1
|
Ito T. First reports of several viruses and a viroid including a novel vitivirus in Japan, found through virome analysis of bulk grape genetic resources. Virus Genes 2024:10.1007/s11262-024-02101-7. [PMID: 39162928 DOI: 10.1007/s11262-024-02101-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
Virome analysis was performed on 174 grape genetic resources from the National Agriculture and Food Research Organization, Japan. A total of 20 bulk samples was prepared by grouping the vines into batches of 6-10 plants. Each of the bulk samples was analyzed using high-throughput sequencing, which detected 27 viruses and 5 viroids, including six viruses and one viroid reported in Japan for the first time (grapevine viruses F, L, and T, grapevine Kizil Sapak virus, grapevine Syrah virus 1, grapevine satellite virus, and grapevine yellow speckle viroid 2). In addition, a novel vitivirus was detected with a maximum nucleotide sequence identity of only 58% to its closest relative, grapevine virus A (GVA). The genome of this novel virus was 7,461 nucleotides in length and encoded five open reading frames showing the typical genomic structure of vitiviruses. Phylogenetic trees of vitiviruses placed it in a distinct position nearest to GVA or grapevine virus F (GVF) in genomes and amino acids of deduced replication-associated protein (RAP) and coat protein (CP). The amino acid sequence identities of RAP and CP with GVA, GVF, and other vitiviruses were a maximum of 53% and 73%, respectively, which were significantly below the species demarcation threshold of 80% in the genus. The low identity and phylogenetic analyses indicate the discovery of a novel vitivirus species provisionally named grapevine virus P.
Collapse
Affiliation(s)
- Takao Ito
- Institute for Plant Protection, National Agriculture and Food Research Organization (NARO), Akitsu, Higashihiroshima, Hiroshima, 739-2494, Japan.
| |
Collapse
|
2
|
Xiao H, Meng B. Molecular and Metagenomic Analyses Reveal High Prevalence and Complexity of Viral Infections in French-American Hybrids and North American Grapes. Viruses 2023; 15:1949. [PMID: 37766355 PMCID: PMC10534776 DOI: 10.3390/v15091949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
French-American hybrids and North American grape species play a significant role in Canada's grape and wine industry. Unfortunately, the occurrence of viruses and viral diseases among these locally important non-vinifera grapes remains understudied. We report here the results from a large-scale survey to assess the prevalence of 14 viruses among 533 composite samples representing 2665 vines from seven French-American hybrid wine grape cultivars, two North American juice grape cultivars (Concord and Niagara), and the table grape cultivar Sovereign coronation. Based on reverse transcription polymerase chain reaction (RT-PCR) assays, ten viruses were detected. Grapevine rupestris stem pitting-associated virus, grapevine leafroll-associated virus 3, grapevine Pinot gris virus and grapevine red blotch virus were detected with the highest frequency. As expected, mixed infections were common; 62% of the samples contained two or more viruses. Overall, hybrid wine grapes were infected with more viruses and a higher prevalence of individual viruses than juice and table grapes. To validate these findings and to refine the virome of these non-European grapes, high-throughput sequencing (HTS) analyses of five composite samples representing each category of grapevine cultivars was performed. Results from HTS agreed with those from RT-PCR. Importantly, Vidal, a widely grown white-wine grape with international recognition due to its use in the award-winning icewine, is host to 14 viruses, four of which comprise multiple and distinct genetic variants. This comprehensive survey represents the most extensive examination of viruses among French-American hybrids and North American grapes to date.
Collapse
Affiliation(s)
- Huogen Xiao
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, 4200 Highway 97, Summerland, BC V0H 1Z0, Canada
| | - Baozhong Meng
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
3
|
Read DA, Thompson GD, Swanevelder DZH, Pietersen G. Metaviromic Characterization of Betaflexivirus Populations Associated with a Vitis cultivar Collection in South Africa. Viruses 2023; 15:1474. [PMID: 37515161 PMCID: PMC10385141 DOI: 10.3390/v15071474] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
South Africa is associated with a centuries-old viticultural industry, accompanied by a diverse range of wine and table grape cultivars and an extensive history of pervasive introductions of vine material and associated viruses. The Vitis D2 collection in Stellenbosch represents the most comprehensive collection of Vitis species, hybrids, and cultivars in South Africa. We collected leaf petiole material from 229 accessions from this collection. Our metaviromic analyses revealed a total of 406 complete/near complete genomes of various betaflexiviruses. Among these, we identified the presence of grapevine rupestris stem pitting-associated virus and grapevine viruses A, B, E, F, H (GVH), I (GVI), and M (GVM). Notably, this study marks the first report of GVH, GVI, and GVM in South Africa, which were confirmed via RT-PCR. This research significantly contributes to our understanding of viral diversity and introductions in South African viticulture and emphasizes the need for vigilant monitoring and management of viral infections. Our findings lay the groundwork for strategies that mitigate the impact of viruses on South Africa's wine industry, which generates an annual revenue of approximately 500 million USD.
Collapse
Affiliation(s)
- David A Read
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Genevieve D Thompson
- Gene Vantage, 53 Kyalami Boulevard, Kyalami Business Park, Johannesburg 1684, South Africa
| | - Dirk Z H Swanevelder
- Agricultural Research Council (ARC)-Biotechnology Platform, 100 Old Soutpan Road, Onderstepoort, Pretoria 0110, South Africa
| | | |
Collapse
|
4
|
Jagunić M, Diaz-Lara A, Szőke L, Rwahnih MA, Stevens K, Zdunić G, Vončina D. Incidence and Genetic Diversity of Grapevine Virus G in Croatian Vineyards. PLANTS 2022; 11:plants11182341. [PMID: 36145740 PMCID: PMC9506455 DOI: 10.3390/plants11182341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022]
Abstract
Grapevine virus G (GVG) is a recently discovered vitivirus infecting grapevines. Historically, viruses in the genus Vitivirus have been associated with the grapevine rugose wood disease. Based on new and previously reported GVG isolates, primers and probes were developed for real-time RT-PCR. The developed assay successfully detected the virus in infected plants during dormancy and the growing season. A field study of 4327 grapevines from Croatian continental and coastal wine-growing regions confirmed the presence of GVG in 456 (~10.5%) grapevines from three collection plantations and 77 commercial vineyards, with infection rates ranging from 2% to 100%. Interestingly, the virus was confirmed only in vines considered to be Croatian autochthonous cultivars, but not in introduced cultivars. A 564-nucleotide long portion of the coat protein gene from previously known and newly characterized GVG isolates had nucleotide and amino acid identities ranging from 89% to 100% and from 96.8% to 100%, respectively. Phylogenetic analysis revealed five distinct groups, with isolates originating from the same site being close to each other, indicating possible local infection. The information presented in this manuscript sets the stage for future studies to better understand the ecology and epidemiology of GVG and the possible need for inclusion in certification schemes.
