1
|
Nabi Khan RI, Praharaj MR, Malla WA, Hosamani N, Saxena S, Mishra B, Rajak KK, Dhanavelu M, Tiwari AK, Sajjanar B, Gandham RK, Mishra B. Changes in m 6A RNA methylation of goat lung following PPRV infection. Heliyon 2023; 9:e19358. [PMID: 37681172 PMCID: PMC10480600 DOI: 10.1016/j.heliyon.2023.e19358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/12/2023] [Accepted: 08/20/2023] [Indexed: 09/09/2023] Open
Abstract
Peste des petits ruminants (PPR) is an acute, highly contagious viral disease of goats and sheep, caused by the Peste des petits ruminants virus (PPRV). Earlier studies suggest the involvement of diverse regulatory mechanisms in PPRV infection. Methylation at N6 of Adenosine called m6A is a type RNA modification that influences various physiological and pathological phenomena. As the lung tissue represents the primary target organ of PPRV, the present study explored the m6A changes and their functional significance in PPRV disease pathogenesis. m6A-seq analysis revealed 1289 m6A peaks to be significantly altered in PPRV infected lung in comparison to normal lung, out of which 975 m6A peaks were hypomethylated and 314 peaks were hypermethylated. Importantly, hypomethylated genes were enriched in Interleukin-4 and Interleukin-13 signaling and various processes associated with extracellular matrix organization. Further, of the 843 differentially m6A-containing cellular transcripts, 282 transcripts were also found to be differentially expressed. Functional analysis revealed that these 282 transcripts are significantly enriched in signaling by Interleukins, extracellular matrix organization, cytokine signaling in the immune system, signaling by receptor tyrosine kinases, and Toll-like Receptor Cascades. We also found m6A reader HNRNPC and the core component of methyltransferase complex METTL14 to be highly upregulated than the m6A readers - HNRNPA2B1 and YTHDF1 at the transcriptome level. These findings suggest that alteration in the m6A landscape following PPRV is implicated in diverse processes including Interleukin signaling.
Collapse
Affiliation(s)
- Raja Ishaq Nabi Khan
- Division of Veterinary Biotechnology, ICAR – Indian Veterinary Research Institute, Izatnagar Bareilly, 243122, U.P., India
- Center for Advanced Biotechnology and Medicine, Rutgers University, 08854-8021, New Jersey, USA
| | - Manas Ranjan Praharaj
- DBT- National Institute of Animal Biotechnology, Hyderabad, 500032, Telangana, India
- DBT-Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India
| | - Waseem Akram Malla
- Division of Veterinary Biotechnology, ICAR – Indian Veterinary Research Institute, Izatnagar Bareilly, 243122, U.P., India
| | - Neelima Hosamani
- DBT- National Institute of Animal Biotechnology, Hyderabad, 500032, Telangana, India
| | - Shikha Saxena
- Division of Veterinary Biotechnology, ICAR – Indian Veterinary Research Institute, Izatnagar Bareilly, 243122, U.P., India
| | - Bina Mishra
- Division of Biological Products, ICAR – Indian Veterinary Research Institute, Izatnagar Bareilly, 243122, U.P., India
- ICAR – National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | - Kaushal Kishor Rajak
- Division of Biological Products, ICAR – Indian Veterinary Research Institute, Izatnagar Bareilly, 243122, U.P., India
| | | | - Ashok Kumar Tiwari
- ICAR – Central Avian Research Institute, Izatnagar Bareilly, 243122, U.P., India
| | - Basavaraj Sajjanar
- Division of Veterinary Biotechnology, ICAR – Indian Veterinary Research Institute, Izatnagar Bareilly, 243122, U.P., India
| | - Ravi Kumar Gandham
- Division of Veterinary Biotechnology, ICAR – Indian Veterinary Research Institute, Izatnagar Bareilly, 243122, U.P., India
- ICAR – National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | - B.P. Mishra
- Division of Veterinary Biotechnology, ICAR – Indian Veterinary Research Institute, Izatnagar Bareilly, 243122, U.P., India
- ICAR – National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| |
Collapse
|
2
|
