1
|
Potter BI, Thijssen M, Trovão NS, Pineda-Peña A, Reynders M, Mina T, Alvarez C, Amini-Bavil-Olyaee S, Nevens F, Maes P, Lemey P, Van Ranst M, Baele G, Pourkarim MR. Contemporary and historical human migration patterns shape hepatitis B virus diversity. Virus Evol 2024; 10:veae009. [PMID: 38361827 PMCID: PMC10868554 DOI: 10.1093/ve/veae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/16/2023] [Accepted: 01/26/2024] [Indexed: 02/17/2024] Open
Abstract
Infection by hepatitis B virus (HBV) is responsible for approximately 296 million chronic cases of hepatitis B, and roughly 880,000 deaths annually. The global burden of HBV is distributed unevenly, largely owing to the heterogeneous geographic distribution of its subtypes, each of which demonstrates different severity and responsiveness to antiviral therapy. It is therefore crucial to the global public health response to HBV that the spatiotemporal spread of each genotype is well characterized. In this study, we describe a collection of 133 newly sequenced HBV strains from recent African immigrants upon their arrival in Belgium. We incorporate these sequences-all of which we determine to come from genotypes A, D, and E-into a large-scale phylogeographic study with genomes sampled across the globe. We focus on investigating the spatio-temporal processes shaping the evolutionary history of the three genotypes we observe. We incorporate several recently published ancient HBV genomes for genotypes A and D to aid our analysis. We show that different spatio-temporal processes underlie the A, D, and E genotypes with the former two having originated in southeastern Asia, after which they spread across the world. The HBV E genotype is estimated to have originated in Africa, after which it spread to Europe and the Americas. Our results highlight the use of phylogeographic reconstruction as a tool to understand the recent spatiotemporal dynamics of HBV, and highlight the importance of supporting vulnerable populations in accordance with the needs presented by specific HBV genotypes.
Collapse
Affiliation(s)
- Barney I Potter
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, Laboratory for Clinical and Epidemiological Virology, Herestraat 49, Leuven BE-3000, Belgium
| | - Marijn Thijssen
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, Laboratory for Clinical and Epidemiological Virology, Herestraat 49, Leuven BE-3000, Belgium
| | - Nídia Sequeira Trovão
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, United States
| | - Andrea Pineda-Peña
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT; Universidade Nova de Lisboa, UNL, Portugal Rua da Junqueira No 100, Lisbon 1349-008, Portugal
- Molecular Biology and Immunology Department, Fundacion Instituto de Inmunología de Colombia (FIDIC); Faculty of Animal Science, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A.), Avenida 50 No. 26-20, Bogota 0609, Colombia
| | - Marijke Reynders
- Department of Laboratory Medicine, Medical Microbiology, AZ Sint-Jan Brugge-Oostende AV, Ruddershove 10, Bruges B-8000, Belgium
| | - Thomas Mina
- Nonis Lab Microbiology—Virology Unit, Gregori Afxentiou 5, Limassol 4003, Cyprus
| | - Carolina Alvarez
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, Laboratory for Clinical and Epidemiological Virology, Herestraat 49, Leuven BE-3000, Belgium
| | - Samad Amini-Bavil-Olyaee
- Cellular Sciences Department, Process Virology, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Frederik Nevens
- Department of Gastroenterology and Hepatology, University Hospital Leuven, KU Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Piet Maes
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, Laboratory for Clinical and Epidemiological Virology, Herestraat 49, Leuven BE-3000, Belgium
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, Laboratory for Clinical and Epidemiological Virology, Herestraat 49, Leuven BE-3000, Belgium
| | - Marc Van Ranst
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, Laboratory for Clinical and Epidemiological Virology, Herestraat 49, Leuven BE-3000, Belgium
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, Laboratory for Clinical and Epidemiological Virology, Herestraat 49, Leuven BE-3000, Belgium
| | - Mahmoud Reza Pourkarim
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, Laboratory for Clinical and Epidemiological Virology, Herestraat 49, Leuven BE-3000, Belgium
- Health Policy Research Centre, Institute of Health, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion, Hemmat Exp.Way, Tehran 14665-1157, Iran
| |
Collapse
|
2
|
Konopleva MV, Borisova VN, Sokolova MV, Semenenko TA, Suslov AP. Recombinant HBsAg of the Wild-Type and the G145R Escape Mutant, included in the New Multivalent Vaccine against Hepatitis B Virus, Dramatically Differ in their Effects on Leukocytes from Healthy Donors In Vitro. Vaccines (Basel) 2022; 10:235. [PMID: 35214692 PMCID: PMC8880183 DOI: 10.3390/vaccines10020235] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 12/14/2022] Open
Abstract
Immune-escape hepatitis B virus (HBV) mutants play an important role in HBV spread. Recently, the multivalent vaccine Bubo®-Unigep has been developed to protect against both wild-type HBV and the most significant G145R mutant. Here, we compared the effects of recombinant HBsAg antigens, wild-type and mutated at G145R, both included in the new vaccine, on activation of a human high-density culture of peripheral blood mononuclear cells (PBMC) in vitro. The antigens were used either alone or in combination with phytohemagglutinin (PHA). None of the antigens alone affected the expression of CD40, HLA-DR or CD279. Wild-type HBsAg enhanced CD86 and CD69 expression, and induced TNF-α, IL-10, and IFN-γ, regardless of the anti-HBsAg status of donor. In the presence of PHA, wild-type HBsAg had no effect on either of the tested surface markers, but increased IFN-γ and IL-10 and inhibited IL-2. In contrast, the G145R mutant alone did not affect CD86 expression, it induced less CD69, and stimulated IL-2 along with lowering levels of TNF-α, IL-10, and IFN-γ. The G145R mutant also suppressed PHA-induced activation of CD69. The dramatic differences in the immune responses elicited by wild-type HBsAg and the G145R mutant HBsAg suggest distinct adaptive capabilities of the G145R mutant HBV.
