1
|
Whittington RJ, Ingram L, Rubio A. Environmental Conditions Associated with Four Index Cases of Pacific Oyster Mortality Syndrome (POMS) in Crassostrea gigas in Australia Between 2010 and 2024: Emergence or Introduction of Ostreid herpesvirus-1? Animals (Basel) 2024; 14:3052. [PMID: 39518775 PMCID: PMC11545696 DOI: 10.3390/ani14213052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Warm water temperature is a risk factor for recurrent mass mortality in farmed Pacific oysters Crassostrea gigas caused by Ostreid herpesvirus-1, but there is little information on environmental conditions when the disease first appears in a region-the index case. Environmental conditions between four index cases in Australia (2010, 2013, 2016 and 2024) were compared to provide insight into possible origins of the virus. Each index case was preceded by unusually low rainfall and higher rates of temperature change that could increase oyster susceptibility through thermal flux stress. Water temperature alone did not explain the index cases, there being no consistency in sea surface, estuary or air temperatures between them. Tidal cycles and chlorophyll-a levels were unremarkable, harmful algae were present in all index cases and anthropogenic environmental contamination was unlikely. The lack of an interpretable change in the estuarine environment suggests the recent introduction of OsHV-1; however, viral emergence from a local reservoir cannot be excluded. Future events will be difficult to predict. Temperature flux and rainfall are likely important, but they are proxies for a range of undetermined factors and to identify these, it will be necessary to develop comprehensive protocols for data acquisition during future index cases.
Collapse
Affiliation(s)
- Richard J. Whittington
- School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| | - Lachlan Ingram
- NSW Department of Primary Industries, Queanbeyan, NSW 2620, Australia;
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| | - Ana Rubio
- Environment Branch, Hornsby Shire Council, Hornsby, NSW 2077, Australia;
| |
Collapse
|
2
|
de Kantzow M, Hick PM, Whittington RJ. Immune Priming of Pacific Oysters ( Crassostrea gigas) to Induce Resistance to Ostreid herpesvirus 1: Comparison of Infectious and Inactivated OsHV-1 with Poly I:C. Viruses 2023; 15:1943. [PMID: 37766349 PMCID: PMC10536431 DOI: 10.3390/v15091943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Pacific oyster mortality syndrome (POMS), which is caused by Ostreid herpesvirus 1 (OsHV-1), causes economic losses in Pacific oyster (Crassostrea gigas) aquaculture in many countries. Reducing the mortality in disease outbreaks requires changing the host, pathogen and environment interactions to favor the host. Survivors of natural exposure to OsHV-1 are able to survive subsequent outbreaks. This has been replicated under laboratory conditions, suggesting the existence of an immune response. The aim of the present study is to compare the effects of prior exposure to infectious OsHV-1, heat-inactivated OsHV-1 and the chemical anti-viral immune stimulant poly I:C on mortality following exposure to virulent OsHV-1. All treatments were administered by intramuscular injection. Oysters were maintained at 18 °C for 14 days; then, the temperature was increased to 22 °C and the oysters were challenged with virulent OsHV-1. Heat-inactivated OsHV-1, infectious OsHV-1 and poly I:C all induced significant protection against mortality, with the hazard of death being 0.41, 0.18 and 0.02, respectively, compared to the controls, which had no immune priming. The replication of OsHV-1 on first exposure was not required to induce a protective response. While the underlying mechanisms for protection remain to be elucidated, conditioning for resistance to POMS by prior exposure to inactivated or infectious OsHV-1 may have practical applications in oyster farming but requires further development to optimize the dose and delivery mechanism and evaluate the duration of protection.
Collapse
Affiliation(s)
| | | | - Richard J. Whittington
- School of Veterinary Science, Faculty of Science, The University of Sydney, 425 Werombi Road, Camden, NSW 2570, Australia
| |
Collapse
|
3
|
Liu OM, Hick PM, Whittington RJ. The Resistance to Lethal Challenge with Ostreid herpesvirus-1 of Pacific Oysters ( Crassostrea gigas) Previously Exposed to This Virus. Viruses 2023; 15:1706. [PMID: 37632048 PMCID: PMC10458589 DOI: 10.3390/v15081706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Pacific oyster (Crassostrea gigas) aquaculture has been economically impacted in many countries by Pacific oyster mortality syndrome (POMS), a disease initiated by Ostreid herpesvirus 1. The objectives of this study were to determine whether naturally exposed, adult C. gigas could act as reservoirs for OsHV-1 and explain the recurrent seasonal outbreaks of POMS and to test whether or not they were resistant to OsHV-1. In a laboratory infection experiment using thermal shock, OsHV-1 replication was not reactivated within the tissues of such oysters and the virus was not transmitted to naïve cohabitating spat. The adult oysters were resistant to intramuscular injection with a lethal dose of OsHV-1 and had 118 times lower risk of mortality than naïve oysters. Considered together with the results of other studies in C. gigas, natural exposure or laboratory exposure to OsHV-1 may result in immunity during subsequent exposure events, either in the natural environment or the laboratory. While adult C. gigas can carry OsHV-1 infection for lengthy periods, reactivation of viral replication leading to mortality and transmission of the virus to naïve oysters may require specific conditions that were not present in the current experiment. Further investigation is required to evaluate the mechanisms responsible for resistance to disease in oysters previously exposed to OsHV-1, whether immunity can be exploited commercially to prevent POMS outbreaks and to determine the source of the virus for recurrent seasonal outbreaks.
Collapse
Affiliation(s)
- Olivia M. Liu
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, 425 Werombi Road, Camden, NSW 2570, Australia; (O.M.L.); (P.M.H.)