Pandey A, Malla WA, Sahu AR, Wani SA, Khan RIN, Saxena S, Ramteke PW, Praharaj MR, Kumar A, Rajak KK, Mishra B, Muthuchelvan D, Sajjanar B, Mishra BP, Singh RK, Gandham RK. Differential expression of long non-coding RNAs under Peste des petits ruminants virus (PPRV) infection in goats. Virulence 2022; 13:310-322. [PMID: 35129076 PMCID: PMC8824212 DOI: 10.1080/21505594.2022.2026564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Peste des petits ruminants (PPR) characterized by fever, sore mouth, conjunctivitis, gastroenteritis, and pneumonia, is an acute, highly contagious viral disease of sheep and goats. The role of long non-coding RNAs (lncRNAs) in PPRV infection has not been explored to date. In this study, the transcriptome profiles of virulent Peste des petits ruminants virus (PPRV) infected goat tissues – lung and spleen were analyzed to identify the role of lncRNAs in PPRV infection. A total of 13,928 lncRNA transcripts were identified, out of which 170 were known lncRNAs. Intergenic lncRNAs (7625) formed the major chunk of the novel lncRNA transcripts. Differential expression analysis revealed that 15 lncRNAs (11 downregulated and 4 upregulated) in the PPRV infected spleen samples and 16 lncRNAs (13 downregulated and 3 upregulated) in PPRV infected lung samples were differentially expressed as compared to control. The differentially expressed lncRNAs (DElncRNAs) possibly regulate various immunological processes related to natural killer cell activation, antigen processing and presentation, and B cell activity, by regulating the expression of mRNAs through the cis- or trans-regulatory mechanism. Functional enrichment analysis of differentially expressed mRNAs (DEmRNAs) revealed enrichment of immune pathways and biological processes in concordance with the pathways in which correlated lncRNA-neighboring genes were enriched. The results suggest that a coordinated immune response is raised in both lung and spleen tissues of the goat through mRNA-lncRNA crosstalk.
Collapse
Affiliation(s)
- Aruna Pandey
- Division of Veterinary Biotechnology, ICAR-IVRI, Bareilly, India
| | | | - Amit Ranjan Sahu
- Division of Veterinary Biotechnology, ICAR-IVRI, Bareilly, India
| | - Sajad Ahmad Wani
- Division of Veterinary Biotechnology, ICAR-IVRI, Bareilly, India
| | | | - Shikha Saxena
- Division of Veterinary Biotechnology, ICAR-IVRI, Bareilly, India
| | - P W Ramteke
- Department of Biological Sciences, SHUATS, Allahabad, India
| | - Manas Ranjan Praharaj
- Genomics and Bioinformatics, National Institute of Animal Biotechnology, Hyderabad, India
| | - Amit Kumar
- Division of Animal Genetics and Breeding, ICAR-IVRI, Bareilly, India
| | | | - Bina Mishra
- Division of Biological Products, ICAR-IVRI, Bareilly, India
| | | | | | | | - Raj Kumar Singh
- Division of Veterinary Biotechnology, ICAR-IVRI, Bareilly, India
| | - Ravi Kumar Gandham
- Division of Veterinary Biotechnology, ICAR-IVRI, Bareilly, India.,Genomics and Bioinformatics, National Institute of Animal Biotechnology, Hyderabad, India
| |
Collapse
|
3
|
Ongoing Assessment of the Molecular Evolution of Peste Des Petits Ruminants Virus Continues to Question Viral Origins. Viruses 2021; 13:v13112144. [PMID: 34834951 PMCID: PMC8619268 DOI: 10.3390/v13112144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
Understanding the evolution of viral pathogens is critical to being able to define how viruses emerge within different landscapes. Host susceptibility, which is spread between different species and is a contributing factor to the subsequent epidemiology of a disease, is defined by virus detection and subsequent characterization. Peste des petits ruminants virus is a plague of small ruminant species that is a considerable burden to the development of sustainable agriculture across Africa and much of Asia. The virus has also had a significant impact on populations of endangered species in recent years, highlighting its significance as a pathogen of high concern across different regions of the globe. Here, we have re-evaluated the molecular evolution of this virus using novel genetic data to try and further resolve the molecular epidemiology of this disease. Viral isolates are genetically characterized into four lineages (I-IV), and the historic origin of these lineages is of considerable interest to the molecular evolution of the virus. Our re-evaluation of viral emergence using novel genome sequences has demonstrated that lineages I, II and IV likely originated in West Africa, in Senegal (I) and Nigeria (II and IV). Lineage III sequences predicted emergence in either East Africa (Ethiopia) or in the Arabian Peninsula (Oman and/or the United Arab Emirates), with a paucity of data precluding a more refined interpretation. Continual refinements of evolutionary emergence, following the generation of new data, is key to both understanding viral evolution from a historic perspective and informing on the ongoing genetic emergence of this virus.
