1
|
Li C, Hu Y, Liu Y, Li N, Yi L, Tu C, He B. The tissue virome of black-spotted frogs reveals a diversity of uncharacterized viruses. Virus Evol 2024; 10:veae062. [PMID: 39175838 PMCID: PMC11341201 DOI: 10.1093/ve/veae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/08/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024] Open
Abstract
Amphibians are an essential class in the maintenance of global ecosystem equilibrium, but they face serious extinction risks driven by climate change and infectious diseases. Unfortunately, the virus diversity harbored by these creatures has been rarely investigated. By profiling the virus flora residing in different tissues of 100 farmed black-spotted frogs (Rana nigromaculata) using a combination of DNA and RNA viromic methods, we captured 28 high-quality viral sequences covering at least 11 viral families. Most of these sequences were remarkably divergent, adding at least 10 new species and 4 new genera within the families Orthomyxoviridae, Adenoviridae, Nodaviridae, Phenuiviridae, and Picornaviridae. We recovered five orthomyxovirus segments, with three distantly neighboring two Chinese fish-related viruses. The recombination event of frog virus 3 occurred among the frog and turtle strains. The relative abundance and molecular detection revealed different tissue tropisms of these viruses, with the orthomyxovirus and adenoviruses being enteric and probably also neurotropic, but the new astrovirus and picornavirus being hepatophilic. These results expand the spectrum of viruses harbored by anurans, highlighting the necessity to continuously monitor these viruses and to investigate the virus diversity in a broader area with more diverse amphibian species.
Collapse
Affiliation(s)
- Chenxi Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 573 Yujinxiang Street, Jingyue District, Changchun, Jilin Province 130122, China
| | - Yazhou Hu
- Fisheries College, Hunan Agriculture University, No. 1 Nongda Road, Furong District, Changsha, Hunan Province 410128, China
| | - Yuhang Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 573 Yujinxiang Street, Jingyue District, Changchun, Jilin Province 130122, China
| | - Nan Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 573 Yujinxiang Street, Jingyue District, Changchun, Jilin Province 130122, China
| | - Le Yi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 573 Yujinxiang Street, Jingyue District, Changchun, Jilin Province 130122, China
| | - Changchun Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 573 Yujinxiang Street, Jingyue District, Changchun, Jilin Province 130122, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, No. 12 Wenhui Road, Hanjiang District, Yangzhou, Jiangsu Province 225009, China
| | - Biao He
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 573 Yujinxiang Street, Jingyue District, Changchun, Jilin Province 130122, China
| |
Collapse
|
2
|
Koda SA, Subramaniam K, Groff JM, Yanong RP, Pouder DB, Pedersen M, Pelton C, Garner MM, Phelps NBD, Armien AG, Hyatt MW, Hick PM, Becker JA, Stidworthy MF, Waltzek TB. Genetic characterization of infectious spleen and kidney necrosis virus in Banggai cardinalfish Pterapogon kauderni identified from eight separate cases between 2000 and 2017. JOURNAL OF FISH DISEASES 2023. [PMID: 37057714 DOI: 10.1111/jfd.13788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 05/07/2023]
Affiliation(s)
- Samantha A Koda
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Kuttichantran Subramaniam
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Joseph M Groff
- Retired, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Roy P Yanong
- Tropical Aquaculture Laboratory, School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, Ruskin, Florida, USA
| | - Deborah B Pouder
- Tropical Aquaculture Laboratory, School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, Ruskin, Florida, USA
| | - Matt Pedersen
- Reef to Rainforest Media, LLC, Shelburne, Vermont, USA
- MiniWaters LLC, Duluth, Minnesota, USA
| | - Craig Pelton
- Sea Life Aquarium, Orlando, Florida, USA
- OdySea Aquarium, Scottsdale, Arizona, USA
| | | | - Nicholas B D Phelps
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Anibal G Armien
- California Animal Health and Food Safety Laboratory System, School of Veterinary Medicine, University of California Davis, California, USA
| | | | - Paul M Hick
- The University of Sydney, School of Veterinary Science, Camden, New South Wales, Australia
| | - Joy A Becker
- The University of Sydney, School of Life and Environmental Sciences, Camden, New South Wales, Australia
| | | | - Thomas B Waltzek
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
- Sea Life Aquarium, Orlando, Florida, USA
| |
Collapse
|
3
|