Collapse
Affiliation(s)
- Martin Jagunić
- Department of Plant Pathology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Alfredo Diaz-Lara
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Queretaro 76130, Mexico
| | - Lóránt Szőke
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Food Science, University of Debrecen, 138 Böszörményi St., 4032 Debrecen, Hungary
| | - Maher Al Rwahnih
- Department of Plant Pathology, Foundation Plant Services, University of California-Davis, Davis, CA 95616, USA
| | - Kristian Stevens
- Computer Science and Evolution and Ecology, University of California-Davis, Davis, CA 95616, USA
| | - Goran Zdunić
- Institute for Adriatic Crops and Karst Reclamation, 21000 Split, Croatia
| | - Darko Vončina
- Department of Plant Pathology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, 10000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
5
|
Candresse T, Faure C, Marais A. First report of grapevine red globe virus (GRGV) and grapevine rupestris vein feathering virus (GRVFV) infecting grapevine (Vitis vinifera L.) in Portugal. PLANT DISEASE 2022; 107:974. [PMID: 35939753 DOI: 10.1094/pdis-06-22-1326-pdn] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Grapevine Red globe virus (GRGV) and grapevine rupestris vein feathering virus (GRVFV) are relatively recently described grape viruses that respectively belong to the genera Maculavirus and Marafivirus in the family Tymoviridae [1]. Owing to their rather recent description, still limited information on their biology, on their molecular variability and on their geographic distribution is available. Both viruses are apparently completely or largely asymptomatic in European grapevine and have likely been overlooked in a wide range of situations (Martelli, 2014). According to sequences in GenBank, GRGV has been identified in Asia (Iran, Japan, China), the Americas (USA, Brazil) and Europe (Spain, France, Slovenia, Hungary, Czech Republic and Germany). GRVFV has been reported from the same countries but also in Oceania (New Zealand, Australia) and from a range of other countries including India, Pakistan and South Korea for Asia, Canada for North America and Switzerland, Slovakia, Italy and Russia for Europe. Evidence for the presence of GRGV and GRVFV in grapevine plants from northern Portugal (variety(ies) unknown) was obtained through the bioinformatic analysis [2] of RNASeq Illumina data obtained from phloem scrapings from five grapevine samples collected in different plots in 2016 [3]. Following grapevine genome substraction, contigs assembly and Blast-based contigs annotation using CLC Genomics Workbench, two plants, #4 and #5b, yielded contigs representing near complete GRGV genomes. The plant #4 contig integrated 474 reads (0.15% of reads for an average coverage of 10.1x) while the corresponding values for the contig for plant #5b are 2185 reads (2.4% of total reads) for a coverage of 47.2x. The two GRGV contigs show 91.4% nucleotide (nt) identity and the closest GRGV full genome sequence in GenBank, MZ451067 from Canada, shares respectively 98.9% and 91.6% nt identity with them. The near complete genome contigs have been deposited in GenBank (ON603917 and ON603918). Simultaneously, two near full length genomic contigs for GRVFV were identified from plant #5b and have also been deposited in GenBank (ON603919 and ON603920). These contigs show 84.4% nt identity to each other and were respectively assembled from 4643 (5.2% of total reads) and 5326 reads (6.0% of total reads) for respective average coverages of 102.3x and 117.3x. The closest full GRVFV genome in GenBank is MZ027155 from the USA, with 84.3-85.3% nt identity. Confirmation of the presence of GRVG and GRVFV in the doubly infected plant #5b was achieved by specific RT-PCR assays. A published assay [4] was used for GRGV and primers GRVFV-Cp-F 5'AAYCCTGTCACHCTCCACTG3' and GRVFV-Cp-R 5'TTCATGGTGGTGCCDGTGAG3' (Tm 55°C) were used for GRVFV. The obtained 447nt GRGV amplicon showed a single difference with the HTS contig while the 218 nt GRVFV amplicon showed 3 mutations as compared to one of the HTS contigs. The different grapevines had initially been sampled because they showed relatively poor and stunted growth but besides GRVFV and/or GRGV the HTS analysis indicated that they were also infected by hop stunt viroid, grapevine yellow speckle viroid 1, grapevine rupestris stem pitting virus, plus respectively a novel nepovirus (plant #4) and grapevine leafroll-associated virus 2 and grapevine Pinot gris virus (plant #5b) so that the results reported here do not shed novel light on the potential pathogenicity of GRGV or GRVFV. To the best of our knowledge, this is the first report of GRGV and GRVFV in Portugal.
Collapse
Affiliation(s)
- Thierry Candresse
- INRA Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, INRA - Université de Bordeaux, CS20032, Villenave d'Ornon , France, 33882 cedex;
| | | | - Armelle Marais
- INRA Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, INRA - Université de Bordeaux, 71 avenue E. Bourlaux CS20032, Villenave d'Ornon , France, 33882;
| |
Collapse
|
6
|
Shvets D, Porotikova E, Sandomirsky K, Vinogradova S. Virome of Grapevine Germplasm from the Anapa Ampelographic Collection (Russia). Viruses 2022; 14:1314. [PMID: 35746784 PMCID: PMC9230720 DOI: 10.3390/v14061314] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
Grapevine germplasm collections are unique repositories of grape cultivars; therefore, it is necessary to minimize their infection with pathogens, including viruses, and develop various programs to maintain them in a virus-free state. In our study, we examined the virome of the largest Russian grapevine germplasm collection, the Anapa Ampelographic Collection, using high-throughput sequencing of total RNAs. As a result of bioinformatics analysis and validation of its results by reverse transcription PCR (RT-PCR) and quantitative RT-PCR (RT-qPCR), we identified 20 viruses and 3 viroids in 47 libraries. All samples were infected with 2 to 12 viruses and viroids, including those that cause economically significant diseases: leafroll, fleck, and rugose wood complex. For the first time in Russia, we detected Grapevine virus B (GVB), Grapevine virus F (GVF), Grapevine asteroid mosaic-associated virus (GAMaV), Grapevine Red Globe virus (GRGV), Grapevine satellite virus (GV-Sat), Grapevine virga-like virus (GVLV), Grapevine-associated jivivirus 1 (GaJV-1) and Vitis cryptic virus (VCV). A new putative representative of the genus Umbravirus with the provisional name Grapevine umbra-like virus (GULV) was also identified in Russian grape samples.