Collapse
Affiliation(s)
- Maria V. Konopleva
- Federal State Budget Institution “National Research Center for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (M.V.S.); (T.A.S.); (A.P.S.)
| | | | - Maria V. Sokolova
- Federal State Budget Institution “National Research Center for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (M.V.S.); (T.A.S.); (A.P.S.)
| | - Tatyana A. Semenenko
- Federal State Budget Institution “National Research Center for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (M.V.S.); (T.A.S.); (A.P.S.)
| | - Anatoly P. Suslov
- Federal State Budget Institution “National Research Center for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (M.V.S.); (T.A.S.); (A.P.S.)
| |
Collapse
|
3
|
Gionda PO, Gomes-Gouvea M, Malta FDM, Sebe P, Salles APM, Francisco RDS, José-Abrego A, Roman S, Panduro A, Pinho JRR. Analysis of the complete genome of HBV genotypes F and H found in Brazil and Mexico using the next generation sequencing method. Ann Hepatol 2022; 27 Suppl 1:100569. [PMID: 34757035 DOI: 10.1016/j.aohep.2021.100569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES Hepatitis B Virus is classified into ten different genotypes (A- J). Genotypes F and H cluster apart from others in phylogenetic trees and is particularly frequent in the Americas. The aim of this study was to sequence complete genomes of samples of HBV genotypes F and H from Brazil and Mexico using next generation sequencing (NGS) and to study relevant characteristics for the disease associated with this virus. MATERIALS AND METHODS Ninety plasma samples with detectable HBV DNA belonging to the F (n=59) and H (n=31) genotypes were submitted to amplification of the complete HBV genome by three different methologies. Data analysis was developed using bioinformatics tools for quality assurance and comprehensive coverage of the genome. Sequences were aligned with reference sequences for subgenotyping and detecting variants in relevant positions. A phylogenetical tree was constructed using Bayesian methods. RESULTS HBV genome of 31 samples were amplified and 18 of them were sequenced (HBV/F=16 and HBV/H=2). One genotype F sample was co-infected with the F1b and F3 subgenotypes, while the other samples were all F2a subgenotype. Two genotype H samples clustered with other Mexican sequences. The main variants observed were found in preS and S genes (7/18) and mutations in the precore/core region (11/18). CONCLUSIONS A NGS methodology was applied to F and H genotypes samples from Mexico and Brazil to fully characterize their sequences. This methodology will be relevant for clinical and epidemiological studies of hepatitis B in Latin America.
Collapse
Affiliation(s)
- Patrícia Oliveira Gionda
- LIM-07, Institute of Tropical Medicine, Department of Gastroenterology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Michele Gomes-Gouvea
- LIM-07, Institute of Tropical Medicine, Department of Gastroenterology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Fernanda de Mello Malta
- LIM-07, Institute of Tropical Medicine, Department of Gastroenterology, University of São Paulo School of Medicine, São Paulo, Brazil; Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Pedro Sebe
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Ana Paula Moreira Salles
- LIM-07, Institute of Tropical Medicine, Department of Gastroenterology, University of São Paulo School of Medicine, São Paulo, Brazil; Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Alexis José-Abrego
- Department of Molecular Biology in Medicine, Civil Hospital of Guadalajara, "Fray Antonio Alcalde," Guadalajara, Mexico; Health Sciences Center, University of Guadalajara, Guadalajara, Mexico
| | - Sonia Roman
- Department of Molecular Biology in Medicine, Civil Hospital of Guadalajara, "Fray Antonio Alcalde," Guadalajara, Mexico; Health Sciences Center, University of Guadalajara, Guadalajara, Mexico
| | - Arturo Panduro
- Department of Molecular Biology in Medicine, Civil Hospital of Guadalajara, "Fray Antonio Alcalde," Guadalajara, Mexico; Health Sciences Center, University of Guadalajara, Guadalajara, Mexico
| | - João Renato Rebello Pinho
- LIM-07, Institute of Tropical Medicine, Department of Gastroenterology, University of São Paulo School of Medicine, São Paulo, Brazil; Hospital Israelita Albert Einstein, São Paulo, Brazil; LIM-03, Central Laboratories Division, Clinics Hospital, SãoPaulo School of Medicine, University of SãoPaulo, SãoPaulo, Brazil.