Fusianto CK, Becker JA, Subramaniam K, Whittington RJ, Koda SA, Waltzek TB, Murwantoko, Hick PM. Genotypic Characterization of Infectious Spleen and Kidney Necrosis Virus (ISKNV) in Southeast Asian Aquaculture. Transbound Emerg Dis 2023. [DOI: 10.1155/2023/6643006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Infectious spleen and kidney necrosis virus (ISKNV) is a species within the genus Megalocytivirus (family Iridoviridae), which causes high mortality disease in many freshwater and marine fish species. ISKNV was first reported in Asia and is an emerging threat to aquaculture with increasing global distribution, in part due to its presence in ornamental fish with clinical and subclinical infections. The species ISKNV includes three genotypes: red seabream iridovirus (RSIV), turbot reddish body iridovirus (TRBIV), and ISKNV. There is an increasing overlap in the recognized range of susceptible fish hosts and the geographic distribution of these distinct genotypes. To better understand the disease caused by ISKNV, a nucleic acid hybridization capture enrichment was used prior to sequencing to characterize whole genomes from archived clinical specimens of aquaculture and ornamental fish from Southeast Asia (n = 16). The method was suitable for tissue samples containing 2.50 × 104–4.58 × 109 ISKNV genome copies mg−1. Genome sequences determined using the hybridization capture method were identical to those obtained directly from tissues when there was sufficient viral DNA to sequence without enrichment (n = 2). ISKNV genomes from diverse locations, environments, and hosts had very high similarity and matched established genotype classifications (14 ISKNV genotype Clade 1 genomes with >98.81% nucleotide similarity). Conversely, two different genotypes were obtained at the same time and location (RSIV and ISKNV from grouper, Indonesia with 92.44% nucleotide similarity). Gene-by-gene analysis with representative ISKNV genomes identified 59 core genes within the species (>95% amino acid identity). The 14 Clade 1 ISKNV genomes in this study had 100% aa identity for 92–105 of 122 predicted genes. Despite high overall sequence similarity, phylogenetic analyses using single nucleotide polymorphisms differentiated isolates from different host species, country of origin, and time of collection. Whole genome studies of ISKNV and other megalocytiviruses enable genomic epidemiology and will provide information to enhance disease control in aquaculture.
Collapse
|
4
|
Koda SA, Subramaniam K, Hick PM, Hall E, Waltzek TB, Becker JA. Partial validation of a TaqMan quantitative polymerase chain reaction for the detection of the three genotypes of Infectious spleen and kidney necrosis virus. PLoS One 2023; 18:e0281292. [PMID: 36735738 PMCID: PMC9897559 DOI: 10.1371/journal.pone.0281292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
Megalocytiviruses (MCVs) are double-stranded DNA viruses known to infect important freshwater and marine fish species in the aquaculture, food, and ornamental fish industries worldwide. Infectious spleen and kidney necrosis virus (ISKNV) is the type species within the genus Megalocytivirus that causes red seabream iridoviral disease (RSIVD) which is a reportable disease to the World Animal Health Organization (WOAH). To better control the transboundary spread of this virus and support WOAH reporting requirements, we developed and partially validated a TaqMan real-time qPCR assay (ISKNV104R) to detect all three genotypes of ISKNV, including the two genotypes that cause RSIVD. Parameters averaged across 48 experiments used a 10-fold dilution series of linearized plasmid DNA (107-101 copies), carrying a fragment of the three-spot gourami iridovirus (TSGIV) hypothetical protein revealed that the assay was linear over 7 orders of magnitude (107-101), a mean efficiency of 99.97 ± 2.92%, a mean correlation coefficient of 1.000 ± 0.001, and a limit of detection (analytical sensitivity) of ≤10 copies of TSGIV DNA. The diagnostic sensitivity and specificity for the ISKNV104R qPCR assay was evaluated and compared to other published assays using a panel of 397 samples from 21 source populations with different prevalence of ISKNV infection (0-100%). The diagnostic sensitivity and specificity for the ISKNV104R qPCR assay was 91.99% (87.28-95.6; 95% CI) and 89.8% (83.53-94.84). The latent class analysis showed that the ISKNV104R qPCR assay had similar diagnostic sensitivities and specificities with overlapping confidence limits compared to a second TaqMan qPCR assay and a SYBR green assay. This newly developed TaqMan assay represents a partially validated qPCR assay for the detection of the three genotypes of the species ISKNV. The ISKNV104R qPCR assay once fully validated, will serve as an improved diagnostic tool that can be used for ISKNV surveillance efforts and diagnosis in subclinical fish to prevent further spread of MCVs throughout the aquaculture and ornamental fish industries.