Collapse
Affiliation(s)
| | | | | | - Svetlana Vinogradova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky, Prospect 33, 119071 Moscow, Russia; (D.S.); (E.P.); (K.S.)
| |
Collapse
|
7
|
Sukhorukov G, Khalili M, Gascuel O, Candresse T, Marais-Colombel A, Nikolski M. VirHunter: A Deep Learning-Based Method for Detection of Novel RNA Viruses in Plant Sequencing Data. FRONTIERS IN BIOINFORMATICS 2022; 2:867111. [PMID: 36304258 PMCID: PMC9580956 DOI: 10.3389/fbinf.2022.867111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/24/2022] [Indexed: 10/15/2023] Open
Abstract
High-throughput sequencing has provided the capacity of broad virus detection for both known and unknown viruses in a variety of hosts and habitats. It has been successfully applied for novel virus discovery in many agricultural crops, leading to the current drive to apply this technology routinely for plant health diagnostics. For this, efficient and precise methods for sequencing-based virus detection and discovery are essential. However, both existing alignment-based methods relying on reference databases and even more recent machine learning approaches are not efficient enough in detecting unknown viruses in RNAseq datasets of plant viromes. We present VirHunter, a deep learning convolutional neural network approach, to detect novel and known viruses in assemblies of sequencing datasets. While our method is generally applicable to a variety of viruses, here, we trained and evaluated it specifically for RNA viruses by reinforcing the coding sequences' content in the training dataset. Trained on the NCBI plant viruses data for three different host species (peach, grapevine, and sugar beet), VirHunter outperformed the state-of-the-art method, DeepVirFinder, for the detection of novel viruses, both in the synthetic leave-out setting and on the 12 newly acquired RNAseq datasets. Compared with the traditional tBLASTx approach, VirHunter has consistently exhibited better results in the majority of leave-out experiments. In conclusion, we have shown that VirHunter can be used to streamline the analyses of plant HTS-acquired viromes and is particularly well suited for the detection of novel viral contigs, in RNAseq datasets.
Collapse
Affiliation(s)
- Grigorii Sukhorukov
- CNRS, IBGC, UMR 5095, Université de Bordeaux, Bordeaux, France
- Bordeaux Bioinformatics Center, Université de Bordeaux, Bordeaux, France
| | - Maryam Khalili
- Université de Bordeaux, INRAE, UMR BFP, CS20032, CEDEX, Villenave d’Ornon, France
| | - Olivier Gascuel
- Institut de Systématique, Biodiversité, Evolution (ISYEB - UMR7205, Muséum National d’Histoire Naturelle, CNRS, SU, EPHE, UA), Paris, France
| | - Thierry Candresse
- Université de Bordeaux, INRAE, UMR BFP, CS20032, CEDEX, Villenave d’Ornon, France
| | | | - Macha Nikolski
- CNRS, IBGC, UMR 5095, Université de Bordeaux, Bordeaux, France
- Bordeaux Bioinformatics Center, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
8
|
Čarija M, Radić T, Černi S, Mucalo A, Zdunić G, Vončina D, Jagunić M, Hančević K. Prevalence of Virus Infections and GLRaV-3 Genetic Diversity in Selected Clones of Croatian Indigenous Grapevine Cultivar Plavac Mali. Pathogens 2022; 11:pathogens11020176. [PMID: 35215120 PMCID: PMC8876015 DOI: 10.3390/pathogens11020176] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/11/2022] [Accepted: 01/26/2022] [Indexed: 12/04/2022] Open
Abstract
The cultivar Plavac Mali (Vitis vinifera L.), the most important indigenous red grapevine cultivar in Croatia, was tested for the presence of 16 grapevine viruses. Thirty-five samples from the collection vineyard were tested for the presence of grapevine leafroll-associated viruses-1, -2, and -3 (GLRaV-1, GLRaV-2 and GLRaV-3, respectively), grapevine fanleaf virus (GFLV), arabis mosaic virus (ArMV), grapevine virus-A (GVA), -B (GVB), -G (GVG), -H (GVH), -I (GVI), -J (GVJ), grapevine fleck virus (GFkV), grapevine rupestris stem pitting associated virus (GRSPaV), and grapevine pinot gris virus (GPGV) by reverse transcription–polymerase chain reaction (RT-PCR). Furthermore, standard PCR was conducted for grapevine badnavirus 1 (GBV-1) and grapevine red blotch virus (GRBV). Mixed infections were most common and GLRaV-3, the most abundant virus found in 85.71% of the vines tested, was further molecularly characterised. Different genomic variants of the heat shock protein homologue (HSP70h) were separated by cloning, detected by single-strand conformation polymorphism (SSCP) analysis, sequenced, and phylogenetically analysed. The presence of phylogenetic groups I and II was only confirmed. This study demonstrates the high virus infection rate of Plavac Mali vines and the heterogeneity of GLRaV-3 present nowadays in a collection vineyard.
Collapse
Affiliation(s)
- Mate Čarija
- Institute for Adriatic Crops, 21000 Split, Croatia; (M.Č.); (T.R.); (A.M.); (G.Z.)
| | - Tomislav Radić
- Institute for Adriatic Crops, 21000 Split, Croatia; (M.Č.); (T.R.); (A.M.); (G.Z.)
| | - Silvija Černi
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia;
| | - Ana Mucalo
- Institute for Adriatic Crops, 21000 Split, Croatia; (M.Č.); (T.R.); (A.M.); (G.Z.)
| | - Goran Zdunić
- Institute for Adriatic Crops, 21000 Split, Croatia; (M.Č.); (T.R.); (A.M.); (G.Z.)
| | - Darko Vončina
- Department of Plant Pathology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (D.V.); (M.J.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), 10000 Zagreb, Croatia
| | - Martin Jagunić
- Department of Plant Pathology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (D.V.); (M.J.)
| | - Katarina Hančević
- Institute for Adriatic Crops, 21000 Split, Croatia; (M.Č.); (T.R.); (A.M.); (G.Z.)
- Correspondence: ; Tel.: +385-21434435
| |
Collapse
|
9
|
Read DA, Thompson GD, Cordeur NL, Swanevelder D, Pietersen G. Genomic characterization of grapevine viruses N and O: novel vitiviruses from South Africa. Arch Virol 2022; 167:611-614. [PMID: 34988696 DOI: 10.1007/s00705-021-05333-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/28/2021] [Indexed: 11/02/2022]
Abstract
A survey was performed on a Vitis cultivar collection in Stellenbosch, South Africa. Metaviromes were generated for each cultivar, using an RNAtag-seq workflow. Analysis of assembled contigs indicated the presence of two putatively novel members of the genus Vitivirus, provisionally named "grapevine virus N" (GVN) and "grapevine virus O" (GVO). Comparisons of amino acid sequences showed that GVN and GVO are most closely related to grapevine virus G and grapevine virus E, respectively. The incidence of these novel viruses within the sampling site was low, with GVO and GVN associated with only five and two cultivars, respectively, of the 229 sampled.