Collapse
|
4
|
Mdetele D, Misinzo G, Komba E, Shemanche J, Eblate E, Mdaki M, Keyyu J, Kock R. Modified netting technique for capturing gazelles in Serengeti, Ngorongoro and Loliondo, Tanzania. Afr J Ecol 2020. [DOI: 10.1111/aje.12813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel Mdetele
- College of Veterinary Medicine and Biomedical Sciences Sokoine University of AgricultureChuo Kikuu Morogoro Tanzania
| | - Gerald Misinzo
- College of Veterinary Medicine and Biomedical Sciences Sokoine University of AgricultureChuo Kikuu Morogoro Tanzania
| | - Erick Komba
- College of Veterinary Medicine and Biomedical Sciences Sokoine University of AgricultureChuo Kikuu Morogoro Tanzania
| | | | - Ernest Eblate
- Tanzania Wildlife Research Institute Arusha Tanzania
| | - Maulid Mdaki
- Tanzania Wildlife Research Institute Arusha Tanzania
| | - Julius Keyyu
- Tanzania Wildlife Research Institute Arusha Tanzania
| | | |
Collapse
|
5
|
A comprehensive global perspective on phylogenomics and evolutionary dynamics of Small ruminant morbillivirus. Sci Rep 2020; 10:17. [PMID: 31913305 PMCID: PMC6949297 DOI: 10.1038/s41598-019-54714-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 11/18/2019] [Indexed: 11/14/2022] Open
Abstract
A string of complete genome sequences of Small ruminant morbillivirus (SRMV) have been reported from different parts of the globe including Asia, Africa and the Middle East. Despite individual genome sequence-based analysis, there is a paucity of comparative genomic and evolutionary analysis to provide overarching and comprehensive evolutionary insights. Therefore, we first enriched the existing database of complete genome sequences of SRMVs with Pakistan-originated strains and then explored overall nucleotide diversity, genomic and residue characteristics, and deduced an evolutionary relationship among strains representing a diverse geographical region worldwide. The average number of pairwise nucleotide differences among the whole genomes was found to be 788.690 with a diversity in nucleotide sequences (0.04889 ± S.D. 0.00468) and haplotype variance (0.00001). The RNA-dependent-RNA polymerase (L) gene revealed phylogenetic relationship among SRMVs in a pattern similar to those of complete genome and the nucleoprotein (N) gene. Therefore, we propose another useful molecular marker that may be employed for future epidemiological investigations. Based on evolutionary analysis, the mean evolution rate for the complete genome, N, P, M, F, H and L genes of SRMV was estimated to be 9.953 × 10–4, 1.1 × 10–3, 1.23 × 10–3, 2.56 × 10–3, 2.01 × 10–3, 1.47 × 10–3 and 9.75 × 10–4 substitutions per site per year, respectively. A recombinant event was observed in a Pakistan-originated strain (KY967608) revealing Indian strains as major (98.1%, KR140086) and minor parents (99.8%, KT860064). Taken together, outcomes of the study augment our knowledge and current understanding towards ongoing phylogenomic and evolutionary dynamics for better comprehensions of SRMVs and effective disease control interventions.