Collapse
Affiliation(s)
- Samantha A. Koda
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Kuttichantran Subramaniam
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Paul M. Hick
- Sydney School of Veterinary Science, The University of Sydney, Camden, New South Wales, Australia
| | - Evelyn Hall
- Sydney School of Veterinary Science, The University of Sydney, Camden, New South Wales, Australia
| | - Thomas B. Waltzek
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- * E-mail: (JAB); (TBW)
| | - Joy A. Becker
- School of Life and Environmental Sciences, The University of Sydney, Camden, New South Wales, Australia
- * E-mail: (JAB); (TBW)
| |
Collapse
|
5
|
Zhang Y, Zhang C, Zhang Z, Sun W, Zhang X, Liu X. Analysis of the transcriptomic profiles of Mandarin fish (Siniperca chuatsi) infected with red sea bream iridovirus (RSIV). Microb Pathog 2023; 174:105921. [PMID: 36470347 DOI: 10.1016/j.micpath.2022.105921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Red sea bream iridovirus (RSIV) belongs to the family Iridoviridae, genus Megalocytivirus, which could widely infect marine fish, causing diseases and huge economic losses. Now it has been reported that RSIV was also detected in diseased mandarin fish. Transmission electron microscopy and immunohistochemistry showed that spleen was the main target organ in mandarin fish infected with RSIV. To investigate the immune response mechanism of mandarin fish to RSIV infection, transcriptomics of RSIV-infected mandarin fish was analyzed. A total of 53,040 unigenes were obtained, and there were 21,576 and 17,904 unigenes had significant hit the Nr and SwissProt databases, respectively. In RSIV-infected and non-infected spleen tissues, there were 309 differentially expressed genes (DEGs), including 100 up-regulated genes and 209 down-regulated genes. Gene Ontology database (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis were performed to reveal the function information and give a better understanding of the signal transduction pathways of DEGs. Further analysis of the cytokine-cytokine receptor interactions pathway exhibited that the expression of cytokines was widely activated after viral infection. In addition, ten DEGs were randomly selected and verified by quantitative real-time PCR, which revealed a similar expression tendency as the high-throughput sequencing data. These findings present valuable information that will benefit for better understanding of RSIV infection in mandarin fish.
Collapse
Affiliation(s)
- Yanbing Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Chunjie Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Zheling Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Xiaodan Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
6
|
Chen PH, Hsueh TC, Hong JR. Infectious spleen and kidney necrosis virus induces the reactive oxidative species/Nrf2-mediated oxidative stress response for the regulation of mitochondrion-mediated Bax/Bak cell death signals in GF-1 cells. Front Microbiol 2022; 13:958476. [PMID: 36304944 PMCID: PMC9593061 DOI: 10.3389/fmicb.2022.958476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Infectious spleen and kidney necrosis virus (ISKNV) infections can trigger host cell death and are correlated with viral replication; however, they have rarely been considered in terms of the host organelle involvement. In the present study, we demonstrated that ISKNV triggered an oxidative stress signal in the Nrf2-mediated oxidative stress response and induced stress signals for Bax/Bak-mediated host cell death in fish GF-1 cells. The results showed that after ISKNV infection, the levels of reactive oxidative species (ROS) increased by 60–80% from day 3 to day 5, as assessed by an H2DCFDA assay for tracing hydrogen peroxide (H2O2), which was correlated with up to a one-fold change in the fish GF-1 cells. Furthermore, we found that ISKNV infection induced Nrf2-mediated ROS stress signals from D1 to D5, which were correlated with the upregulation of antioxidant enzymes, such as catalase, SOD1, and SOD2; these effects were blocked by the antioxidants GSH and NAC. By analyzing Nrf2-mediated ROS stress signals for cell death regulation via an apoptotic assay, we found that treatment with antioxidants reduced annexin-V-positive signals by 10% (GSH) to 15% (NAC); moreover, necrotic-positive signals were reduced by 6% (GSH) and 32% (NAC) at day 5 (D5) in GF-1 cells, as indicated by PI staining. Furthermore, we found that Nrf2-mediated ROS stress regulated mitochondrion-mediated Bax/Bak death signals at D3 and D5; this was effectively blocked by antioxidant treatment in the GF-1 cells, as demonstrated by a JC1 assay (ΔΨm) and western blot analysis. In addition, we found that downstream signals for caspase-9 and -3 activation were apparently blocked by antioxidant treatment at D3 and D5. Finally, we found that treatment with GSH and NAC reduced major capsid protein (MCP) expression and virus titer (TCID50%) by up to 15-fold at D5 in GF-1 cells. Thus, our data suggest that ISKNV can induce ROS production, which triggers Nrf2-mediated stress signals. Then, these stress signals can regulate mitochondrion-mediated Bax/Bak apoptotic signaling, which is connected to downstream caspase-9 and -3 activation. If ISKNV-induced Nrf2-mediated stress signaling is blocked, then the antioxidants GSH and NAC can also suppress apoptotic signals or reduce viral replication. These findings may provide insights into the control and treatment of double-stranded DNA viruses.
