitutions/site/year and was comparable to what has been previously reported. Three sub-clusters formed within the current circulating lineage III shows the diversification of G12 from three independent ancestries within a similar time frame in the late 1990s. CONCLUSIONS At present it appears to be unlikely that widespread vaccine use has driven the molecular evolution and sustainability of G12 strains in Africa. Continuous monitoring of rotavirus genotypes is recommended to assess the long-term impact of rotavirus vaccination on the dynamic nature of rotavirus evolution on the continent.
Collapse
Affiliation(s)
- Kebareng G Rakau
- Diarrhoeal Pathogens Research Unit, Department of Virology, WHO AFRO Rotavirus Regional Reference Laboratory, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Martin M Nyaga
- Diarrhoeal Pathogens Research Unit, Department of Virology, WHO AFRO Rotavirus Regional Reference Laboratory, Sefako Makgatho Health Sciences University, Pretoria, South Africa.,Next Generation Sequencing Unit and Department of Medical Microbiology and Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Maemu P Gededzha
- Diarrhoeal Pathogens Research Unit, Department of Virology, WHO AFRO Rotavirus Regional Reference Laboratory, Sefako Makgatho Health Sciences University, Pretoria, South Africa.,National Health Laboratory Service, Department of Molecular Medicine and Haematology, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| | - Jason M Mwenda
- African Rotavirus Surveillance Network, Immunization, Vaccines and Development Cluster, WHO African Regional Office, Brazzaville, Congo
| | - M Jeffrey Mphahlele
- Diarrhoeal Pathogens Research Unit, Department of Virology, WHO AFRO Rotavirus Regional Reference Laboratory, Sefako Makgatho Health Sciences University, Pretoria, South Africa.,South African Medical Research Council, Soutpansberg Road, Pretoria, South Africa
| | - L Mapaseka Seheri
- Diarrhoeal Pathogens Research Unit, Department of Virology, WHO AFRO Rotavirus Regional Reference Laboratory, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - A Duncan Steele
- Diarrhoeal Pathogens Research Unit, Department of Virology, WHO AFRO Rotavirus Regional Reference Laboratory, Sefako Makgatho Health Sciences University, Pretoria, South Africa. .,Present address: Enteric and Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, Seattle, WA, USA.
| |
Collapse
|
4
|
Mokoena F, Esona MD, Seheri LM, Nyaga MM, Magagula NB, Mukaratirwa A, Mulindwa A, Abebe A, Boula A, Tsolenyanu E, Simwaka J, Rakau KG, Peenze I, Mwenda JM, Mphahlele MJ, Steele AD. Whole Genome Analysis of African G12P[6] and G12P[8] Rotaviruses Provides Evidence of Porcine-Human Reassortment at NSP2, NSP3, and NSP4. Front Microbiol 2021; 11:604444. [PMID: 33510725 PMCID: PMC7835662 DOI: 10.3389/fmicb.2020.604444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/10/2020] [Indexed: 01/27/2023] Open
Abstract
Group A rotaviruses (RVA) represent the most common cause of pediatric gastroenteritis in children <5 years, worldwide. There has been an increase in global detection and reported cases of acute gastroenteritis caused by RVA genotype G12 strains, particularly in Africa. This study sought to characterize the genomic relationship between African G12 strains and determine the possible origin of these strains. Whole genome sequencing of 34 RVA G12P[6] and G12P[8] strains detected from the continent including southern (South Africa, Zambia, Zimbabwe), eastern (Ethiopia, Uganda), central (Cameroon), and western (Togo) African regions, were sequenced using the Ion Torrent PGM method. The majority of the strains possessed a Wa-like backbone with consensus genotype constellation of G12-P[6]/P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1, while a single strain from Ethiopia displayed a DS-1-like genetic constellation of G12-P[6]-I2-R2-C2-M2-A2-N2-T2-E2-H2. In addition, three Ethiopian and one South African strains exhibited a genotype 2 reassortment of the NSP3 gene, with genetic constellation of G12-P[8]-I1-R1-C1-M1-A1-N1-T2-E1-H1. Overall, 10 gene segments (VP1–VP4, VP6, and NSP1–NSP5) of African G12 strains were determined to be genetically related to cognate gene sequences from globally circulating human Wa-like G12, G9, and G1 strains with nucleotide (amino acid) identities in the range of 94.1–99.9% (96.5–100%), 88.5–98.5% (93–99.1%), and 89.8–99.0% (88.7–100%), respectively. Phylogenetic analysis showed that the Ethiopian G12P[6] possessing a DS-1-like backbone consistently clustered with G2P[4] strains from Senegal and G3P[6] from Ethiopia with the VP1, VP2, VP6, and NSP1–NSP4 genes. Notably, the NSP2, NSP3, and NSP4 of most of the study strains exhibited the closest relationship with porcine strains suggesting the occurrence of reassortment between human and porcine strains. Our results add to the understanding of potential roles that interspecies transmission play in generating human rotavirus diversity through reassortment events and provide insights into the evolutionary dynamics of G12 strains spreading across selected sub-Saharan Africa regions.