Collapse
|
6
|
Li L, Cao X, Wu J, Dou Y, Meng X, Liu D, Liu Y, Shang Y, Liu X. Epidemic and evolutionary characteristics of peste des petits ruminants virus infecting Procapra przewalskii in Western China. INFECTION GENETICS AND EVOLUTION 2019; 75:104004. [PMID: 31415822 DOI: 10.1016/j.meegid.2019.104004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/14/2022]
Abstract
Due to the migration or transboundary spread of domestic and wild animals, peste des petits ruminants virus posed a high potential threat to them. In this study, we initially detected that a class of animal named Procapra przewalskii was infected with peste des petits ruminants virus (PPRV ChinaGS2018) in Gansu province. According to phylogenetic relationships analysis, we found that ChinaGS2018 comprised of 15,954 nucleotides and was classified into IV genotypes. In addition, indirect immunofluorescence assay (IFA) showed that ChinaGS2018 could infect isolated primary goat tracheal epithelium cells (GTC). Comparing with full-length genome sequences revealed that ChinaGS2018 strain has high identity to the reference complete genomes (87.16-99.55%) at the nucleotide level. Multiple sequence alignment showed that F protein has the highest identity of 99.8%, and H protein has the highest nucleotide substitution ratio. Our study also suggested this strain may be transmitted from Xinjiang, China. Along with the migratory of Procapraprzewalskii, this wild ruminant infected with PPRV can pose a huge threat to other wild ruminants and domestic ones. This is the first report describing infected with PPRV which will provide insights into the epidemiology and pathogenesis of this important virus.
Collapse
Affiliation(s)
- Lingxia Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Xiaoan Cao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.
| | - Jinyan Wu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.
| | - Yongxi Dou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.
| | - Xuelian Meng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.
| | - Dan Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Yongsheng Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.
| | - Youjun Shang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.
| |
Collapse
|
7
|
A comparative phylogenomic analysis of peste des petits ruminants virus isolated from wild and unusual hosts. Mol Biol Rep 2019; 46:5587-5593. [PMID: 31317455 DOI: 10.1007/s11033-019-04973-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/09/2019] [Indexed: 10/26/2022]
Abstract
Peste des petits ruminants virus (PPRV) infects a wide range of domestic and wild ruminants, and occasionally unusual hosts such as camel, cattle and pig. Given their broad host-spectrum and disease endemicity in several developing countries, it is imperative to elucidate the viral evolutionary insights for their dynamic pathobiology and differential host-selection. For this purpose, a dataset of all available (n = 37) PPRV sequences originating from wild and unusual hosts was composed and in silico analysed. Compared to domestic small ruminant strains of same geographical region, phylogenomic and residue analysis of PPRV sequences originating from wild and unusual hosts revealed a close relationship between strains. A lack of obvious difference among the studied sequences and deduced residues suggests that these are the host factors that may play a role in their susceptibility to PPRV infection, immune response, pathogenesis, excretion patterns and potential clinical signs or resistance to clinical disease. Summarizing together, the comparative analysis enhances our understanding towards molecular epidemiology of the PPRV in wild and unusual hosts for appropriate intervention strategies particularly at livestock-wildlife interface.