Collapse
Affiliation(s)
- Pin-Han Chen
- Lab of Molecular Virology and Biotechnology, Department of Biotechnology and Bioindustry Sciences, Institute of Biotechnology, National Cheng Kung University, Tainan City, Taiwan
- Institute of Biotechnology, National Cheng Kung University, Tainan City, Taiwan
| | - Tsai-Ching Hsueh
- Lab of Molecular Virology and Biotechnology, Department of Biotechnology and Bioindustry Sciences, Institute of Biotechnology, National Cheng Kung University, Tainan City, Taiwan
- Institute of Biotechnology, National Cheng Kung University, Tainan City, Taiwan
| | - Jiann-Ruey Hong
- Lab of Molecular Virology and Biotechnology, Department of Biotechnology and Bioindustry Sciences, Institute of Biotechnology, National Cheng Kung University, Tainan City, Taiwan
- Institute of Biotechnology, National Cheng Kung University, Tainan City, Taiwan
- *Correspondence: Jiann-Ruey Hong,
| |
Collapse
|
7
|
Infectious Spleen and Kidney Necrosis Virus (ISKNV) Triggers Mitochondria-Mediated Dynamic Interaction Signals via an Imbalance of Bax/Bak over Bcl-2/Bcl-xL in Fish Cells. Viruses 2022; 14:v14050922. [PMID: 35632664 PMCID: PMC9144193 DOI: 10.3390/v14050922] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 12/30/2022] Open
Abstract
The molecular pathogenesis of infectious spleen and kidney necrosis virus (ISKNV) infections is important but has rarely been studied in connection to host organelle behavior. In the present study, we demonstrated that ISKNV can induce host cell death via a pro-apoptotic Bcl-2 and anti-apoptotic Bcl-2 family member imbalance in mitochondrial membrane potential (MMP or ΔΨm) regulation in GF-1 cells. The results of our study on ISKNV infection showed that it can induce host cell death by up to 80% at day 5 post-infection. Subsequently, in an apoptotic assay, ISKNV infection was seen to induce an increase in Annexin-V-positive signals by 20% and in propidium iodide (PI) staining-positive signals by up to 30% at day 5 (D5) in GF-1 cells. Then, through our studies on the mechanism of cell death in mitochondria function, we found that ISKNV can induce MMP loss by up to 58% and 78% at days 4 and 5 with a JC1 dye staining assay. Furthermore, we found that pro-apoptotic members Bax and Bak were upregulated from the early replication stage (day one) to the late stage (day 5), but the expression profiles were very dynamically different. On the other hand, by Western blotted analysis, the anti-apoptotic members Bcl-2 and Bcl-xL were upregulated very quickly at the same time from day one (two-fold) and continued to maintain this level at day five. Finally, we found that pro-apoptotic death signals strongly activated the downstream signals of caspase-9 and -3. Taken together, these results suggest that ISKNV infection can induce Bax/Bak-mediated cell death signaling downstream of caspase-9 and -3 activation. During the viral replication cycle with the cell death induction process, the anti-apoptotic members Bcl-2/Bcl-xL interacted with the pro-apoptotic members Bax/Bak to maintain the mitochondrial function in the dynamic interaction so as to maintain the MMP in GF-1 cells. These findings may provide insights into DNA-virus control and treatment.
