1
|
Metagenomic Analysis of RNA Fraction Reveals the Diversity of Swine Oral Virome on South African Backyard Swine Farms in the uMgungundlovu District of KwaZulu-Natal Province. Pathogens 2022; 11:pathogens11080927. [PMID: 36015047 PMCID: PMC9416320 DOI: 10.3390/pathogens11080927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Numerous RNA viruses have been reported in backyard swine populations in various countries. In the absence of active disease surveillance, a persistent knowledge gap exists on the diversity of RNA viruses in South African backyard swine populations. This is the first study investigating the diversity of oral RNA virome of the backyard swine in South Africa. We used three samples of backyard swine oral secretion (saliva) collected from three distantly located backyard swine farms (BSFs) in the uMgungundlovu District, KwaZulu-Natal, South Africa. Total viral RNA was extracted and used for the library preparation for deep sequencing using the Illumina HiSeq X instrument. The FASTQ files containing paired-end reads were analyzed using Genome Detective v 1.135. The assembled nucleotide sequences were analyzed using the PhyML phylogenetic tree. The genome sequence analysis identified a high diversity of swine enteric viruses in the saliva samples obtained from BSF2 and BSF3, while only a few viruses were identified in the saliva obtained from BSF1. The swine enteric viruses belonged to various animal virus families; however, two fungal viruses, four plant viruses, and five unclassified RNA viruses were also identified. Specifically, viruses of the family Astroviridae, according to the number of reads, were the most prevalent. Of note, the genome sequences of Rotavirus A (RVA) and Rotavirus C (RVC) at BSF2 and RVC and Hepatitis E virus (HEV) at BSF3 were also obtained. The occurrence of various swine enteric viruses in swine saliva suggests a high risk of diarrhoeic diseases in the backyard swine. Of note, zoonotic viruses in swine saliva, such as RVA, RVC, and HEV, indicate a risk of zoonotic spillover to the exposed human populations. We recommend the implementation of biosecurity to ensure sustainable backyard swine farming while safeguarding public health.
Collapse
|
2
|
Negrey JD, Mitani JC, Wrangham RW, Otali E, Reddy RB, Pappas TE, Grindle KA, Gern JE, Machanda ZP, Muller MN, Langergraber KE, Thompson ME, Goldberg TL. Viruses associated with ill health in wild chimpanzees. Am J Primatol 2022; 84:e23358. [PMID: 35015311 PMCID: PMC8853648 DOI: 10.1002/ajp.23358] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 02/03/2023]
Abstract
Viral infection is a major cause of ill health in wild chimpanzees (Pan troglodytes), but most evidence to date has come from conspicuous disease outbreaks with high morbidity and mortality. To examine the relationship between viral infection and ill health during periods not associated with disease outbreaks, we conducted a longitudinal study of wild eastern chimpanzees (P. t. schweinfurthii) in the Kanyawara and Ngogo communities of Kibale National Park, Uganda. We collected standardized, observational health data for 4 years and then used metagenomics to characterize gastrointestinal viromes (i.e., all viruses recovered from fecal samples) in individual chimpanzees before and during episodes of clinical disease. We restricted our analyses to viruses thought to infect mammals or primarily associated with mammals, discarding viruses associated with nonmammalian hosts. We found 18 viruses (nine of which were previously identified in this population) from at least five viral families. Viral richness (number of viruses per sample) did not vary by health status. By contrast, total viral load (normalized proportion of sequences mapping to viruses) was significantly higher in ill individuals compared with healthy individuals. Furthermore, when ill, Kanyawara chimpanzees exhibited higher viral loads than Ngogo chimpanzees, and males, but not females, exhibited higher infection rates with certain viruses and higher total viral loads as they aged. Post-hoc analyses, including the use of a machine-learning classification method, indicated that one virus, salivirus (Picornaviridae), was the main contributor to health-related and community-level variation in viral loads. Another virus, chimpanzee stool-associated virus (chisavirus; unclassified Picornavirales), was associated with ill health at Ngogo but not at Kanyawara. Chisavirus, chimpanzee adenovirus (Adenoviridae), and bufavirus (Parvoviridae) were also associated with increased age in males. Associations with sex and age are consistent with the hypothesis that nonlethal viral infections cumulatively reflect or contribute to senescence in long-lived species such as chimpanzees.