Collapse
Affiliation(s)
- David A Read
- Agricultural Research Council (ARC)-Biotechnology Platform, 100 Old Soutpan Road, Onderstepoort, Pretoria, 0110, South Africa. .,Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| | - Genevieve D Thompson
- Agricultural Research Council (ARC)-Biotechnology Platform, 100 Old Soutpan Road, Onderstepoort, Pretoria, 0110, South Africa.,Gene Vantage, 34 Monte Carlo Crescent, Kyalami Business Park, Johannesburg, 1684, South Africa
| | | | - Dirk Swanevelder
- Agricultural Research Council (ARC)-Biotechnology Platform, 100 Old Soutpan Road, Onderstepoort, Pretoria, 0110, South Africa
| | - Gerhard Pietersen
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
10
|
Jagunić M, Lazarević B, Nikolić K, Stupić D, Preiner D, Vončina D. Detection, Transmission, and Characterization of Grapevine Virus H in Croatia. Pathogens 2021; 10:pathogens10121578. [PMID: 34959533 PMCID: PMC8704696 DOI: 10.3390/pathogens10121578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
A survey of recently discovered vitiviruses was performed on 113 Croatian autochthonous grapevine cultivars from the national collection “Jazbina” using one-step RT-PCR. The presence of grapevine virus H (GVH) was confirmed in nine (7.9%) cultivars and grapevine virus G in eight (7.1%), while the presence of grapevine viruses I and J were not detected. GVH was transmitted by the vine mealybug (Planococcus ficus) from a source plant to grapevine seedlings with a 10.5% transmission rate using a combination of 10 first and second instars per plant with 48 and 72 h of acquisition and inoculation access period, respectively. Transmission correlated with the presence of grapevine leafroll-associated virus 3 (GLRaV-3) in the GVH-source plant and recipient seedlings. No alternative GVH host was identified. A comparison of 356 nt fragments of the RdRP and CP coding regions showed nucleotide identity between the Croatian GVH isolates in the range of 95.5–99.2% and 97.5–99.4% and amino acid identity between 95.8 and 100% and between 98.3 and 100%, respectively. Comparison with foreign isolates revealed nucleotide sequence similarity in the RdRP and CP between 94 and 100% and between 97.7–100%, respectively. To the best of our knowledge, this is the first report of GVH in Croatia and the first identification of the vine mealybug as a vector of GVH.
Collapse
Affiliation(s)
- Martin Jagunić
- Department of Plant Pathology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia;
| | - Boris Lazarević
- Department of Plant Nutrition, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia;
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), 10000 Zagreb, Croatia;
| | - Kristina Nikolić
- Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia;
| | - Domagoj Stupić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia;
| | - Darko Preiner
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), 10000 Zagreb, Croatia;
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia;
| | - Darko Vončina
- Department of Plant Pathology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia;
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), 10000 Zagreb, Croatia;
- Correspondence: ; Tel.: +385-1239-3971
| |
Collapse
|
11
|
Orfanidou CG, Moraki K, Panailidou P, Lotos L, Katsiani A, Avgelis A, Katis NI, Maliogka VI. Prevalence and Genetic Diversity of Viruses Associated with Rugose Wood Complex in Greek Vineyards. PLANT DISEASE 2021; 105:3677-3685. [PMID: 34085849 DOI: 10.1094/pdis-02-21-0266-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rugose wood is one of the most important disease syndromes of grapevine, and it has been associated with at least three viruses: grapevine rupestris stem pitting-associated virus (GRSPaV), grapevine virus A (GVA), and grapevine virus B (GVB). All three viruses show a worldwide distribution pattern, and their genetic composition has been the focus of extensive research in past years. Despite their first record in Greece almost 20 years ago, there is a lack of knowledge on the distribution and genetic variability of their populations in Greek vineyards. In this context, we investigated the distribution of GRSPaV, GVA, and GVB in rootstocks, self-rooted vines, and grafted grapevine cultivars originating from different geographic regions that represent important viticultural areas of Greece. Three new reverse transcription-PCR assays were developed for the reliable detection of GRSPaV, GVA, and GVB. Our results indicated that GVA is the most prevalent in Greek vineyards, followed by GRSPaV and GVB. However, virus incidence differed among self-rooted and grafted grapevine cultivars or rootstocks tested. Selected isolates from each virus were further molecularly characterized to determine their phylogenetic relationships. All three viruses exhibited high nucleotide diversity, which was depicted in the constructed phylogenetic trees. Isolates from Greece were placed in various phylogroups, reinforcing the scenario of multiple introductions of GVA, GVB, and GRSPaV in Greece and highlighting the effect of different transmission modes in the evolutionary course of the three viruses.
Collapse
Affiliation(s)
- C G Orfanidou
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124, Thessaloniki, Greece
| | - K Moraki
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124, Thessaloniki, Greece
| | - P Panailidou
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124, Thessaloniki, Greece
| | - L Lotos
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124, Thessaloniki, Greece
| | - A Katsiani
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124, Thessaloniki, Greece
| | - A Avgelis
- Department of Agriculture, Hellenic Mediterranean University, 71004 Heraklion, Crete
| | - N I Katis
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124, Thessaloniki, Greece
| | - V I Maliogka
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124, Thessaloniki, Greece
| |
Collapse
|
12
|
Quintanilha-Peixoto G, Fonseca PLC, Raya FT, Marone MP, Bortolini DE, Mieczkowski P, Olmo RP, Carazzolle MF, Voigt CA, Soares ACF, Pereira GAG, Góes-Neto A, Aguiar ERGR. The Sisal Virome: Uncovering the Viral Diversity of Agave Varieties Reveals New and Organ-Specific Viruses. Microorganisms 2021; 9:microorganisms9081704. [PMID: 34442783 PMCID: PMC8400513 DOI: 10.3390/microorganisms9081704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 12/29/2022] Open
Abstract
Sisal is a common name for different plant varieties in the genus Agave (especially Agave sisalana) used for high-quality natural leaf fiber extraction. Despite the economic value of these plants, we still lack information about the diversity of viruses (virome) in non-tequilana species from the genus Agave. In this work, by associating RNA and DNA deep sequencing we were able to identify 25 putative viral species infecting A. sisalana, A. fourcroydes, and Agave hybrid 11648, including one strain of Cowpea Mild Mottle Virus (CPMMV) and 24 elements likely representing new viruses. Phylogenetic analysis indicated they belong to at least six viral families: Alphaflexiviridae, Betaflexiviridae, Botourmiaviridae, Closteroviridae, Partitiviridae, Virgaviridae, and three distinct unclassified groups. We observed higher viral taxa richness in roots when compared to leaves and stems. Furthermore, leaves and stems are very similar diversity-wise, with a lower number of taxa and dominance of a single viral species. Finally, approximately 50% of the identified viruses were found in all Agave organs investigated, which suggests that they likely produce a systemic infection. This is the first metatranscriptomics study focused on viral identification in species from the genus Agave. Despite having analyzed symptomless individuals, we identified several viruses supposedly infecting Agave species, including organ-specific and systemic species. Surprisingly, some of these putative viruses are probably infecting microorganisms composing the plant microbiota. Altogether, our results reinforce the importance of unbiased strategies for the identification and monitoring of viruses in plant species, including those with asymptomatic phenotypes.