Collapse
|
8
|
Wani SA, Sahu AR, Khan RIN, Pandey A, Saxena S, Hosamani N, Malla WA, Chaudhary D, Kanchan S, Sah V, Rajak KK, Muthuchelvan D, Mishra B, Tiwari AK, Sahoo AP, Sajjanar B, Singh YP, Gandham RK, Mishra BP, Singh RK. Contrasting Gene Expression Profiles of Monocytes and Lymphocytes From Peste-Des-Petits-Ruminants Virus Infected Goats. Front Immunol 2019; 10:1463. [PMID: 31333643 PMCID: PMC6624447 DOI: 10.3389/fimmu.2019.01463] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/10/2019] [Indexed: 01/06/2023] Open
Abstract
In this study, transcriptome analysis of PPRV infected PBMC subsets-T helper cells, T cytotoxic cells, monocytes, and B lymphocytes was done to delineate their role in host response. PPRV was found to infect lymphocytes and not monocytes. The established receptor for PPRV-SLAM was found downregulated in lymphocytes and non-differentially expressed in monocytes. A profound deviation in the global gene expression profile with a large number of unique upregulated genes (851) and downregulated genes (605) was observed in monocytes in comparison to lymphocytes. ISGs-ISG15, Mx1, Mx2, RSAD2, IFIT3, and IFIT5 that play a role in antiviral response and the genes for viral sensors-MDA5, LGP2, and RIG1, were found to be upregulated in lymphocytes and downregulated in monocytes. The transcription factors-IRF-7 and STAT-1 that regulate expression of most of the ISGs were found activated in lymphocytes and not in monocytes. Interferon signaling pathway and RIG1 like receptor signaling pathway were found activated in lymphocytes and not in monocytes. This contrast in gene expression profiles and signaling pathways indicated the predominant role of lymphocytes in generating the antiviral response against PPRV in goats, thus, giving us new insights into host response to PPRV.
Collapse
Affiliation(s)
- Sajad Ahmad Wani
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India.,Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH, United States
| | - Amit Ranjan Sahu
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India.,Genomics and Computational Biology, DBT-National Institute of Animal Biotechnology, Hyderabad, India
| | - Raja Ishaq Nabi Khan
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Aruna Pandey
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Shikha Saxena
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Neelima Hosamani
- Genomics and Computational Biology, DBT-National Institute of Animal Biotechnology, Hyderabad, India
| | - Waseem Akram Malla
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Dheeraj Chaudhary
- Division of Virology, ICAR-Indian Veterinary Research Institute (IVRI), Mukteswar, India
| | - Sonam Kanchan
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Vaishali Sah
- Division of Animal Genetics and Breeding, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Kaushal Kishor Rajak
- Division of Biological Products, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - D Muthuchelvan
- Division of Virology, ICAR-Indian Veterinary Research Institute (IVRI), Mukteswar, India
| | - Bina Mishra
- Division of Biological Products, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Ashok Kumar Tiwari
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Aditya P Sahoo
- ICAR- Directorate of Foot and Mouth Disease, Mukteswar, India
| | - Basavaraj Sajjanar
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Yash Pal Singh
- ARIS Cell, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Ravi Kumar Gandham
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India.,Genomics and Computational Biology, DBT-National Institute of Animal Biotechnology, Hyderabad, India
| | - Bishnu Prasad Mishra
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Raj Kumar Singh
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| |
Collapse
|
9
|
Khanduri A, Sahu AR, Wani SA, Khan RIN, Pandey A, Saxena S, Malla WA, Mondal P, Rajak KK, Muthuchelvan D, Mishra B, Sahoo AP, Singh YP, Singh RK, Gandham RK, Mishra BP. Dysregulated miRNAome and Proteome of PPRV Infected Goat PBMCs Reveal a Coordinated Immune Response. Front Immunol 2018; 9:2631. [PMID: 30524425 PMCID: PMC6262310 DOI: 10.3389/fimmu.2018.02631] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 10/25/2018] [Indexed: 12/11/2022] Open
Abstract