Collapse
Affiliation(s)
- Fortunate Mokoena
- Department of Biochemistry, Faculty of Natural and Agricultural Science, North West University, Mmabatho, South Africa.,Diarrhoeal Pathogens Research Unit, Department of Virology, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Mathew Dioh Esona
- Diarrhoeal Pathogens Research Unit, Department of Virology, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Luyanda Mapaseka Seheri
- Diarrhoeal Pathogens Research Unit, Department of Virology, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Martin Munene Nyaga
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Nonkululelo Bonakele Magagula
- Diarrhoeal Pathogens Research Unit, Department of Virology, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Arnold Mukaratirwa
- Department of Medical Microbiology, University of Zimbabwe-College of Health Sciences, Harare, Zimbabwe
| | | | - Almaz Abebe
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Angeline Boula
- Mother and Child Center, Chantal Biya Foundation, Yaoundé, Cameroon
| | - Enyonam Tsolenyanu
- Department of Paediatrics, Sylvanus Olympio Teaching Hospital of Lome, Lome, Togo
| | - Julia Simwaka
- Virology Laboratory, University Teaching Hospital, Lusaka, Zambia
| | - Kebareng Giliking Rakau
- Diarrhoeal Pathogens Research Unit, Department of Virology, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Ina Peenze
- Diarrhoeal Pathogens Research Unit, Department of Virology, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Jason Mathiu Mwenda
- African Rotavirus Surveillance Network, Immunization, Vaccines and Development Cluster, WHO African Regional Office, Brazzaville, Congo
| | - Maphahlaganye Jeffrey Mphahlele
- Diarrhoeal Pathogens Research Unit, Department of Virology, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Andrew Duncan Steele
- Diarrhoeal Pathogens Research Unit, Department of Virology, Sefako Makgatho Health Sciences University, Pretoria, South Africa.,Enteric and Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, Seattle, WA, United States
| | | |
Collapse
|
5
|
Reslan L, Mishra N, Finianos M, Zakka K, Azakir A, Guo C, Thakka R, Dbaibo G, Lipkin WI, Zaraket H. The origins of G12P[6] rotavirus strains detected in Lebanon. J Gen Virol 2020; 102. [PMID: 33331815 DOI: 10.1099/jgv.0.001535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The G12 rotaviruses are an increasingly important cause of severe diarrhoea in infants and young children worldwide. Seven human G12P[6] rotavirus strains were detected in stool samples from children hospitalized with gastroenteritis in Lebanon during a 2011-2013 surveillance study. Complete genomes of these strains were sequenced using VirCapSeq-VERT, a capture-based high-throughput viral-sequencing method, and further characterized based on phylogenetic analyses with global RVA and vaccine strains. Based on the complete genomic analysis, all Lebanese G12 strains were found to have Wa-like genetic backbone G12-P[6]-I1-R1-C1-M1-A1-N1-T1-E1-H1. Phylogenetically, these strains fell into two clusters where one of them might have emerged from Southeast Asian strains and the second one seems to have a mixed backbone between North American and Southeast Asian strains. Further analysis of these strains revealed high antigenic variability compared to available vaccine strains. To our knowledge, this is the first report on the complete genome-based characterization of G12P[6] emerging in Lebanon. Additional studies will provide important insights into the evolutionary dynamics of G12 rotaviruses spreading in Asia.