Collapse
Affiliation(s)
- Gabriel Quintanilha-Peixoto
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.Q.-P.); (P.L.C.F.); (D.E.B.); (R.P.O.)
| | - Paula Luize Camargos Fonseca
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.Q.-P.); (P.L.C.F.); (D.E.B.); (R.P.O.)
| | - Fábio Trigo Raya
- Department of Genetics and Evolution, Institute of Biology, Universidade Estadual de Campinas, Campinas 13083-872, Brazil; (F.T.R.); (M.P.M.); (M.F.C.); (G.A.G.P.)
| | - Marina Pupke Marone
- Department of Genetics and Evolution, Institute of Biology, Universidade Estadual de Campinas, Campinas 13083-872, Brazil; (F.T.R.); (M.P.M.); (M.F.C.); (G.A.G.P.)
| | - Dener Eduardo Bortolini
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.Q.-P.); (P.L.C.F.); (D.E.B.); (R.P.O.)
| | - Piotr Mieczkowski
- High-Throughput Sequencing Facility, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA;
| | - Roenick Proveti Olmo
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.Q.-P.); (P.L.C.F.); (D.E.B.); (R.P.O.)
- CNRS UPR9022, INSERM U1257, Université de Strasbourg, 67084 Strasbourg, France
| | - Marcelo Falsarella Carazzolle
- Department of Genetics and Evolution, Institute of Biology, Universidade Estadual de Campinas, Campinas 13083-872, Brazil; (F.T.R.); (M.P.M.); (M.F.C.); (G.A.G.P.)
| | | | - Ana Cristina Fermino Soares
- Center of Agricultural, Environmental and Biological Sciences, Universidade Federal do Recôncavo da Bahia, Cruz das Almas 44380-000, Brazil;
| | - Gonçalo Amarante Guimarães Pereira
- Department of Genetics and Evolution, Institute of Biology, Universidade Estadual de Campinas, Campinas 13083-872, Brazil; (F.T.R.); (M.P.M.); (M.F.C.); (G.A.G.P.)
| | - Aristóteles Góes-Neto
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.Q.-P.); (P.L.C.F.); (D.E.B.); (R.P.O.)
- Correspondence: (A.G.-N.); (E.R.G.R.A.)
| | - Eric Roberto Guimarães Rocha Aguiar
- Center of Biotechnology and Genetics, Department of Biological Science, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Brazil
- Correspondence: (A.G.-N.); (E.R.G.R.A.)
| |
Collapse
|
13
|
Panailidou P, Lotos L, Sassalou CL, Gagiano E, Pietersen G, Katis N, Maliogka VI. First report of grapevine virus H (GVH) in grapevine in Greece. PLANT DISEASE 2021; 105:2738. [PMID: 33728963 DOI: 10.1094/pdis-01-21-0179-pdn] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Grapevine virus H (GVH) is a member of the genus Vitivirus in the family Betaflexiviridae (subfamily Trivirinae, order Tymovirales) that infects grapevine (Candresse et al., 2018). GVH was first identified in a symptomless grapevine of an unknown cultivar from Portugal in 2018 (Candresse et al. 2018), and since then the virus has been reported only from California (Diaz‑Lara et al. 2019). Several vitiviruses have been detected in Greek vineyards (Avgelis and Roubos 2000; Dovas and Katis 2003a; 2003b; Panailidou et al. 2019; Lotos et al. 2020), but no information was available on the presence of GVH. In the fall of 2020, in order to investigate the virome of a commercial vineyard of the cultivar Assyrtiko in northern Greece, a composite sample was made of leaves and petioles from nine vines exhibiting leafroll disease symptoms. Total RNA was extracted from the composite sample according to the protocol of White et al. (2008) and subjected to rRNA depletion, library construction (TruSeq Stranded Total RNA kit), and high-throughput sequencing (HTS) in a NovaSeq6000 platform (Illumina Inc.) at Macrogen (Korea). The resulting ~42 million 101-nt paired-end reads were analyzed in Geneious Prime 2020, and the assembled de novo contigs were subjected to a local BLASTn search, which revealed the presence of 18 grapevine infecting viruses and viroids, among which also a GVH-like contig (GeA-9). GeA-9 was 7,404 nucleotides (nt) long, covering 99.4% of the full virus genome and shared 98.2 % nt identity with a GVH isolate from the USA (MN716768). To confirm the presence of GVH, the nine samples of the cultivar Assyrtiko, used initially to produce the composite sample for HTS analysis, were tested individually by RT-PCR, using the primers GVH_F_2504 (5'-CTGCTTCGCTGAACATATGC-3') and GVH_R_2835 (5'-ATCATTRTGATCGAGAGAGTAGTG-3') that amplify a 331-nt segment of ORF1. GVH was detected in five out of the nine tested samples and one of these was reamplified and subjected to Sanger sequencing. The fragment of ORF1 obtained by Sanger sequencing (MW460005) was 97.5% identical to the nucleotide sequence of the corresponding GVH-like de novo contig (GeA-9) from HTS analysis and it shared 97.2% nt identity with GVH sequences reported from Portugal and USA, respectively (NC_040545 and MN716768), confirming the presence of GVH in the tested samples. This is the first report of GVH in grapevine in Greece, thus further increasing the number of vitiviruses known to infect Greek vineyards and also expanding the number of geographic locations in which GVH is recorded so far.