Collapse
Affiliation(s)
- Jacob D. Negrey
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - John C. Mitani
- Department of Anthropology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Richard W. Wrangham
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | | | - Rachna B. Reddy
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Tressa E. Pappas
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Kristine A. Grindle
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - James E. Gern
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Zarin P. Machanda
- Department of Anthropology, Tufts University, Medford, MA, 02155, USA
| | - Martin N. Muller
- Department of Anthropology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Kevin E. Langergraber
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, 85287, USA
- Institute of Human Origins, Arizona State University, Tempe, AZ, 85287, USA
| | | | - Tony L. Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
3
|
Ramesh A, Bailey ES, Ahyong V, Langelier C, Phelps M, Neff N, Sit R, Tato C, DeRisi JL, Greer AG, Gray GC. Metagenomic characterization of swine slurry in a North American swine farm operation. Sci Rep 2021; 11:16994. [PMID: 34417469 PMCID: PMC8379149 DOI: 10.1038/s41598-021-95804-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/30/2021] [Indexed: 12/21/2022] Open
Abstract
Modern day large-scale, high-density farming environments are inherently susceptible to viral outbreaks, inadvertently creating conditions that favor increased pathogen transmission and potential zoonotic spread. Metagenomic sequencing has proven to be a useful tool for characterizing the microbial burden in both people, livestock, and environmental samples. International efforts have been successful at characterizing pathogens in commercial farming environments, especially swine farms, however it is unclear whether the full extent of microbial agents have been adequately captured or is representative of farms elsewhere. To augment international efforts we performed metagenomic next-generation sequencing on nine swine slurry and three environmental samples from a United States of America (U.S.A.) farm operation, characterized the microbial composition of slurry, and identified novel viruses. We assembled a remarkable total of 1792 viral genomes, of which 554 were novel/divergent. We assembled 1637 Picobirnavirus genome segments, of which 538 are novel. In addition, we discovered 10 new viruses belonging to a novel taxon: porcine Statoviruses; which have only been previously reported in human, macaques, mouse, and cows. We assembled 3 divergent Posaviruses and 3 swine Picornaviruses. In addition to viruses described, we found other eukaryotic genera such as Entamoeba and Blastocystis, and bacterial genera such as Listeria, Treponema, Peptoclostridium and Bordetella in the slurry. Of these, two species Entamoeba histolytica and Listeria monocytogenes known to cause human disease were detected. Further, antimicrobial resistance genes such as tetracycline and MLS (macrolide, lincosamide, streptogramin) were also identified. Metagenomic surveillance in swine fecal slurry has great potential for novel and antimicrobial resistant pathogen detection.
Collapse
Affiliation(s)
- Akshaya Ramesh
- Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA.,Department of Neurology, University of California, San Francisco, CA, 94158, USA.,Julia Jones Matthews Department of Public Health, Texas Tech University Health Sciences Center, Abilene, TX, USA
| | - Emily S Bailey
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA. .,Julia Jones Matthews Department of Public Health, Texas Tech University Health Sciences Center, Abilene, TX, USA.