In this study, the miRNAome and proteome of virulent Peste des petits ruminants virus (PPRV) infected goat peripheral blood mononuclear cells (PBMCs) were analyzed. The identified differentially expressed miRNAs (DEmiRNAs) were found to govern genes that modulate immune response based on the proteome data. The top 10 significantly enriched immune response processes were found to be governed by 98 genes. The top 10 DEmiRNAs governing these 98 genes were identified based on the number of genes governed by them. Out of these 10 DEmiRNAs, 7 were upregulated, and 3 were downregulated. These include miR-664, miR-2311, miR-2897, miR-484, miR-2440, miR-3533, miR-574, miR-210, miR-21-5p, and miR-30. miR-664 and miR-484 with proviral and antiviral activities, respectively, were upregulated in PPRV infected PBMCs. miR-210 that inhibits apoptosis was downregulated. miR-21-5p that decreases the sensitivity of cells to the antiviral activity of IFNs and miR-30b that inhibits antigen processing and presentation by primary macrophages were downregulated, indicative of a strong host response to PPRV infection. miR-21-5p was found to be inhibited on IPA upstream regulatory analysis of RNA-sequencing data. This miRNA that was also highly downregulated and was found to govern 16 immune response genes in the proteome data was selected for functional validation vis-a-vis TGFBR2 (TGF-beta receptor type-2). TGFBR2 that regulates cell differentiation and is involved in several immune response pathways was found to be governed by most of the identified immune modulating DEmiRNAs. The decreased luciferase activity in Dual Luciferase Reporter Assay indicated specific binding of miR-21-5p and miR-484 to their target thus establishing specific binding of the miRNAs to their targets.This is the first report on the miRNAome and proteome of virulent PPRV infected goat PBMCs.
Collapse
Affiliation(s)
- Alok Khanduri
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Amit Ranjan Sahu
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India.,DBT-National Institute of Animal Biotechnology, Hyderabad, India
| | - Sajad Ahmad Wani
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India.,The Ohio State University, Columbus, Ohio, OH, United States
| | - Raja Ishaq Nabi Khan
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Aruna Pandey
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Shikha Saxena
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Waseem Akram Malla
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Piyali Mondal
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Kaushal Kishor Rajak
- Division of Biological Products, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - D Muthuchelvan
- Division of Virology, ICAR-Indian Veterinary Research Institute (IVRI), Mukteswar, India
| | - Bina Mishra
- Division of Biological Products, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Aditya P Sahoo
- ICAR- Directorate of Foot and Mouth Disease, Mukteswar, India
| | - Yash Pal Singh
- ARIS Cell, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Raj Kumar Singh
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Ravi Kumar Gandham
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India.,DBT-National Institute of Animal Biotechnology, Hyderabad, India
| | - Bishnu Prasad Mishra
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| |
Collapse
|
10
|
Mishra B, Mondal P, Patel CL, Zafir I, Gangwar R, Singh N, Sonowal J, Bisht D, Sahu AR, Baig M, Sajjanar B, Singh RK, Gandham RK. VARV B22R homologue as phylogenetic marker gene for Capripoxvirus classification and divergence time dating. Virus Genes 2018; 55:51-59. [PMID: 30446925 DOI: 10.1007/s11262-018-1613-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 11/07/2018] [Indexed: 10/27/2022]
Abstract
Sheeppox disease is associated with significant losses in sheep production world over. The sheep pox virus, the goatpox virus, and the lumpy skin disease virus cannot be distinguished by conventional serological tests. Identification of these pathogens needs molecular methods. In this study, seven genes viz. EEV maturation protein-F12L, Virion protein-D3R, RNA polymerase subunit-A5R, Virion core protein-A10L, EEV glycoprotein-A33R, VARV B22R homologue, and Kelch like protein-A55R that cover the start, middle, and end of the genome were selected. These genes were amplified from Roumanian-Fanar vaccine strain and Jaipur virulent strain, cloned, and sequenced. On analysis with the available database sequences, VARV B22R homologue was identified as a marker for phylogenetic reconstruction for classifying the sheeppox viruses of the ungulates. Further, divergence time dating with VARV B22R gene accurately predicted the sheeppox disease outbreak involving Jaipur virulent strain.