Collapse
|
8
|
Complete Genome Sequences and Pathogenicity Analysis of Two Red Sea Bream Iridoviruses Isolated from Cultured Fish in Korea. FISHES 2021. [DOI: 10.3390/fishes6040082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In Korea, red sea bream iridovirus (RSIV), especially subtype II, has been the main causative agent of red sea bream iridoviral disease since the 1990s. Herein, we report two Korean RSIV isolates with different subtypes based on the major capsid protein and adenosine triphosphatase genes: 17SbTy (RSIV mixed subtype I/II) from Japanese seabass (Lateolabrax japonicus) and 17RbGs (RSIV subtype II) from rock bream (Oplegnathus fasciatus). The complete genome sequences of 17SbTy and 17RbGs were 112,360 and 112,235 bp long, respectively (115 and 114 open reading frames [ORFs], respectively). Based on nucleotide sequence homology with sequences of representative RSIVs, 69 of 115 ORFs of 17SbTy were most closely related to subtype II (98.48–100% identity), and 46 were closely related to subtype I (98.77–100% identity). In comparison with RSIVs, 17SbTy and 17RbGs carried two insertion/deletion mutations (ORFs 014R and 102R on the basis of 17SbTy) in regions encoding functional proteins (a DNA-binding protein and a myristoylated membrane protein). Notably, survival rates differed significantly between 17SbTy-infected and 17RbGs-infected rock breams, indicating that the genomic characteristics and/or adaptations to their respective original hosts might influence pathogenicity. Thus, this study provides complete genome sequences and insights into the pathogenicity of two newly identified RSIV isolates classified as a mixed subtype I/II and subtype II.
Collapse
|
9
|
Kerddee P, Dinh-Hung N, Dong HT, Hirono I, Soontara C, Areechon N, Srisapoome P, Kayansamruaj P. Molecular evidence for homologous strains of infectious spleen and kidney necrosis virus (ISKNV) genotype I infecting inland freshwater cultured Asian sea bass (Lates calcarifer) in Thailand. Arch Virol 2021; 166:3061-3074. [PMID: 34462803 DOI: 10.1007/s00705-021-05207-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/21/2021] [Indexed: 11/30/2022]
Abstract
Infectious spleen and kidney necrosis virus (ISKNV) is a fish-pathogenic virus belonging to the genus Megalocytivirus of the family Iridoviridae. In 2018, disease occurrences (40-50% cumulative mortality) associated with ISKNV infection were reported in grown-out Asian sea bass (Lates calcarifer) cultured in an inland freshwater system in Thailand. Clinical samples were collected from seven distinct farms located in the eastern and central regions of Thailand. The moribund fish showed various abnormal signs, including lethargy, pale gills, darkened body, and skin hemorrhage, while hypertrophied basophilic cells were observed microscopically in gill, liver, and kidney tissue. ISKNV infection was confirmed on six out of seven farms using virus-specific semi-nested PCR. The MCP and ATPase genes showed 100% sequence identity among the virus isolates, and the virus was found to belong to the ISKNV genotype I clade. Koch's postulates were later confirmed by challenge assay, and the mortality of the experimentally infected fish at 21 days post-challenge was 50-90%, depending on the challenge dose. The complete genome of two ISKNV isolates, namely KU1 and KU2, was recovered directly from the infected specimens using a shotgun metagenomics approach. The genome length of ISKNV KU1 and KU2 was 111,487 and 111,610 bp, respectively. In comparison to closely related ISKNV strains, KU1 and KU2 contained nine unique genes, including a caspase-recruitment-domain-containing protein that is potentially involved in inhibition of apoptosis. Collectively, this study indicated that inland cultured Asian sea bass are infected by homologous ISKNV strains. This indicates that ISKNV genotype I should be prioritized for future vaccine research.