Collapse
Affiliation(s)
- Lina Reslan
- Center for Infectious Diseases Research, American University of Beirut, Faculty of Medicine, Beirut, Lebanon.,Department of Pediatrics and Adolescent Medicine, American University of Beirut, Faculty of Medicine, Beirut, Lebanon
| | - Nischay Mishra
- Center for Infection and the Immunity, Mailman School of Public Health, Columbia University, NY 10032, New York
| | - Marc Finianos
- Center for Infectious Diseases Research, American University of Beirut, Faculty of Medicine, Beirut, Lebanon
| | - Kimberley Zakka
- Center for Infectious Diseases Research, American University of Beirut, Faculty of Medicine, Beirut, Lebanon
| | - Amanda Azakir
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, Beirut, Lebanon.,Center for Infectious Diseases Research, American University of Beirut, Faculty of Medicine, Beirut, Lebanon
| | - Cheng Guo
- Center for Infection and the Immunity, Mailman School of Public Health, Columbia University, NY 10032, New York
| | - Riddhi Thakka
- Center for Infection and the Immunity, Mailman School of Public Health, Columbia University, NY 10032, New York
| | - Ghassan Dbaibo
- Department of Pediatrics and Adolescent Medicine, American University of Beirut, Faculty of Medicine, Beirut, Lebanon.,Center for Infectious Diseases Research, American University of Beirut, Faculty of Medicine, Beirut, Lebanon
| | - W Ian Lipkin
- Center for Infection and the Immunity, Mailman School of Public Health, Columbia University, NY 10032, New York
| | - Hassan Zaraket
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, Beirut, Lebanon.,Center for Infectious Diseases Research, American University of Beirut, Faculty of Medicine, Beirut, Lebanon
| |
Collapse
|
6
|
Mhango C, Mandolo JJ, Chinyama E, Wachepa R, Kanjerwa O, Malamba-Banda C, Matambo PB, Barnes KG, Chaguza C, Shawa IT, Nyaga MM, Hungerford D, Parashar UD, Pitzer VE, Kamng'ona AW, Iturriza-Gomara M, Cunliffe NA, Jere KC. Rotavirus Genotypes in Hospitalized Children with Acute Gastroenteritis Before and After Rotavirus Vaccine Introduction in Blantyre, Malawi, 1997 - 2019. J Infect Dis 2020; 225:2127-2136. [PMID: 33033832 PMCID: PMC9200156 DOI: 10.1093/infdis/jiaa616] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/28/2020] [Indexed: 01/02/2023] Open
Abstract
Background Rotavirus vaccine (Rotarix [RV1]) has reduced diarrhea-associated hospitalizations and deaths in Malawi. We examined the trends in circulating rotavirus genotypes in Malawi over a 22-year period to assess the impact of RV1 introduction on strain distribution. Methods Data on rotavirus-positive stool specimens among children aged <5 years hospitalized with diarrhea in Blantyre, Malawi before (July 1997–October 2012, n = 1765) and after (November 2012–October 2019, n = 934) RV1 introduction were analyzed. Rotavirus G and P genotypes were assigned using reverse-transcription polymerase chain reaction. Results A rich rotavirus strain diversity circulated throughout the 22-year period; Shannon (H′) and Simpson diversity (D′) indices did not differ between the pre- and postvaccine periods (H′ P < .149; D′ P < .287). Overall, G1 (n = 268/924 [28.7%]), G2 (n = 308/924 [33.0%]), G3 (n = 72/924 [7.7%]), and G12 (n = 109/924 [11.8%]) were the most prevalent genotypes identified following RV1 introduction. The prevalence of G1P[8] and G2P[4] genotypes declined each successive year following RV1 introduction, and were not detected after 2018. Genotype G3 reemerged and became the predominant genotype from 2017 onward. No evidence of genotype selection was observed 7 years post–RV1 introduction. Conclusions Rotavirus strain diversity and genotype variation in Malawi are likely driven by natural mechanisms rather than vaccine pressure.