Collapse
Affiliation(s)
- Bina Mishra
- Division of Biological Products, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India.
| | - Piyali Mondal
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - C L Patel
- Division of Biological Products, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Insha Zafir
- Division of Biological Products, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Rachna Gangwar
- Division of Biological Products, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Neha Singh
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Joyshikh Sonowal
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Deepanker Bisht
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Amit Ranjan Sahu
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Mumtaz Baig
- Department of Zoology, Laboratory of Molecular and Conservation Genetics (LMCG), Govt. Vidarbha Institute of Science & Humanities, Amravati, Maharastra, 444604, India
| | - Basavaraj Sajjanar
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - R K Singh
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Ravi Kumar Gandham
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India.,National Institute of Animal Biotechnology (NIAB), Opp. Journalist Colony, Near Gowlidoddi Gachibowli, Hyderabad, Telangana, 500 032, India
| |
Collapse
|
11
|
Selection and validation of suitable reference genes for qPCR gene expression analysis in goats and sheep under Peste des petits ruminants virus (PPRV), lineage IV infection. Sci Rep 2018; 8:15969. [PMID: 30374051 PMCID: PMC6206032 DOI: 10.1038/s41598-018-34236-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 09/26/2018] [Indexed: 01/28/2023] Open
Abstract
Identification of suitable candidate reference genes is an important prerequisite for validating the gene expression data obtained from downstream analysis of RNA sequencing using quantitative real time PCR (qRT-PCR). Though existence of a universal reference gene is myth, commonly used reference genes can be assessed for expression stability to confer their suitability to be used as candidate reference genes in gene expression studies. In this study, we evaluated the expression stability of ten most commonly used reference genes (GAPDH, ACTB, HSP90, HMBS, 18S rRNA, B2M, POLR2A, HPRT1, ACAC, YWHAZ) in fourteen different Peste des petits ruminants virus (PPRV) infected tissues of goats and sheep. RefFinder and RankAggreg software were used to deduce comprehensive ranking of reference genes. Our results suggested HMBS and B2M in goats and HMBS and HPRT1 in sheep can be used as suitable endogenous controls in gene expression studies of PPRV infection irrespective of tissues and condition as a whole, thus eliminating the use of tissue specific/ condition specific endogenous controls. We report for the first time suitable reference genes for gene expression studies in PPRV infected tissues. The reference genes determined here can be useful for future studies on gene expression in sheep and goat infected with PPRV, thus saving extra efforts and time of repeating the reference gene determination and validation.
Collapse
|
12
|
Aziz-ul-Rahman, Munir M, Shabbir MZ. Comparative evolutionary and phylogenomic analysis of Avian avulaviruses 1–20. Mol Phylogenet Evol 2018; 127:931-951. [DOI: 10.1016/j.ympev.2018.06.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 05/15/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022]
|
13
|
Pandey A, Sahu AR, Wani SA, Saxena S, Kanchan S, Sah V, Rajak KK, Khanduri A, Sahoo AP, Tiwari AK, Mishra B, Muthuchelvan D, Mishra BP, Singh RK, Gandham RK. Modulation of Host miRNAs Transcriptome in Lung and Spleen of Peste des Petits Ruminants Virus Infected Sheep and Goats. Front Microbiol 2017; 8:1146. [PMID: 28694795 PMCID: PMC5483481 DOI: 10.3389/fmicb.2017.01146] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/06/2017] [Indexed: 12/16/2022] Open
Abstract
Peste des petits ruminants (PPR) is one of the highly contagious viral disease, characterized by fever, sore mouth, conjunctivitis, gastroenteritis, and pneumonia, primarily affecting sheep and goats. Reports suggested variable host response in goats and sheep and this host response vis-a-vis the expression of microRNAs (miRNAs) has not been investigated. Here, miRNAs were sequenced and proteomics data were generated to identify the role of differentially expressed miRNA (DEmiRNA) in PPR virus (PPRV) infected lung and spleen tissues of sheep and goats. In lungs, 67 and 37 DEmiRNAs have been identified in goats and sheep, respectively. Similarly, in spleen, 50 and 56 DEmiRNAs were identified in goats and sheep, respectively. A total of 20 and 11 miRNAs were found to be common differentially expressed in both the species in PPRV infected spleen and lung, respectively. Six DEmiRNAs—miR-21-3p, miR-1246, miR-27a-5p, miR-760-3p, miR-320a, and miR-363 were selected based on their role in viral infections, apoptosis, and fold change. The target prediction analysis of these six selected DEmiRNAs from the proteome data generated, revealed involvement of more number of genes in lung and spleen of goats than in sheep. On gene ontology analysis of host target genes these DEmiRNAs were found to regulate several immune response signaling pathways. It was observed that the pathways viz. T cell receptor signaling, Rap1 signaling, Toll-like receptor signaling, and B cell receptor signaling governed by DEmiRNAs were more perturbed in goats than in sheep. The data suggests that PPRV-induced miR-21-3p, miR-320a, and miR-363 might act cooperatively to enhance viral pathogenesis in the lung and spleen of sheep by downregulating several immune response genes. The study gives an important insight into the molecular pathogenesis of PPR by identifying that the PPRV—Izatnagar/94 isolate elicits a strong host response in goats than in sheep.