Collapse
Affiliation(s)
- Pattarawit Kerddee
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand.,Center of Excellence on Agricultural Biotechnology: (AG-BIO/PERDO-CHE), Bangkok, 10900, Thailand
| | - Nguyen Dinh-Hung
- Fish Infectious Diseases Research Unit (FID RU), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ha Thanh Dong
- Department of Food, Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, 12120, Thailand
| | - Ikuo Hirono
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan, Minato, 4-5-7, Tokyo, 108-8477, Japan
| | - Chayanit Soontara
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand
| | - Nontawith Areechon
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand
| | - Prapansak Srisapoome
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand.,Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand
| | - Pattanapon Kayansamruaj
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand. .,Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
10
|
Koda SA, Subramaniam K, Pouder DB, Yanong RP, Frasca S, Popov VL, Waltzek TB. Complete genome sequences of infectious spleen and kidney necrosis virus isolated from farmed albino rainbow sharks Epalzeorhynchos frenatum in the United States. Virus Genes 2021; 57:448-452. [PMID: 34272657 DOI: 10.1007/s11262-021-01857-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/17/2021] [Indexed: 10/20/2022]
Abstract
The genus Megalocytivirus includes viruses known to cause significant disease in aquacultured fish stocks. Herein, we report the complete genome sequences of two megalocytiviruses (MCVs) isolated from diseased albino rainbow sharks Epalzeorhynchos frenatum reared on farms in the United States in 2018 and 2019. Histopathological examination revealed typical megalocytivirus microscopic lesions (i.e., basophilic cytoplasmic inclusions) that were most commonly observed in the spleen and kidney. Transmission electron microscopic examination of spleen and kidney tissues from specimens of the 2018 case revealed hexagonally shaped virus particles with a mean diameter of 153 ± 6 nm (n = 20) from opposite vertices and 131 ± 5 nm (n = 20) from opposite faces. Two MCV-specific conventional PCR assays confirmed the presence of MCV DNA in the collected samples. Full genome sequencing of both 2018 and 2019 Epalzeorhynchos frenatus iridoviruses (EFIV) was accomplished using a next-generation sequencing approach. Phylogenomic analyses revealed that both EFIV isolates belong to the infectious spleen and kidney necrosis virus (ISKNV) genotype within the genus Megalocytivirus. This study is the first report of ISKNV in albino rainbow sharks.
Collapse
Affiliation(s)
- Samantha A Koda
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Kuttichantran Subramaniam
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Deborah B Pouder
- Tropical Aquaculture Laboratory, School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, Ruskin, FL, 33570, USA
| | - Roy P Yanong
- Tropical Aquaculture Laboratory, School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, Ruskin, FL, 33570, USA
| | - Salvatore Frasca
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.,Connecticut Veterinary Medical Diagnostic Laboratory, Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, Connecticut, 06269, USA
| | - Vsevolod L Popov
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Thomas B Waltzek
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
11
|
Kayansamruaj P, Soontara C, Dong HT, Phiwsaiya K, Senapin S. Draft genome sequence of scale drop disease virus (SDDV) retrieved from metagenomic investigation of infected barramundi, Lates calcarifer (Bloch, 1790). JOURNAL OF FISH DISEASES 2020; 43:1287-1298. [PMID: 32829517 DOI: 10.1111/jfd.13240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Scale drop disease virus (SDDV) is a novel viral pathogen considered to be distributed in farmed barramundi (Lates calcarifer) in South-East Asia. Despite the severity of the disease, only limited genomic information related to SDDV is available. In this study, samples of SDDV-infected fish collected in 2019 were used. The microbiome of brain tissue was investigated using Illumina HiSeq DNA sequencing. Taxonomic analysis showed that SDDV was the main pathogen contained in the affected barramundi. De novo metagenome assembly recovered the SDDV genome, named isolate TH2019, 131 kb in length, and comprised of 135 ORFs. Comparison between this genome and the Singaporean SDDV reference genome revealed that the nucleotide identity within the aligned region was 99.97%. Missense, frameshift, insertion and deletion mutations were identified in 26 ORFs. Deletion of four deduced amino acid sequence in ORF_030L, identical to the SDDV isolate previously identified in Thailand, would be a potential biomarker for future strain classification. Interestingly, the genome of SDDV TH2019 harboured a unique 7,695-bp-long genomic region containing six hypothetical protein-encoded genes. Collectively, this study demonstrated that the SDDV genome can be sequenced directly, although with limited coverage depth, using metagenomic analysis of barramundi sample with severe infection.