Collapse
Affiliation(s)
- Chimwemwe Mhango
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Department of Medical Laboratory Sciences, College of Medicine, University of Malawi, Blantyre, Malawi.,Department of Biomedical Sciences, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Jonathan J Mandolo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Department of Medical Laboratory Sciences, College of Medicine, University of Malawi, Blantyre, Malawi.,Department of Biomedical Sciences, College of Medicine, University of Malawi, Blantyre, Malawi
| | - End Chinyama
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Richard Wachepa
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Oscar Kanjerwa
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Chikondi Malamba-Banda
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Department of Medical Laboratory Sciences, College of Medicine, University of Malawi, Blantyre, Malawi.,Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Prisca B Matambo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Department of Medical Laboratory Sciences, College of Medicine, University of Malawi, Blantyre, Malawi.,Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Kayla G Barnes
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Chrispin Chaguza
- Genomics of Pneumonia and Meningitis, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Isaac T Shawa
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Department of Medical Laboratory Sciences, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Martin M Nyaga
- Next Generation Sequencing Unit, Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Daniel Hungerford
- Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.,NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, UK
| | - Umesh D Parashar
- Epidemiology Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Virginia E Pitzer
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, USA
| | - Arox W Kamng'ona
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Department of Biomedical Sciences, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Miren Iturriza-Gomara
- Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.,NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, UK
| | - Nigel A Cunliffe
- Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.,NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, UK
| | - Khuzwayo C Jere
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Department of Medical Laboratory Sciences, College of Medicine, University of Malawi, Blantyre, Malawi.,Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.,NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, UK
| |
Collapse
|
7
|
Ianiro G, Micolano R, Di Bartolo I, Scavia G, Monini M. Group A rotavirus surveillance before vaccine introduction in Italy, September 2014 to August 2017. ACTA ACUST UNITED AC 2020; 24. [PMID: 30994104 PMCID: PMC6470368 DOI: 10.2807/1560-7917.es.2019.24.15.1800418] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Introduction Group A rotaviruses (RVA) are the leading cause of acute gastroenteritis (AGE) in young children, causing ca 250,000 deaths worldwide, mainly in low-income countries. Two proteins, VP7 (glycoprotein, G genotype) and VP4 (protease-sensitive protein, P genotype), are the basis for the binary RVA nomenclature. Although 36 G types and 51 P types are presently known, most RVA infections in humans worldwide are related to five G/P combinations: G1P[8], G2P[4], G3P[8], G4P[8], G9P[8]. Aim This study aimed to characterise the RVA strains circulating in Italy in the pre-vaccination era, to define the trends of circulation of genotypes in the Italian paediatric population. Methods Between September 2014 and August 2017, after routine screening in hospital by commercial antigen detection kit, 2,202 rotavirus-positive samples were collected in Italy from children hospitalised with AGE; the viruses were genotyped following standard European protocols. Results This 3-year study revealed an overall predominance of the G12P[8] genotype (544 of 2,202 cases; 24.70%), followed by G9P[8] (535/2,202; 24.30%), G1P[8] (459/2,202; 20.84%) and G4P[8] (371/2,202; 16.85%). G2P[4] and G3P[8] genotypes were detected at low rates (3.32% and 3.09%, respectively). Mixed infections accounted for 6.49% of cases (143/2,202), uncommon RVA strains for 0.41% of cases (9/2,202). Conclusions The emergence of G12P[8] rotavirus in Italy, as in other countries, marks this genotype as the sixth most common human genotype. Continuous surveillance of RVA strains and monitoring of circulating genotypes are important for a better understanding of rotavirus evolution and genotype distribution, particularly regarding strains that may emerge from reassortment events.