Collapse
Affiliation(s)
- Aruna Pandey
- Computational Biology and Genomics Facility Lab, Division of Veterinary Biotechnology, Indian Council of Agricultural Research-Indian Veterinary Research Institute, BareillyIndia
| | - Amit R Sahu
- Computational Biology and Genomics Facility Lab, Division of Veterinary Biotechnology, Indian Council of Agricultural Research-Indian Veterinary Research Institute, BareillyIndia
| | - Sajad A Wani
- Computational Biology and Genomics Facility Lab, Division of Veterinary Biotechnology, Indian Council of Agricultural Research-Indian Veterinary Research Institute, BareillyIndia
| | - Shikha Saxena
- Computational Biology and Genomics Facility Lab, Division of Veterinary Biotechnology, Indian Council of Agricultural Research-Indian Veterinary Research Institute, BareillyIndia
| | - Sonam Kanchan
- Computational Biology and Genomics Facility Lab, Division of Veterinary Biotechnology, Indian Council of Agricultural Research-Indian Veterinary Research Institute, BareillyIndia
| | - Vaishali Sah
- Computational Biology and Genomics Facility Lab, Division of Veterinary Biotechnology, Indian Council of Agricultural Research-Indian Veterinary Research Institute, BareillyIndia
| | - Kaushal K Rajak
- Division of Biological Products, Indian Council of Agricultural Research-Indian Veterinary Research Institute, BareillyIndia
| | - Alok Khanduri
- Computational Biology and Genomics Facility Lab, Division of Veterinary Biotechnology, Indian Council of Agricultural Research-Indian Veterinary Research Institute, BareillyIndia
| | - Aditya P Sahoo
- Computational Biology and Genomics Facility Lab, Division of Veterinary Biotechnology, Indian Council of Agricultural Research-Indian Veterinary Research Institute, BareillyIndia
| | - Ashok K Tiwari
- Division of Biological Standardization, Indian Council of Agricultural Research-Indian Veterinary Research Institute, BareillyIndia
| | - Bina Mishra
- Division of Biological Products, Indian Council of Agricultural Research-Indian Veterinary Research Institute, BareillyIndia
| | - D Muthuchelvan
- Division of Virology, Indian Council of Agricultural Research-Indian Veterinary Research Institute, NainitalIndia
| | - Bishnu P Mishra
- Computational Biology and Genomics Facility Lab, Division of Veterinary Biotechnology, Indian Council of Agricultural Research-Indian Veterinary Research Institute, BareillyIndia
| | - Raj K Singh
- Computational Biology and Genomics Facility Lab, Division of Veterinary Biotechnology, Indian Council of Agricultural Research-Indian Veterinary Research Institute, BareillyIndia
| | - Ravi K Gandham
- Computational Biology and Genomics Facility Lab, Division of Veterinary Biotechnology, Indian Council of Agricultural Research-Indian Veterinary Research Institute, BareillyIndia
| |
Collapse
|