Collapse
Affiliation(s)
- Pattanapon Kayansamruaj
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| | - Chayanit Soontara
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Ha T Dong
- Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, Thailand
- Faculty of Science, Fish Health Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Mahidol University, Bangkok, Thailand
| | - Kornsunee Phiwsaiya
- Faculty of Science, Fish Health Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Mahidol University, Bangkok, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Pathum Thani, Thailand
| | - Saengchan Senapin
- Faculty of Science, Fish Health Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Mahidol University, Bangkok, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Pathum Thani, Thailand
| |
Collapse
|
12
|
Kawato Y, Mohr PG, Crane MSJ, Williams LM, Neave MJ, Cummins DM, Dearnley M, Crameri S, Holmes C, Hoad J, Moody NJG. Isolation and characterisation of an ISKNV-genotype megalocytivirus from imported angelfish Pterophyllum scalare. DISEASES OF AQUATIC ORGANISMS 2020; 140:129-141. [PMID: 32759471 DOI: 10.3354/dao03499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Using cultures of the SKF-9 cell line, megalocytivirus AFIV-16 was isolated from imported angelfish Pterophyllum scalare held in quarantine at the Australian border. The cytopathic effect caused by isolate AFIV-16 presented as cell rounding and enlargement, but complete destruction of the infected cell cultures did not occur. The infected cells demonstrated immunocytochemical reactivity with monoclonal antibody M10, which is used for diagnosis of OIE-listed red sea bream iridoviral disease. Using electron microscopy, the virus particles, consisting of hexagonal nucleocapsids, were observed in the cytoplasm of SKF-9 cells. The replication of AFIV-16 in cultured SKF-9 cells was significantly greater at 28°C incubation than at 22 and 25°C incubation, whereas no difference in growth characteristics was observed for red sea bream iridovirus (RSIV) isolate KagYT-96 across this temperature range. Whole genome sequencing demonstrated that AFIV-16 has a 99.96% similarity to infectious spleen and kidney necrosis virus (ISKNV), the type species in the genus Megalocytivirus. AFIV-16 was classified into ISKNV genotype Clade 1 by phylogenetic analysis of the major capsid protein gene nucleotide sequence. This is the first report of whole genome sequencing of an ISKNV genotype megalocytivirus isolated from ornamental fish.
Collapse
Affiliation(s)
- Yasuhiko Kawato
- Nansei Main Station, National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Minami-Ise, Mie 516-0193, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chen KW, Chiu HW, Chiu YW, Wu JL, Hong JR. EPA and DHA can modulate cell death via inhibition of the Fas/tBid-mediated signaling pathway with ISKNV infection in grouper fin cell line (GF-1) cells. FISH & SHELLFISH IMMUNOLOGY 2020; 97:608-616. [PMID: 31614198 DOI: 10.1016/j.fsi.2019.10.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/05/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
Polyunsaturated fatty acids (PUFAs) play important roles in organisms, including the structure and liquidity of cell membranes, anti-oxidation and anti-inflammation. Very little has been done in terms of the effect of PUFAs on cell death, especially on DNA virus. In this study, we demonstrated that the infectious spleen and kidney necrosis virus (ISKNV) can induce host cell death via the apoptotic cell death pathway, which correlated to modulation by PUFAs in grouper fin cell line (GF-1) cells. We screened the PUFAs, including docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), for the ability of different dosages to prevent cell death in GF-1 cells with ISKNV infection. In the results, each 10 μM of DHA and EPA treatment enhanced host cell viability up to 80% at day 5 post-infection. Then, in Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) assay, DHA- and EPA-treated groups reduced TUNEL positive signals 50% in GF-1 cells with ISKNV infection. Then, through studies of the mechanism of cell death, we found that ISKNV can induce both the Bax/caspase-3 and Fas/caspase-8/tBid death signaling pathways in GF-1 cells, especially at day 5 post-infection. Furthermore, we found that DHA and EPA treatment can either prevent caspase-3 activation on 17-kDa form cleavage or Bid cleaved (15-kDa form) for activation by caspase-8, apparently. On the other hand, the anti-apoptotic gene Bcl-2 was upregulated 0.3-fold and 0.15-fold at day 3 and day 5, respectively, compared to ISKNV-infected and DHA-treated cells; that this did not happen in the EPA-treated group showed that different PUFAs trigger different signals. Finally, ISKNV-infected GF-1 cells treated with either DHA or EPA showed a 5-fold difference in viral titer at day 5. Taken together, these results suggest that optimal PUFA treatment can affect cell death signaling through both the intrinsic and extrinsic death pathways, reducing viral expression and viral titer in GF-1 cells. This finding may provide insight in DNA virus infection and control.