Collapse
Affiliation(s)
- Giovanni Ianiro
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Roberto Micolano
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Ilaria Di Bartolo
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Gaia Scavia
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Marina Monini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | | |
Collapse
|
8
|
Motayo BO, Oluwasemowo OO, Olusola BA, Opayele AV, Faneye AO. Phylogeography and evolutionary analysis of African Rotavirus a genotype G12 reveals district genetic diversification within lineage III. Heliyon 2019; 5:e02680. [PMID: 31687512 PMCID: PMC6820252 DOI: 10.1016/j.heliyon.2019.e02680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/30/2019] [Accepted: 10/14/2019] [Indexed: 12/11/2022] Open
Abstract
Group A rotavirus (RVA) genotype G12 has spread globally and has become one of the most prevalent genotypes of rotavirus in Africa. To understand the drivers for its genetic diversity and rapid spread we investigated the Bayesian phylogeography, viral evolution and population demography of Rotavirus G12 in Africa. We downloaded and aligned VP7 gene sequences of Rotavirus genotype G12, from thirteen African countries (n = 96). Phylogenetic analysis, Evolutionary analysis and Bayesian Phylogeography was carried out, using MEGA Vs 6, BEAST, and SPREAD3. Phylogenetic analysis revealed that all the African sequences fell into lineage III diversifying into two major clades. The evolutionary rate of the African rotavirus G12 sequences was 1.678×10-3, (95% HPD, 1.201×10-3 - 2.198×10-3) substitutions/site/year, with TMRC of 16.8 years. The Maximum clade credibility (MCC) tree clustered into three lineages (II, III, IV), African strains fell within lineage III, and diversified into three clusters. Phylogeography suggested that South Africa seemed to be the epicentre of dispersal of the genotype. The demographic history of the G12 viruses revealed a steady increase between the years1998-2007, followed by a sharp decrease in effective population size between the years 2008-2011. We have shown the potential for genetic diversification of Rotavirus genotype G12 in Africa. We recommend the adoption of Molecular surveillance across Africa to further control spread and diversification of Rotavirus.
Collapse
Affiliation(s)
- Babatunde Olanrewaju Motayo
- Department of Virology, College of Medicine, University of Ibadan, Nigeria.,Department of Medical Microbiology, Federal Medical Center, Abeokuta, Nigeria
| | | | | | | | | |
Collapse
|
9
|
Damanka SA, Agbemabiese CA, Dennis FE, Lartey BL, Adiku TK, Enweronu-Laryea CC, Armah GE. Genetic analysis of Ghanaian G1P[8] and G9P[8] rotavirus A strains reveals the impact of P[8] VP4 gene polymorphism on P-genotyping. PLoS One 2019; 14:e0218790. [PMID: 31242245 PMCID: PMC6594640 DOI: 10.1371/journal.pone.0218790] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/10/2019] [Indexed: 11/19/2022] Open
Abstract
The World Health Organisation rotavirus surveillance networks have documented and shown eclectic geographic and temporal diversity in circulating G- and P- genotypes identified in children <5 years of age. To effectively monitor vaccine performance and effectiveness, robust molecular and phylogenetic techniques are essential to detect novel strain variants that might emerge due to vaccine pressure. This study inferred the phylogenetic history of the VP7 and VP4 genes of previously non-typeable strains and provided insight into the diversity of P[8] VP4 sequences which impacted the outcome of our routine VP4 genotyping method. Near-full-length VP7 gene and the VP8* fragment of the VP4 gene were obtained by Sanger sequencing and genotypes were determined using RotaC v2.0 web-based genotyping tool. The genotypes of the 57 rotavirus-positive samples with sufficient stool was determined. Forty-eight of the 57 (84.2%) had the P[8] specificity, of which 43 (89.6%) were characterized as P[8]a subtype and 5 (10.4%) as the rare OP354-like subtype. The VP7 gene of 27 samples were successfully sequenced and their G-genotypes confirmed as G1 (18/27) and G9 (9/27). Phylogenetic analysis of the P[8]a sequences placed them in subcluster IIIc within lineage III together with contemporary G1P[8], G3P[8], G8P[8], and G9P[8] strains detected globally from 2006-2016. The G1 VP7 sequences of the study strains formed a monophyletic cluster with African G1P[8] strains, previously detected in Ghana and Mali during the RotaTeq vaccine trial as well as Togo. The G9 VP7 sequences of the study strains formed a monophyletic cluster with contemporary African G9 sequences from neighbouring Burkina Faso within the major sub-cluster of lineage III. Mutations identified in the primer binding region of the VP8* sequence of the Ghanaian P[8]a strains may have resulted in the genotyping failure since the newly designed primer successfully genotyped the previously non-typeable P[8] strains. In summary, the G1, G9, and P[8]a sequences were highly similar to contemporary African strains at the lineage level. The study also resolved the methodological challenges of the standard genotyping techniques and highlighted the need for regular evaluation of the multiplex PCR-typing method especially in the post-vaccination era. The study further highlights the need for regions to start using sequencing data from local rotavirus strains to design and update genotyping primers.