| |
Collapse
|
4
|
Cruz JNMD, Villar LM, Mello FCDA, Lampe E, Hyppolito EB, Lima JMDC, Hyppolito SB, Pires Neto RDJ, Nicolete LDDF, Coelho ICB. Hepatitis B virus genotypes prevalence in patients from hepatology services in Ceará, Brazil. Rev Soc Bras Med Trop 2021; 54:e08072020. [PMID: 34495262 PMCID: PMC8437444 DOI: 10.1590/0037-8682-0807-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 07/16/2021] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Hepatitis B virus (HBV) infection is a public health problem; therefore, we aimed to report HBV genotypes in Ceará, Brazil. METHODS A total of 103 HBsAg-positive samples were subjected to HBV genotyping and subgenotyping. RESULTS The following genetic compositions of samples were found: F-54% (F2-83.33%), A-40% (A1-65%), D-6%, C2-1%, E-1%, and G-1%. CONCLUSIONS Some genotypes are only prevalent in certain parts of the world; however, the State of Ceará is a hub for migration and has one of the most important liver transplantation centers in Brazil, which can explain the prevalence of the F genotype.
Collapse
Affiliation(s)
- José Napoleão Monte Da Cruz
- Universidade Federal do Ceará, Departamento de Patologia, Programa de Pós-Graduação em Patologia, Fortaleza, CE, Brasil
| | - Lívia Melo Villar
- Fundação Oswaldo Cruz, Laboratório de Hepatites Virais, Rio de Janeiro, RJ, Brasil
| | | | - Elisabeth Lampe
- Fundação Oswaldo Cruz, Laboratório de Hepatites Virais, Rio de Janeiro, RJ, Brasil
| | | | | | - Silvia Bomfim Hyppolito
- Universidade Federal do Ceará, Maternidade Escola Assis Chateaubriant, Fortaleza, CE, Brasil
| | - Roberto Da Justa Pires Neto
- Hospital São José, Fortaleza, CE, Brasil.,Universidade Federal do Ceará, Departamento de Saúde Comunitária, Fortaleza, CE, Brasil
| | | | - Ivo Castelo Branco Coelho
- Universidade Federal do Ceará, Departamento de Patologia, Programa de Pós-Graduação em Patologia, Fortaleza, CE, Brasil
| |
Collapse
|
5
|
Pujol F, Jaspe RC, Loureiro CL, Chemin I. Hepatitis B virus American genotypes: Pathogenic variants ? Clin Res Hepatol Gastroenterol 2020; 44:825-835. [PMID: 32553521 DOI: 10.1016/j.clinre.2020.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/19/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
Abstract
Hepatitis B virus (HBV) chronic infection is responsible for almost 900.000 deaths each year, due to cirrhosis or hepatocellular carcinoma (HCC). Ten HBV genotypes have been described (A-J). HBV genotype F and H circulate in America. HBV genotypes have been further classified in subgenotypes. There is a strong correlation between the genetic admixture of the American continent and the frequency of genotypes F or H: a high frequency of these genotypes is found in countries with a population with a higher ratio of Amerindian to African genetic admixture. The frequency of occult HBV infection in Amerindian communities from Latin America seems to be higher than the one found in other HBV-infected groups, but its association with American genotypes is unknown. There is growing evidence that some genotypes might be associated with a faster evolution to HCC. In particular, HBV genotype F has been implicated in a frequent and rapid progression to HCC. However, HBV genotype H has been associated to a less severe progression of disease. This study reviews the diversity and frequency of autochthonous HBV variants in the Americas and evaluates their association to severe progression of disease. Although no significant differences were found in the methylation pattern between different genotypes and subgenotypes of the American types, basal core promoter mutations might be more frequent in some subgenotypes, such as F1b and F2, than in other American subgenotypes or genotype H. F1b and probably F2 may be associated with a severe presentation of liver disease as opposed to a more benign course for subgenotype F4 and genotype H. Thus, preliminary evidence suggests that not all of the American variants are associated with a rapid progression to HCC.
Collapse
Affiliation(s)
- Flor Pujol
- Laboratorio de Virología Molecular, CMBC, IVIC, Apdo 20632, Caracas 1020A, Venezuela.
| | - Rossana C Jaspe
- Laboratorio de Virología Molecular, CMBC, IVIC, Apdo 20632, Caracas 1020A, Venezuela
| | - Carmen L Loureiro
- Laboratorio de Virología Molecular, CMBC, IVIC, Apdo 20632, Caracas 1020A, Venezuela
| | - Isabelle Chemin
- INSERM U1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, centre Léon Bérard, centre de recherche en cancérologie de Lyon, 69000, Lyon, France
| |
Collapse
|