Collapse
Affiliation(s)
- Kuang-Wen Chen
- Laboratory of Molecular Virology and Biotechnology, Department of Biotechnology and Bioindustry Sciences, Institute of Biotechnology, National Cheng Kung University, No 1. University Road, Tainan City, 701, Taiwan, ROC; Institute of Biotechnology, National Cheng Kung University, No 1. University Road, Tainan City, 701, Taiwan, ROC
| | - Hsuan-Wen Chiu
- Laboratory of Molecular Virology and Biotechnology, Department of Biotechnology and Bioindustry Sciences, Institute of Biotechnology, National Cheng Kung University, No 1. University Road, Tainan City, 701, Taiwan, ROC; Institute of Biotechnology, National Cheng Kung University, No 1. University Road, Tainan City, 701, Taiwan, ROC
| | - Yu-Wei Chiu
- Laboratory of Molecular Virology and Biotechnology, Department of Biotechnology and Bioindustry Sciences, Institute of Biotechnology, National Cheng Kung University, No 1. University Road, Tainan City, 701, Taiwan, ROC; Institute of Biotechnology, National Cheng Kung University, No 1. University Road, Tainan City, 701, Taiwan, ROC
| | - Jen-Leih Wu
- Laboratory of Marine Molecular Biology and Biotechnology, Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan, ROC.
| | - Jiann-Ruey Hong
- Laboratory of Molecular Virology and Biotechnology, Department of Biotechnology and Bioindustry Sciences, Institute of Biotechnology, National Cheng Kung University, No 1. University Road, Tainan City, 701, Taiwan, ROC; Institute of Biotechnology, National Cheng Kung University, No 1. University Road, Tainan City, 701, Taiwan, ROC.
| |
Collapse
|
14
|
Koda SA, Subramaniam K, Francis-Floyd R, Yanong RP, Frasca S, Groff JM, Popov VL, Fraser WA, Yan A, Mohan S, Waltzek TB. Phylogenomic characterization of two novel members of the genus Megalocytivirus from archived ornamental fish samples. DISEASES OF AQUATIC ORGANISMS 2018; 130:11-24. [PMID: 30154268 DOI: 10.3354/dao03250] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The genus Megalocytivirus is the most recently described member of the family Iridoviridae; as such, little is known about the genetic diversity of this genus of globally emerging viral fish pathogens. We sequenced the genomes of 2 megalocytiviruses (MCVs) isolated from epizootics involving South American cichlids (oscar Astronotus ocellatus and keyhole cichlid Cleithracara maronii) and three spot gourami Trichopodus trichopterus sourced through the ornamental fish trade during the early 1990s. Phylogenomic analyses revealed the South American cichlid iridovirus (SACIV) and three spot gourami iridovirus (TSGIV) possess 116 open reading frames each, and form a novel clade within the turbot reddish body iridovirus genotype (TRBIV Clade 2). Both genomes displayed a unique truncated paralog of the major capsid protein gene located immediately upstream of the full-length parent gene. Histopathological examination of archived oscar tissue sections that were PCR-positive for SACIV revealed numerous cytomegalic cells characterized by basophilic intracytoplasmic inclusions within various organs, particularly the anterior kidney, spleen, intestinal lamina propria and submucosa. TSGIV-infected grunt fin (GF) cells grown in vitro displayed cytopathic effects (e.g. cytomegaly, rounding, and refractility) as early as 96 h post-infection. Ultrastructural examination of infected GF cells revealed unenveloped viral particles possessing hexagonal nucleocapsids (120 to 144 nm in diameter) and electron-dense cores within the cytoplasm, consistent with the ultrastructural morphology of a MCV. Sequencing of SACIV and TSGIV provides the first complete TRBIV Clade 2 genome sequences and expands the known host and geographic range of the TRBIV genotype to include freshwater ornamental fishes traded in North America.
Collapse
Affiliation(s)
- Samantha A Koda
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|