Collapse
Affiliation(s)
- Susan Afua Damanka
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
- * E-mail:
| | - Chantal Ama Agbemabiese
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Francis Ekow Dennis
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Belinda Larteley Lartey
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Theophilus Korku Adiku
- School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| | | | - George Enyimah Armah
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
10
|
Sub-genotype phylogeny of the non-G, non-P genes of genotype 2 Rotavirus A strains. PLoS One 2019; 14:e0217422. [PMID: 31150425 PMCID: PMC6544246 DOI: 10.1371/journal.pone.0217422] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/10/2019] [Indexed: 12/11/2022] Open
Abstract
Recent increase in the detection of unusual G1P[8], G3P[8], G8P[8], and G9P[4] Rotavirus A (RVA) strains bearing the DS-1-like constellation of the non-G, non-P genes (hereafter referred to as the genotype 2 backbone) requires better understanding of their evolutionary relationship. However, within a genotype, there is lack of a consensus lineage designation framework and a set of common sequences that can serve as references. Phylogenetic analyses were carried out on over 8,500 RVA genotype 2 genes systematically retrieved from the rotavirus database within the NCBI Virus Variation Resource. In line with previous designations, using pairwise comparison of cogent nucleotide sequences and stringent bootstrap support, reference lineages were defined. This study proposes a lineage framework and provides a dataset ranging from 34 to 145 sequences for each genotype 2 gene for orderly lineage designation of global genotype 2 genes of RVAs detected in human and animals. The framework identified five to 31 lineages depending on the gene. The least number of lineages (five to seven) were observed in genotypes A2 (NSP1), T2 (NSP3) and H2 (NSP5) which are limited to human RVA whereas the most number of lineages (31) was observed in genotype E2 (NSP4). Sharing of the same lineage constellations of the genotype 2 backbone genes between recently-emerging, unusual G1P[8], G3P[8], G8P[8] and G9P[4] reassortants and many contemporary G2P[4] strains provided strong support to the hypothesis that unusual genotype 2 strains originated primarily from reassortment events in the recent past involving contemporary G2P[4] strains as one parent and ordinary genotype 1 strains or animal RVA strains as the other. The lineage framework with selected reference sequences will help researchers to identify the lineage to which a given genotype 2 strain belongs, and trace the evolutionary history of common and unusual genotype 2 strains in circulation.
Collapse
|
11
|
Emergence of G12P[6] rotavirus strains among hospitalised children with acute gastroenteritis in Belém, Northern Brazil, following introduction of a rotavirus vaccine. Arch Virol 2019; 164:2107-2117. [PMID: 31144039 DOI: 10.1007/s00705-019-04295-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 04/29/2019] [Indexed: 10/26/2022]
Abstract
Species A rotavirus still remains a major cause of acute gastroenteritis in infants and young children. Globally, six genotypes (G1P[8], G2P[4], G3P[8], G4P[8], G9P[8] and G12P[8]) account for >90% of circulating strains; however, genotype G12 in combination with P[6] or P[9] has been detected at increasing rates. We sought to broaden our knowledge about the rotavirus strains circulating during the early post-vaccine-introduction period. Stool samples were obtained from children hospitalised for acute gastroenteritis in Belém, Northern Brazil, from May 2008 to May 2011 and examined by reverse transcription polymerase chain reaction and nucleotide sequencing. A total of 122 out of the original 1076 rotavirus strains were judged to be non-typeable in the first analysis and were therefore re-examined. G2P[4] was the most prevalent genotype (58.0%), followed by G1P[8] (16.9%), and G12P[6] (7.5%). G12P[6] strains were identified at similar rates during the first (2.5%) and second (3.9%) years, and the rate jumped to 15.6% in the third year. Analysis of VP7 sequences of the G12P[6] strains showed that they belonged to lineage III. In addition, co-circulating G12P[6] strains displaying long and short RNA patterns were found to belong to the Wa-like and DS-1-like constellation, respectively. Additional unusual circulating strains G12P[9] and G3P[9] were also identified. This hospital-based study showed a high prevalence of G12P[6] strains in the third year of surveillance. Our results highlight the need for continuous longitudinal monitoring of circulating rotavirus strains after introduction of rotavirus vaccines in Brazil and elsewhere.