Collapse
Affiliation(s)
- Polina Panailidou
- Aristotle University of Thessaloniki, School of Agriculture, Thessaloniki, Greece;
| | - Leonidas Lotos
- Aristotle University of Thessaloniki, Agriculture, Plant Pathology Laboratory, POB 269, University Campus, Thessaloniki, Greece, 54124;
| | - Chrysoula-Lyto Sassalou
- Aristotle University of Thessaloniki, Agriculture, University Campus, Plant pathology Laboratory, Thessaloniki, Greece, 54124;
| | - E Gagiano
- Stellenbosch University, 26697, Genetics, Stellenbosch, Western Cape, South Africa;
| | - Gerhard Pietersen
- Stellenbosch University, 26697, Genetics, Stellenbosch, Western Cape, South Africa;
| | - Nikolaos Katis
- Aristotle University of Thessaloniki, Department of Agriculture, University campus, Thessaloniki, Greece, 54 124
- Greece;
| | - Varvara I Maliogka
- Aristotle University of Thessaloniki, School of Agriculture, Plant Pathology Lab, Thessaloniki, Greece, 54124;
| |
Collapse
|
14
|
Complete genome sequence analysis of a genetic variant of grapevine virus L from the grapevine cultivar Blanc du Bois. Arch Virol 2020; 165:1905-1909. [PMID: 32472290 DOI: 10.1007/s00705-020-04682-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/25/2020] [Indexed: 10/24/2022]
Abstract
The complete genome sequences of two grapevine virus L (GVL) isolates collected from the wine grape cultivar Blanc du Bois (Vitis spp.: 'Florida D 6-148'×'Cardinal') in Texas were determined. The two genome sequences (excluding the polyA tail) were each 7594 nucleotide long and 99.7% identical to each other, but they shared only ~74% identity with those of previously published GVL isolates. Further analysis showed that the two Texas GVL isolates also diverged significantly from previously published isolates of the virus in each of the five ORFs at both the nucleotide and amino acid level, indicating that they represent a new phylogroup of this virus.
Collapse
|
15
|
Maree HJ, Blouin AG, Diaz-Lara A, Mostert I, Al Rwahnih M, Candresse T. Status of the current vitivirus taxonomy. Arch Virol 2019; 165:451-458. [PMID: 31845154 DOI: 10.1007/s00705-019-04500-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 11/12/2019] [Indexed: 11/25/2022]
Abstract
Since the establishment of the genus Vitivirus, several additional viruses have been sequenced and proposed to represent new species of this genus. Currently, the International Committee on Taxonomy of Viruses recognizes 15 vitivirus species. The report of new vitiviruses that fail to completely adhere to the species demarcation criteria, the incorporation of non-vitivirus grapevine viruses in the unofficial "naming system", and the existence of non-grapevine vitiviruses lead to inconsistencies in classification. In this report, we give a brief overview of vitiviruses and use currently available information to clarify the present status of the vitivirus taxonomy.
Collapse
Affiliation(s)
- H J Maree
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
- Citrus Research International, P.O. Box 2201, Matieland, 7602, South Africa.
| | - A G Blouin
- Integrated and Urban Plant Pathology Laboratory, Gembloux Agro-Bio Tech, University of Liège, 5030, Gembloux, Belgium
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand
| | - A Diaz-Lara
- Department of Plant Pathology, University of California-Davis, Davis, CA, 95616, USA
| | - I Mostert
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - M Al Rwahnih
- Department of Plant Pathology, University of California-Davis, Davis, CA, 95616, USA
| | - T Candresse
- INRAE, Univ. Bordeaux, UMR BFP, 33882, Villenave d'Ornon Cedex, France
| |
Collapse
|
16
|
Bragard C, Dehnen-Schmutz K, Gonthier P, Jacques MA, Jaques Miret JA, Justesen AF, MacLeod A, Magnusson CS, Milonas P, Navas-Cortes JA, Parnell S, Potting R, Reignault PL, Thulke HH, der Werf WV, Vicent Civera A, Yuen J, Zappalà L, Candresse T, Chatzivassiliou E, Winter S, Chiumenti M, Di Serio F, Kaluski T, Minafra A, Rubino L. List of non-EU viruses and viroids of Cydonia Mill., Fragaria L., Malus Mill., Prunus L., Pyrus L., Ribes L., Rubus L. and Vitis L. EFSA J 2019; 17:e05501. [PMID: 32626418 PMCID: PMC7009187 DOI: 10.2903/j.efsa.2019.5501] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Panel on Plant Health performed a listing of non-EU viruses and viroids (reported hereinafter as viruses) of Cydonia Mill., Fragaria L., Malus Mill., Prunus L., Pyrus L., Ribes L., Rubus L. and Vitis L. A systematic literature review identified 197 viruses infecting one or more of the host genera under consideration. Viruses were allocated into three categories (i) 86 non-EU viruses, known to occur only outside the EU or having only limited presence in the EU (i.e. reported in only one or few Member States (MSs), known to have restricted distribution, outbreaks), (ii) 97 viruses excluded at this stage from further categorisation efforts because they have significant presence in the EU (i.e. only reported so far from the EU or known to occur or be widespread in some MSs or frequently reported in the EU), (iii) 14 viruses with undetermined standing for which available information did not readily allow to allocate to one or the other of the two above groups. Comments provided by MSs during consultation phases were integrated in the opinion. The main knowledge gaps and uncertainties of this listing concern (i) the geographic distribution and prevalence of the viruses analysed, in particular when they were recently described; (ii) the taxonomy and biological status of a number of poorly characterised viruses; (iii) the host status of particular plant genera in relation to some viruses. The viruses considered as non-EU and those with undetermined standing will be categorised in the next steps to answer a specific mandate from the Commission to develop pest categorisations for non-EU viruses. This list does not imply a prejudice on future needs for a pest categorisation for other viruses which are excluded from the current categorisation efforts.
Collapse
|
17
|
Elbeaino T, Chammem H, Alsaheli Z, Ben Slimen A, Digiaro M. Development of RT-PCR assays for the detection and the resultant phylogenetic analysis of four grapevine vitiviruses based on the coat protein sequences. J Virol Methods 2019; 273:113712. [PMID: 31400362 DOI: 10.1016/j.jviromet.2019.113712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/17/2019] [Accepted: 07/30/2019] [Indexed: 11/27/2022]
Abstract
Four sets of primers were designed based on the alignment of the complete coat protein (CP) gene sequences of several isolates of four different vitiviruses, i.e. grapevine virus B (GVB), GVD, GVE and GVF, and tested for their efficiency in RT-PCR assays to detect vitiviruses infections in grapevine. The resultant RT-PCR amplicons were sequenced and analyzed for their genetic variability and phylogenetic studies. The results of the RT-PCR assays showed that these primers were highly efficient in detecting different vitivirus isolates in grapevine material originating from ten different Mediterranean countries. In particular, 76 out of 218 tested samples (ca. 35%) were infected with at least one vitivirus. GVE was the most detected (14.7%), followed by GVF (11.5%), GVB (6.9%), and GVD (2.8%). Nucleotide (nt) sequence analysis of the CP genes from this study and Genbank showed that the sequence identity matrixes among isolates of GVB and GVE were the most variable, with nt identity ranging from 77% to 100%, whereas isolates of GVD and GVF showed more conserved nt identities ranging between 82% to 100% and 86.4% to 99.8%, respectively. The phylogenetic trees constructed based on the CP sequences distinguished two main groups of isolates for each vitivirus species, except for the GVD isolates, which did not show any particular subdivision. In general, the distributions of the isolates in the phylogenetic tree were associated with their geographical origin, thus suggesting limited movement of grapevine materials between the different countries. This study reported for the first time: (i) the development of primers based on the complete CP gene sequences for RT-PCR assays for the universal detection of vitivirus species, (ii) the high genetic variability among Mediterranean isolates of vitiviruses and (iii) the presence of GVD in Jordanian vines, of GVE in grapevines from Hungary, Italy, Jordan, Malta and Palestine, and of GVF in grapevines from Afghanistan, Bulgaria, China, France, Hungary, Italy, Jordan, Lebanon and Malta.