| | - Vida Ahyong
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Charles Langelier
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.,Division of Infectious Diseases, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Maira Phelps
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Norma Neff
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Rene Sit
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Cristina Tato
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Joseph L DeRisi
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.,Department of Biochemistry and Biophysics, University of California, San Francisco, CA, 94158, USA
| | - Annette G Greer
- Department of Bioethics and Interdisciplinary Studies, Brody School of Medicine, North Carolina Agromedicine Institute, East Carolina University, Greenville, NC, USA
| | - Gregory C Gray
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA.,Duke Global Health Institute, Duke University, Durham, NC, USA.,Emerging Infectious Disease Program, Duke-NUS Medical School, Singapore, Singapore.,Global Health Center, Duke Kunshan University, Kunshan, China
| |
Collapse
|
4
|
Han Z, Song Y, Xiao J, Zhao X, Lu H, Zhang K, Jia S, Zhou J, Li J, Si F, Sun Q, Zhu S, Wang D, Yan D, Xu W, Fu X, Zhang Y. Monsavirus in monkey rectal swab and throat swab specimens in China: Proposal for Posaliviridae as a new family in Picornavirales. Virus Res 2021; 303:198501. [PMID: 34252491 DOI: 10.1016/j.virusres.2021.198501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022]
Abstract
Posa-like viruses have been detected in the fecal samples of several host species and are considered unclassified members of Picornavirales. Here, we identified genomic fragments of novel posa-like viruses (monsaviruses) in monkey specimens through next generation sequencing and obtained 11 full-length genomes. This monsavirus shared 88.5-89.2% nucleotide similarity with the Tottori-HG1 strain (GenBank accession LC123275). In total, 713 nucleotide polymorphism sites were identified, indicating their persistent evolution during circulation. The genomic organization and phylogenetic relationship of monsavirus were determined. Subsequent phylogenetic analysis of the conserved replication block of Hel-Pro-RdRp and core RNA-dependent RNA polymerase domain-based analysis of posa-like viruses showed significant separation compared with other known families. Further, posa-like virus genomes possessed the classical replication block of picornavirus in the 5' part of genome and picorna-like capsid domains at the structural coding region of 3' part of genome. Based on these results, we proposed the new family Posaliviridae, within Picornavirales. Four genera, which showed 68.6-75.5% amino acid distances but similar genomic organization including the conserved replication block of Hel-Pro-RdRp, the same order of the genomic coding region, and picorna-like capsid domains, were identified. The flexible genomic organization strategy and a large evolutionary scale of Posaliviridae was explicit. This study provides novel information on monsaviruses and important taxonomic data for the family Posaliviridae.
Collapse
Affiliation(s)
- Zhenzhi Han
- National Laboratory for poliomyelitis, WHO WPRO Regional Polio Reference Laboratory, NHC Key Laboratory for Medical Virology, NHC Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Yang Song
- National Laboratory for poliomyelitis, WHO WPRO Regional Polio Reference Laboratory, NHC Key Laboratory for Medical Virology, NHC Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Jinbo Xiao
- National Laboratory for poliomyelitis, WHO WPRO Regional Polio Reference Laboratory, NHC Key Laboratory for Medical Virology, NHC Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Xiaonan Zhao
- Yunnan Center for Disease Control and Prevention, Kunming 650022, PR China
| | - Huanhuan Lu
- National Laboratory for poliomyelitis, WHO WPRO Regional Polio Reference Laboratory, NHC Key Laboratory for Medical Virology, NHC Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Keyi Zhang
- National Laboratory for poliomyelitis, WHO WPRO Regional Polio Reference Laboratory, NHC Key Laboratory for Medical Virology, NHC Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Senquan Jia
- Yunnan Center for Disease Control and Prevention, Kunming 650022, PR China
| | - Jienan Zhou
- Yunnan Center for Disease Control and Prevention, Kunming 650022, PR China
| | - Junhan Li
- National Laboratory for poliomyelitis, WHO WPRO Regional Polio Reference Laboratory, NHC Key Laboratory for Medical Virology, NHC Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Fenfen Si
- National Laboratory for poliomyelitis, WHO WPRO Regional Polio Reference Laboratory, NHC Key Laboratory for Medical Virology, NHC Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Qiang Sun
- National Laboratory for poliomyelitis, WHO WPRO Regional Polio Reference Laboratory, NHC Key Laboratory for Medical Virology, NHC Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Shuangli Zhu
- National Laboratory for poliomyelitis, WHO WPRO Regional Polio Reference Laboratory, NHC Key Laboratory for Medical Virology, NHC Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Dongyan Wang
- National Laboratory for poliomyelitis, WHO WPRO Regional Polio Reference Laboratory, NHC Key Laboratory for Medical Virology, NHC Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Dongmei Yan
- National Laboratory for poliomyelitis, WHO WPRO Regional Polio Reference Laboratory, NHC Key Laboratory for Medical Virology, NHC Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Wenbo Xu
- National Laboratory for poliomyelitis, WHO WPRO Regional Polio Reference Laboratory, NHC Key Laboratory for Medical Virology, NHC Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China; Center for Biosafety Mega-Science, Chinese Academy of Sciences. Wuhan 430071, PR China
| | - Xiaoqing Fu
- Yunnan Center for Disease Control and Prevention, Kunming 650022, PR China.
