1
|
Rehman S, Rantam FA, Batool K, Shehzad A, Effendi MH, Witaningrum AM, Bilal M, Elziyad Purnama MT. Emerging threat and vaccination strategies of H9N2 viruses in poultry in Indonesia: A review. F1000Res 2022; 11:548. [PMID: 35844820 PMCID: PMC9253659 DOI: 10.12688/f1000research.118669.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 09/05/2024] Open
Abstract
Avian influenza virus subtype H9N2 was first documented in Indonesia in 2017. It has become prevalent in chickens in many provinces of Indonesia as a result of reassortment in live bird markets. Low pathogenic avian influenza subtype H9N2 virus-infected poultry provides a new direction for influenza virus. According to the latest research, the Indonesian H9N2 viruses may have developed through antigenic drift into new genotype, posing a significant hazard to poultry and public health. The latest proof of interspecies transmission proposes that, the next human pandemic variant will be avian influenza virus subtype H9N2. Manipulation and elimination of H9N2 viruses in Indonesia, constant surveillance of viral mutation, and vaccines updates are required to achieve effectiveness. The current review examines should be investigates/assesses/report on the development and evolution of newly identified H9N2 viruses in Indonesia and their vaccination strategy.
Collapse
Affiliation(s)
- Saifur Rehman
- Division of Veterinary Public Health Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
- Laboratory of Virology and Immunology Division of Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
- Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Islamic, 40050, Pakistan
| | - Fedik Abdul Rantam
- Laboratory of Virology and Immunology Division of Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Khadija Batool
- Medicine, Service Institute of Medical Sciences, Lahore,, Punjab, 40050, Pakistan
| | - Aamir Shehzad
- Laboratory of Virology and Immunology Division of Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Mustofa Helmi Effendi
- Division of Veterinary Public Health Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Adiana Mutamsari Witaningrum
- Division of Veterinary Public Health Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Muhammad Bilal
- Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Islamic, 40050, Pakistan
| | - Muhammad Thohawi Elziyad Purnama
- Division of Veterinary Anatomy, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| |
Collapse
|
2
|
Rehman S, Rantam FA, Batool K, Shehzad A, Effendi MH, Witaningrum AM, Bilal M, Elziyad Purnama MT. Emerging threats and vaccination strategies of H9N2 viruses in poultry in Indonesia: A review. F1000Res 2022; 11:548. [PMID: 35844820 PMCID: PMC9253659 DOI: 10.12688/f1000research.118669.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 11/23/2022] Open
Abstract
Avian influenza virus subtype H9N2 was first documented in Indonesia in 2017. It has become prevalent in chickens in many provinces of Indonesia as a result of reassortment in live bird markets. Low pathogenic avian influenza subtype H9N2 virus-infected poultry provides a new direction for the influenza virus. According to the latest research, the Indonesian H9N2 viruses may have developed through antigenic drift into a new genotype, posing a significant hazard to poultry and public health. The latest proof of interspecies transmission proposes that the next human pandemic variant will be the avian influenza virus subtype H9N2. Manipulation and elimination of H9N2 viruses in Indonesia, constant surveillance of viral mutation, and vaccine updates are required to achieve effectiveness. The current review examines should be investigates/assesses/report on the development and evolution of newly identified H9N2 viruses in Indonesia and their vaccination strategy.
Collapse
Affiliation(s)
- Saifur Rehman
- Division of Veterinary Public Health Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
- Laboratory of Virology and Immunology Division of Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
- Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Islamic, 40050, Pakistan
| | - Fedik Abdul Rantam
- Laboratory of Virology and Immunology Division of Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Khadija Batool
- Medicine, Service Institute of Medical Sciences, Lahore,, Punjab, 40050, Pakistan
| | - Aamir Shehzad
- Laboratory of Virology and Immunology Division of Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Mustofa Helmi Effendi
- Division of Veterinary Public Health Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Adiana Mutamsari Witaningrum
- Division of Veterinary Public Health Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Muhammad Bilal
- Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Islamic, 40050, Pakistan
| | - Muhammad Thohawi Elziyad Purnama
- Division of Veterinary Anatomy, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| |
Collapse
|
3
|
Xi J, Yao L, Li S. Identification of β-conglycinin α' subunit antigenic epitopes destroyed by thermal treatments. Food Res Int 2021; 139:109806. [DOI: 10.1016/j.foodres.2020.109806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 10/23/2022]
|
4
|
Putri K, Wibowo MH, Tarigan S, Wawegama N, Ignjatovic J, Noormohammadi AH. Analysis of antibody response to an epitope in the haemagglutinin subunit 2 of avian influenza virus H5N1 for differentiation of infected and vaccinated chickens. Avian Pathol 2019; 49:161-170. [PMID: 31738584 DOI: 10.1080/03079457.2019.1694635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The H5N1 subtype of highly pathogenic avian influenza virus has been circulating in poultry in Indonesia since 2003 and vaccination has been used as a strategy to eradicate the disease. However, monitoring of vaccinated poultry flocks for H5N1 infection by serological means has been difficult, as vaccine antibodies are not readily distinguishable from those induced by field viruses. Therefore, a test that differentiates infected and vaccinated animals (DIVA) would be essential. Currently, no simple and specific DIVA test is available for screening of a large number of vaccinated chickens. Several epitopes on E29 domain of the haemagglutinin H5N1 subunit 2 (HA2) have recently been examined for their antigenicity and potential as possible markers for DIVA in chicken. In this study, the potential of E29 as an antigen for DIVA was evaluated in detail. Three different forms of full-length E29 peptide, a truncated E29 peptide (E15), and a recombinant E29 were compared for their ability to detect anti-E29 antibodies. Preliminary ELISA experiments using mono-specific chicken and rabbit E29 sera, and a mouse monoclonal antibody revealed that the linear E29 peptide was the most antigenic. Further examination of the E29 antigenicity in ELISA, using several sera from experimentally infected or vaccinated chickens, revealed that the full-length E29 peptide had the greatest discrimination power between infected and vaccinated chicken sera while providing the least non-specific reaction. This study demonstrates the usefulness of the HPAI H5N1 HA2 E29 epitope as a DIVA antigen in HPAI H5N1-vaccinated and -infected chickens.RESEARCH HIGHLIGHTS E29 (HA2 positions 488-516) epitope is antigenic in chickens.Antibodies to E29 are elicited following live H5N1 virus infection in chickens.E29 epitope is a potential DIVA antigen for use in ELISA.
Collapse
Affiliation(s)
- Khrisdiana Putri
- Asia Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Australia
| | | | - Simson Tarigan
- Indonesian Research Centre for Veterinary Science (IRCVS), Bogor, Indonesia
| | - Nadeeka Wawegama
- Asia Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Australia
| | - Jagoda Ignjatovic
- Asia Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Australia
| | - Amir H Noormohammadi
- Asia Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Australia
| |
Collapse
|