Collapse
Affiliation(s)
- Toufic Elbeaino
- Istituto Agronomico Mediterraneo of Bari, Via Ceglie 9, 70010 Valenzano, BA, Italy.
| | - Hamza Chammem
- Istituto Agronomico Mediterraneo of Bari, Via Ceglie 9, 70010 Valenzano, BA, Italy
| | - Zeinab Alsaheli
- Istituto Agronomico Mediterraneo of Bari, Via Ceglie 9, 70010 Valenzano, BA, Italy; Dipartimento di Scienze Agro-Alimentari (DISTAL), Alma Mater Studiorum - Università di Bologna, viale Fanin, 40, 40127 Bologna, Italy
| | - Amani Ben Slimen
- Istituto Agronomico Mediterraneo of Bari, Via Ceglie 9, 70010 Valenzano, BA, Italy
| | - Michele Digiaro
- Istituto Agronomico Mediterraneo of Bari, Via Ceglie 9, 70010 Valenzano, BA, Italy
| |
Collapse
|
18
|
Diaz-Lara A, Brisbane RS, Aram K, Golino D, Al Rwahnih M. Detection of new vitiviruses infecting grapevine in California. Arch Virol 2019; 164:2573-2580. [PMID: 31346770 DOI: 10.1007/s00705-019-04355-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/03/2019] [Indexed: 11/25/2022]
Abstract
Recently, five new viruses from the genus Vitivirus were identified and named grapevine virus G, H, I, J and L. These viruses were targeted in a survey to evaluate their prevalence in different grapevine populations in California. Excluding a single detection of GVJ, other vitiviruses were detected infecting several grapevine selections via RT-PCR and later confirmed by sequencing. This paper represents the first report of GVG, GVH and GVI in California. In a preliminary analysis, the sequence diversity between identified isolates of GVG, GVH, GVI and GVL was investigated using distance matrices and phylogenetics. Finally, coinfections involving diverse vitiviruses and leafroll viruses were evidenced.
Collapse
Affiliation(s)
- Alfredo Diaz-Lara
- Department of Plant Pathology, University of California-Davis, Davis, CA, 95616, USA
| | - Reid S Brisbane
- Foundation Plant Services, University of California-Davis, Davis, CA, 95616, USA
| | - Kamyar Aram
- Department of Plant Pathology, University of California-Davis, Davis, CA, 95616, USA
| | - Deborah Golino
- Department of Plant Pathology, University of California-Davis, Davis, CA, 95616, USA
| | - Maher Al Rwahnih
- Department of Plant Pathology, University of California-Davis, Davis, CA, 95616, USA.
| |
Collapse
|
19
|
Thekke-Veetil T, Ho T. Molecular characterization of a new vitivirus discovered in a blueberry plant with green mosaic symptoms. Arch Virol 2019; 164:2609-2611. [PMID: 31312966 DOI: 10.1007/s00705-019-04344-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/06/2019] [Indexed: 11/24/2022]
Abstract
A new virus belonging to the genus Vitivirus in the family Betaflexiviridae was identified by next-generation sequencing of a blueberry plant showing green mosaic symptoms. The genome organization of the virus, which is tentatively named "blueberry green mosaic-associated virus" (BGMaV), is typical of vitiviruses, with five open reading frames (ORFs) and a polyadenylated 3' terminus. The ORFs code for the viral replicase, a 16K protein of unknown function, a movement protein, a coat protein (CP), and a nucleic acid binding protein. Phylogenetic analyses based on the deduced amino acid sequence of the CP and conserved motifs of the RNA-dependent RNA polymerase confirmed the taxonomic placement of BGMaV in the genus Vitivirus.
Collapse
Affiliation(s)
- Thanuja Thekke-Veetil
- Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA. .,Division of Agriculture, Department of Plant Pathology, University of Arkansas System, Fayetteville, AR, 72701, USA.
| | - Thien Ho
- Division of Agriculture, Department of Plant Pathology, University of Arkansas System, Fayetteville, AR, 72701, USA.,Driscoll's Inc., Watsonville, CA, 95076, USA
| |
Collapse
|
20
|
Alabi OJ, McBride S, Appel DN, Al Rwahnih M, Pontasch FM. Grapevine virus M, a novel vitivirus discovered in the American hybrid bunch grape cultivar Blanc du Bois in Texas. Arch Virol 2019; 164:1739-1741. [PMID: 30989381 DOI: 10.1007/s00705-019-04252-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/16/2019] [Indexed: 10/27/2022]
Abstract
A novel ssRNA (+) virus with molecular properties typical of members of the genus Vitivirus (family Betaflexiviridae; subfamily Trivirinae) was discovered by high-throughput sequencing in samples of the American hybrid bunch grape cultivar Blanc du Bois in Texas. The results were independently confirmed by Sanger sequencing of the virus isolate, whose genome length is 7,387 nt, excluding the polyA tail. The genome sequence contains five ORFs that are homologous and phylogenetically related to ORFs of grapevine-infecting vitiviruses. The name "grapevine virus M" is proposed for this new virus, whose sequence divergence exceeds the current ICTV species demarcation threshold for the genus Vitivirus.