| | - Yong Zhang
- National Laboratory for poliomyelitis, WHO WPRO Regional Polio Reference Laboratory, NHC Key Laboratory for Medical Virology, NHC Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China; Center for Biosafety Mega-Science, Chinese Academy of Sciences. Wuhan 430071, PR China.
| |
Collapse
|
5
|
Multiple clades of Husavirus in South America revealed by next generation sequencing. PLoS One 2021; 16:e0248486. [PMID: 33755700 PMCID: PMC7987173 DOI: 10.1371/journal.pone.0248486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/28/2021] [Indexed: 11/19/2022] Open
Abstract
Husavirus (HuV) is an unclassified virus of the order Picornavirales that has already been identified worldwide in various locations. The genetic, epidemiological, and pathogenic characteristics are, however, little understood. In children with acute gastroenteritis, this study used next-generation sequencing to recognize unknown sources of viruses. In particular, 251 fecal samples obtained from individuals were sequenced in southern, northeastern, and northern Brazil. all samples were also analyzed using culture methods and parasitological tests to classify other enteric pathogens such as bacteria, parasites, and viruses. 1.9% of the samples tested positive for HuV, for a total of 5 positive children, with a mean age of 2 year, with three males and two females. Detailed molecular characterization of full genomes showed that Brazilian HuVs’ nucleotide divergence is less than 11%. The genetic gap between Brazilian sequences and the closest HuV reported previously, on the other hand, is 18%. The study showed that Brazilian sequences are closely related to the HuV defined in Viet Nam in 2013, further characterization based on phylogenetics. At least two divergent clades of HuV in South America were also seen in the phylogenetic study.
Collapse
|
6
|
Han Z, Xiao J, Song Y, Hong M, Dai G, Lu H, Zhang M, Liang Y, Yan D, Zhu S, Xu W, Zhang Y. The Husavirus Posa-Like Viruses in China, and a New Group of Picornavirales. Viruses 2020; 12:v12090995. [PMID: 32906743 PMCID: PMC7551994 DOI: 10.3390/v12090995] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/30/2020] [Accepted: 09/04/2020] [Indexed: 01/09/2023] Open
Abstract
Novel posa-like viral genomes were first identified in swine fecal samples using metagenomics and were designated as unclassified viruses in the order Picornavirales. In the present study, nine husavirus strains were identified in China. Their genomes share 94.1–99.9% similarity, and alignment of these nine husavirus strains identified 697 nucleotide polymorphism sites across their full-length genomes. These nine strains were directly clustered with the Husavirus 1 lineage, and their genomic arrangement showed similar characteristics. These posa-like viruses have undergone a complex evolutionary process, and have a wide geographic distribution, complex host spectrum, deep phylogenetic divergence, and diverse genomic organizations. The clade of posa-like viruses forms a single group, which is evolutionarily distinct from other known families and could represent a distinct family within the Picornavirales. The genomic arrangement of Picornavirales and the new posa-like viruses are different, whereas the posa-like viruses have genomic modules similar to the families Dicistroviridae and Marnaviridae. The present study provides valuable genetic evidence of husaviruses in China, and clarifies the phylogenetic dynamics and the evolutionary characteristics of Picornavirales.