Collapse
|
12
|
Nyaga MM, Tan Y, Seheri ML, Halpin RA, Akopov A, Stucker KM, Fedorova NB, Shrivastava S, Duncan Steele A, Mwenda JM, Pickett BE, Das SR, Jeffrey Mphahlele M. Whole-genome sequencing and analyses identify high genetic heterogeneity, diversity and endemicity of rotavirus genotype P[6] strains circulating in Africa. INFECTION GENETICS AND EVOLUTION 2018; 63:79-88. [PMID: 29782933 DOI: 10.1016/j.meegid.2018.05.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 10/16/2022]
Abstract
Rotavirus A (RVA) exhibits a wide genotype diversity globally. Little is known about the genetic composition of genotype P[6] from Africa. This study investigated possible evolutionary mechanisms leading to genetic diversity of genotype P[6] VP4 sequences. Phylogenetic analyses on 167 P[6] VP4 full-length sequences were conducted, which included six porcine-origin sequences. Of the 167 sequences, 57 were newly acquired through whole genome sequencing as part of this study. The other 110 sequences were all publicly-available global P[6] VP4 full-length sequences downloaded from GenBank. The strength of association between the phenotypic features and the phylogeny was also determined. A number of reassortment and mixed infections of RVA genotype P[6] strains were observed in this study. Phylogenetic analyses demostrated the extensive genetic diversity that exists among human P[6] strains, porcine-like strains, their concomitant clades/subclades and estimated that P[6] VP4 gene has a higher substitution rate with the mean of 1.05E-3 substitutions/site/year. Further, the phylogenetic analyses indicated that genotype P[6] strains were endemic in Africa, characterised by an extensive genetic diversity and long-time local evolution of the viruses. This was also supported by phylogeographic clustering and G-genotype clustering of the P[6] strains when Bayesian Tip-association Significance testing (BaTS) was applied, clearly supporting that the viruses evolved locally in Africa instead of spatial mixing among different regions. Overall, the results demonstrated that multiple mechanisms such as reassortment events, various mutations and possibly interspecies transmission account for the enormous diversity of genotype P[6] strains in Africa. These findings highlight the need for continued global surveillance of rotavirus diversity.
Collapse
Affiliation(s)
- Martin M Nyaga
- South African Medical Research Council/Diarrhoeal Pathogens Research Unit, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Medunsa, Pretoria, South Africa; Next Generation Sequencing Unit, Department of Medical Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Yi Tan
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mapaseka L Seheri
- South African Medical Research Council/Diarrhoeal Pathogens Research Unit, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Medunsa, Pretoria, South Africa
| | - Rebecca A Halpin
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Asmik Akopov
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Karla M Stucker
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Nadia B Fedorova
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA
| | | | - A Duncan Steele
- South African Medical Research Council/Diarrhoeal Pathogens Research Unit, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Medunsa, Pretoria, South Africa; Enteric and Diarrhoeal Diseases Programme, Global Health Program, Bill and Melinda Gates Foundation, Seattle, WA, USA
| | - Jason M Mwenda
- World Health Organization, Regional Office for Africa, Brazzaville, People's Republic of Congo
| | - Brett E Pickett
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Suman R Das
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Jeffrey Mphahlele
- South African Medical Research Council/Diarrhoeal Pathogens Research Unit, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Medunsa, Pretoria, South Africa.
| |
Collapse
|