Collapse
Affiliation(s)
- Olufemi J Alabi
- Department of Plant Pathology and Microbiology, Texas A&M AgriLife Research and Experiment Station, Weslaco, TX, 78596, USA.
| | - Sheila McBride
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - David N Appel
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Maher Al Rwahnih
- Department of Plant Pathology, University of California, Davis, 95616, USA
| | - Fran M Pontasch
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
21
|
Hily JM, Candresse T, Garcia S, Vigne E, Tannière M, Komar V, Barnabé G, Alliaume A, Gilg S, Hommay G, Beuve M, Marais A, Lemaire O. High-Throughput Sequencing and the Viromic Study of Grapevine Leaves: From the Detection of Grapevine-Infecting Viruses to the Description of a New Environmental Tymovirales Member. Front Microbiol 2018; 9:1782. [PMID: 30210456 PMCID: PMC6123372 DOI: 10.3389/fmicb.2018.01782] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/16/2018] [Indexed: 12/20/2022] Open
Abstract
In the past decade, high-throughput sequencing (HTS) has had a major impact on virus diversity studies as well as on diagnosis, providing an unbiased and more comprehensive view of the virome of a wide range of organisms. Rather than the serological and molecular-based methods, with their more "reductionist" view focusing on one or a few known agents, HTS-based approaches are able to give a "holistic snapshot" of the complex phytobiome of a sample of interest. In grapevine for example, HTS is powerful enough to allow for the assembly of complete genomes of the various viral species or variants infecting a sample of known or novel virus species. In the present study, a total RNAseq-based approach was used to determine the full genome sequences of various grapevine fanleaf virus (GFLV) isolates and to analyze the eventual presence of other viral agents. From four RNAseq datasets, a few complete grapevine-infecting virus and viroid genomes were de-novo assembled: (a) three GFLV genomes, 11 grapevine rupestris stem-pitting associated virus (GRSPaV) and six viroids. In addition, a novel viral genome was detected in all four datasets, consisting of a single-stranded, positive-sense RNA molecule of 6033 nucleotides. This genome displays an organization similar to Tymoviridae family members in the Tymovirales order. Nonetheless, the new virus shows enough differences to be considered as a new species defining a new genus. Detection of this new agent in the original grapevines proved very erratic and was only consistent at the end of the growing season. This virus was never detected in the spring period, raising the possibility that it might not be a grapevine-infecting virus, but rather a virus infecting a grapevine-associated organism that may be transiently present on grapevine samples at some periods of the year. Indeed, the Tymoviridae family comprises isometric viruses infecting a wide range of hosts in different kingdoms (Plantae, Fungi, and Animalia). The present work highlights the fact that even though HTS technologies produce invaluable data for the description of the sanitary status of a plant, in-depth biological studies are necessary before assigning a new virus to a particular host in such metagenomic approaches.
Collapse
Affiliation(s)
- Jean-Michel Hily
- UMR 1131 Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, Colmar, France
| | - Thierry Candresse
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, Villenave d'Ornon, Bordeaux, France
| | - Shahinez Garcia
- UMR 1131 Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, Colmar, France
| | - Emmanuelle Vigne
- UMR 1131 Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, Colmar, France
| | - Mélanie Tannière
- UMR 1131 Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, Colmar, France
| | - Véronique Komar
- UMR 1131 Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, Colmar, France
| | - Guillaume Barnabé
- UMR 1131 Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, Colmar, France
| | - Antoine Alliaume
- UMR 1131 Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, Colmar, France
| | - Sophie Gilg
- UMR 1131 Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, Colmar, France
| | - Gérard Hommay
- UMR 1131 Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, Colmar, France
| | - Monique Beuve
- UMR 1131 Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, Colmar, France
| | - Armelle Marais
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, Villenave d'Ornon, Bordeaux, France
| | - Olivier Lemaire
- UMR 1131 Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, Colmar, France
| |
Collapse
|
22
|
Beuve M, Hily JM, Alliaume A, Reinbold C, Le Maguet J, Candresse T, Herrbach E, Lemaire O. A complex virome unveiled by deep sequencing analysis of RNAs from a French Pinot Noir grapevine exhibiting strong leafroll symptoms. Arch Virol 2018; 163:2937-2946. [PMID: 30033497 DOI: 10.1007/s00705-018-3949-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 05/11/2018] [Indexed: 11/25/2022]
Abstract
We have characterized the virome of a grapevine Pinot Noir accession (P70) that displayed, over the year, very stable and strong leafroll symptoms. For this, we have used two extraction methods (dsRNA and total RNA) coupled with the high throughput sequencing (HTS) Illumina technique. While a great disparity in viral sequences were observed, both approaches gave similar results, revealing a very complex infection status. Five virus and viroid isolates [Grapevine leafroll-associated viruse-1 (GLRaV-1), Grapevine virus A (GVA), Grapevine rupestris stem pitting-associated virus (GRSPaV), Hop stunt viroid (HSVd) and Grapevine yellow speckle viroid 1 (GYSVd1)] were detected in P70 with a grand total of eleven variants being identified and de novo assembled. A comparison between both extraction methods regarding their power to detect viruses and the ease of genome assembly is also provided.
Collapse
Affiliation(s)
- Monique Beuve
- SVQV, Université de Strasbourg, 68000, Colmar, France
| | | | | | | | - Jean Le Maguet
- SVQV, Université de Strasbourg, 68000, Colmar, France
- Institut Français des Productions Cidricoles (IFPC), 61500, Sées, France
| | - Thierry Candresse
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, Villenave d'Ornon Cedex, France
| | | | | |
Collapse
|
23
|
Molecular characterization and detection of a novel vitivirus infecting blackberry. Arch Virol 2018; 163:2889-2893. [DOI: 10.1007/s00705-018-3931-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/07/2018] [Indexed: 10/28/2022]
|
24
|
Diaz-Lara A, Golino D, Al Rwahnih M. Genomic characterization of grapevine virus J, a novel virus identified in grapevine. Arch Virol 2018. [PMID: 29516247 PMCID: PMC5999178 DOI: 10.1007/s00705-018-3793-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
This paper describes the nucleotide sequence and genome organization of a novel RNA virus detected in grapevine (Vitis vinifera) cultivar ‘Kizil Sapak’ by high-throughput sequencing (HTS) and tentatively named “grapevine virus J” (GVJ). The full genome of GVJ is 7,390 nucleotides in length, which comprises five open reading frames (ORFs), including a 20K ORF (ORF 2) between the replicase (ORF 1) and the movement protein (ORF 3) genes. According to the level of sequence homology and phylogenetics, GVJ is proposed as a new member of the genus Vitivirus (subfamily Trivirinae; family Betaflexiviridae), with the closest characterized virus being grapevine virus D (GVD).
Collapse
Affiliation(s)
- Alfredo Diaz-Lara
- Department of Plant Pathology, University of California, Davis, Davis, CA, 95616, USA
| | - Deborah Golino
- Department of Plant Pathology, University of California, Davis, Davis, CA, 95616, USA
| | - Maher Al Rwahnih
- Department of Plant Pathology, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
25
|
Blouin AG, Chooi KM, Warren B, Napier KR, Barrero RA, MacDiarmid RM. Grapevine virus I, a putative new vitivirus detected in co-infection with grapevine virus G in New Zealand. Arch Virol 2018; 163:1371-1374. [DOI: 10.1007/s00705-018-3738-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/23/2017] [Indexed: 02/06/2023]
|