Collapse
Affiliation(s)
- Zhenzhi Han
- WHO WPRO Regional Polio Reference Laboratory and NHC Key Laboratory for Biosafety, NHC Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (Z.H.); (J.X.); (Y.S.); (H.L.); (M.Z.); (Y.L.); (D.Y.); (S.Z.); (W.X.)
| | - Jinbo Xiao
- WHO WPRO Regional Polio Reference Laboratory and NHC Key Laboratory for Biosafety, NHC Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (Z.H.); (J.X.); (Y.S.); (H.L.); (M.Z.); (Y.L.); (D.Y.); (S.Z.); (W.X.)
| | - Yang Song
- WHO WPRO Regional Polio Reference Laboratory and NHC Key Laboratory for Biosafety, NHC Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (Z.H.); (J.X.); (Y.S.); (H.L.); (M.Z.); (Y.L.); (D.Y.); (S.Z.); (W.X.)
| | - Mei Hong
- Tibet Center for Disease Control and Prevention, Tibet Autonomous Region, Lhasa 850000, China; (M.H.); (G.D.)
| | - Guolong Dai
- Tibet Center for Disease Control and Prevention, Tibet Autonomous Region, Lhasa 850000, China; (M.H.); (G.D.)
| | - Huanhuan Lu
- WHO WPRO Regional Polio Reference Laboratory and NHC Key Laboratory for Biosafety, NHC Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (Z.H.); (J.X.); (Y.S.); (H.L.); (M.Z.); (Y.L.); (D.Y.); (S.Z.); (W.X.)
| | - Man Zhang
- WHO WPRO Regional Polio Reference Laboratory and NHC Key Laboratory for Biosafety, NHC Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (Z.H.); (J.X.); (Y.S.); (H.L.); (M.Z.); (Y.L.); (D.Y.); (S.Z.); (W.X.)
| | - Yueling Liang
- WHO WPRO Regional Polio Reference Laboratory and NHC Key Laboratory for Biosafety, NHC Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (Z.H.); (J.X.); (Y.S.); (H.L.); (M.Z.); (Y.L.); (D.Y.); (S.Z.); (W.X.)
| | - Dongmei Yan
- WHO WPRO Regional Polio Reference Laboratory and NHC Key Laboratory for Biosafety, NHC Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (Z.H.); (J.X.); (Y.S.); (H.L.); (M.Z.); (Y.L.); (D.Y.); (S.Z.); (W.X.)
| | - Shuangli Zhu
- WHO WPRO Regional Polio Reference Laboratory and NHC Key Laboratory for Biosafety, NHC Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (Z.H.); (J.X.); (Y.S.); (H.L.); (M.Z.); (Y.L.); (D.Y.); (S.Z.); (W.X.)
| | - Wenbo Xu
- WHO WPRO Regional Polio Reference Laboratory and NHC Key Laboratory for Biosafety, NHC Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (Z.H.); (J.X.); (Y.S.); (H.L.); (M.Z.); (Y.L.); (D.Y.); (S.Z.); (W.X.)
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory and NHC Key Laboratory for Biosafety, NHC Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (Z.H.); (J.X.); (Y.S.); (H.L.); (M.Z.); (Y.L.); (D.Y.); (S.Z.); (W.X.)
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- Correspondence: ; Tel.: +86-10-58900183; Fax: +86-10-58900184
| |
Collapse
|
7
|
Van Borm S, Vanneste K, Fu Q, Maes D, Schoos A, Vallaey E, Vandenbussche F. Increased viral read counts and metagenomic full genome characterization of porcine astrovirus 4 and Posavirus 1 in sows in a swine farm with unexplained neonatal piglet diarrhea. Virus Genes 2020; 56:696-704. [PMID: 32880793 DOI: 10.1007/s11262-020-01791-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022]
Abstract
Neonatal diarrhea in piglets may cause major losses in affected pig herds. The present study used random high-throughput RNA sequencing (metagenomic next generation sequencing, mNGS) to investigate the virome of sows from a farm with persistent neonatal piglet diarrhea in comparison to two control farms without diarrhea problems. A variety of known swine gastrointestinal viruses was detected in the control farms as well as in the problem farm (Mamastrovirus, Enterovirus, Picobirnavirus, Posavirus 1, Kobuvirus, Proprismacovirus). A substantial increase in normalized viral read counts was observed in the affected farm compared to the control farms. The increase was attributable to a single viral species in each of the sampled sows (porcine astrovirus 4 and Posavirus 1). The complete genomes of a porcine astrovirus 4 and two co-infecting Posavirus 1 were de novo assembled and characterized. The 6734 nt single-stranded RNA genome of porcine astrovirus 4 (PoAstV-4) strain Belgium/2019 contains three overlapping open reading frames (nonstructural protein 1ab, nonstructural protein 1a, capsid protein). Posavirus 1 strains Belgium/01/2019 and Belgium/02/2019 have a 9814 nt single-stranded positive-sense RNA genome encoding a single open reading frame (polyprotein precursor) containing the five expected Picornavirales-conserved protein domains. The study highlights the potential of mNGS workflows to study unexplained neonatal diarrhea in piglets and contributes to the scarce availability of both PoAstV-4 and Posavirus-1 whole genome sequences from Western Europe.
Collapse
Affiliation(s)
- Steven Van Borm
- Department of Animal Infectious Diseases, Sciensano, Brussels, Belgium.
| | - Kevin Vanneste
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Qiang Fu
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Dominiek Maes
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Alexandra Schoos
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | | | | |
Collapse
|
8
|
Chung HC, Nguyen VG, Huynh TML, Do HQ, Vo DC, Park YH, Park BK. Molecular-based investigation and genetic characterization of porcine stool-associated RNA virus (posavirus) lineages 1 to 3 in pigs in South Korea from 2017 to 2019. Res Vet Sci 2019; 128:286-292. [PMID: 31869594 DOI: 10.1016/j.rvsc.2019.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 11/07/2019] [Accepted: 11/19/2019] [Indexed: 12/25/2022]
Abstract
Recent results on the detection and genetic characterization of stool-associated RNA viruses from different species have increased the knowledge about the extreme genetic diversity of picornaviruses. This study aimed to investigate the presence of unclassified porcine stool-associated RNA viruses (posaviruses) in South Korea and to elucidate the molecular evolution of the viruses. By RT-PCR, posaviruses 1 and 3 were exclusively found in fecal samples and consistently detected in three consecutive years in six of eight provinces, with 148/697 (21.2%) and 33/84 (39.3%) positive samples and farms, respectively. Every age group but the older age groups (finisher, sow) had significantly higher positive rates of posavirus 1 than posavirus 3. An analysis of the RNA-dependent RNA polymerase sequences by likelihood mapping and maximum-likelihood-based phylogenetic analysis revealed that stool-associated RNA viruses formed four supergroups that were well separated from all recognized families of the order Picornavirales. Five genomes of Korean posaviruses generated in this study were phylogenetically grouped with posavirus 1 and posavirus 3 and were predicted to have the typical genome organization of picornaviruses.
Collapse
Affiliation(s)
- Hee-Chun Chung
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, Republic of Korea
| | - Van-Giap Nguyen
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Viet Nam
| | - Thi-My-Le Huynh
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Viet Nam
| | - Hai-Quynh Do
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Dinh-Chuong Vo
- Devision of Veterinary Epidemiology, Department of Animal Health, Ministry of Agriculture and Rural Development, Hanoi, Viet Nam
| | - Yong-Ho Park
- Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, Republic of Korea.
| | - Bong-Kyun Park
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|