- Biosecurity Animal Division, Australian Government Department of Agriculture, Fisheries and Forestry, Canberra, ACT 2601, Australia
| | - Paul M. Hick
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, 425 Werombi Road, Camden, NSW 2570, Australia; (O.M.L.); (P.M.H.)
- Elizabeth Macarthur Agricultural Institute, Woodbridge Road, Menangle, NSW 2568, Australia
| | - Richard J. Whittington
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, 425 Werombi Road, Camden, NSW 2570, Australia; (O.M.L.); (P.M.H.)
| |
Collapse
|
4
|
Fuhrmann M, Georgiades E, Cattell G, Brosnahan C, Lane HS, Hick PM. Aquatic pathogens and biofouling: pilot study of ostreid herpesvirus 1 translocation by bivalves. BIOFOULING 2021; 37:949-963. [PMID: 34628999 DOI: 10.1080/08927014.2021.1985474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Ostreid herpesvirus 1 (OsHV-1) has caused mass mortalities in Pacific oysters (Crassostrea gigas) in Europe, Australia, and New Zealand. While aquaculture-associated movements of infected Pacific oysters are a well-known cause of OsHV-1 spread once established in a region, translocation via biofouling of aquaculture equipment or vessels needs further investigation to explain the more distant spread of OsHV-1. Laboratory experiments were designed to test for transmission of OsHV-1 between infected and naïve Pacific oysters via a simulated biofouling translocation scenario. Three common biofouling species [Sydney rock oysters (Saccostrea glomerata), Mediterranean mussels (Mytilus galloprovincialis) and Pacific oysters] were tested as intermediaries using a cohabitation challenge with Pacific oysters infected by injection. Transmission occurred, albeit for one of eight replicates when Pacific oysters were the intermediary species. This demonstrated a possible pathway for pathogen spread via biofouling containing Pacific oysters while highlighting the complexity of OsHV-1 transmission. Such complexities require further investigation to inform future risk assessments and management of fouled aquaculture equipment and vessels.
Collapse
Affiliation(s)
- M Fuhrmann
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, New South Wales, Australia
| | - E Georgiades
- Ministry for Primary Industries, Wellington, New Zealand
| | - G Cattell
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, New South Wales, Australia
| | - C Brosnahan
- Ministry for Primary Industries, Wellington, New Zealand
| | - H S Lane
- Ministry for Primary Industries, Wellington, New Zealand
| | - P M Hick
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, New South Wales, Australia
| |
Collapse
|
5
|
Reduction in Virulence over Time in Ostreid herpesvirus 1 (OsHV-1) Microvariants between 2011 and 2015 in Australia. Viruses 2021; 13:v13050946. [PMID: 34065570 PMCID: PMC8160646 DOI: 10.3390/v13050946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/06/2021] [Accepted: 05/17/2021] [Indexed: 01/05/2023] Open
Abstract
Microvariant genotypes of Ostreid herpesvirus 1 (OsHV-1) are associated with mass mortality events of Pacific oysters in many countries. The OsHV-1 microvariant (µVar) emerged in France 2008 and caused significant economic losses as it became endemic and displaced the previously dominant OsHV-1 reference genotype. Recently, considerable genotypic variation has been described for OsHV-1 microvariants, however, less is known about variation in viral phenotype. This study used an in vivo laboratory infection model to assess differences in total cumulative mortality, peak viral load, transmissibility, and dose-response for three OsHV-1 isolates obtained between 2011 and 2015 from endemic waterways in Australia. This followed field observations of apparent reductions in the severity of mass mortalities over this time. Significantly higher hazard of death and cumulative mortality were observed for an isolate obtained in 2011 compared to isolates from 2014–2015. In keeping with other studies, the hazard of death was higher in oysters challenged by injection compared to challenge by cohabitation and the mortality was higher when the initial dose was 1 × 104 OsHV-1 DNA copies per oyster injection compared to 1 × 102 DNA copies. There was no difference in the quantity of OsHV-1 DNA at time of death that could be related to isolate or dose, suggesting similar pathogenetic processes in the individual oysters that succumbed to end-stage disease. While the isolates examined in this study were biased towards pathogenic types of OsHV-1, as they were collected during disease outbreaks, the variation in virulence that was observed, when combined with prior data on subclinical infections, suggests that surveillance for low virulence genotypes of OsHV-1 would be rewarding. This may lead to new approaches to disease management which utilize controlled exposure to attenuated strains of OsHV-1.
Collapse
|
6
|
Friedman CS, Reece KS, Wippel BJT, Agnew MV, Dégremont L, Dhar AK, Kirkland P, MacIntyre A, Morga B, Robison C, Burge CA. Unraveling concordant and varying responses of oyster species to Ostreid Herpesvirus 1 variants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139752. [PMID: 32846506 DOI: 10.1016/j.scitotenv.2020.139752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/12/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
The Ostreid herpesvirus 1 (OsHV-1) and variants, particularly the microvariants (μVars), are virulent and economically devastating viruses impacting oysters. Since 2008 OsHV-1 μVars have emerged rapidly having particularly damaging effects on aquaculture industries in Europe, Australia and New Zealand. We conducted field trials in Tomales Bay (TB), California where a non-μVar strain of OsHV-1 is established and demonstrated differential mortality of naturally exposed seed of three stocks of Pacific oyster, Crassostrea gigas, and one stock of Kumamoto oyster, C. sikamea. Oysters exposed in the field experienced differential mortality that ranged from 64 to 99% in Pacific oysters (Tasmania>Midori = Willapa stocks), which was much higher than that of Kumamoto oysters (25%). Injection trials were done using French (FRA) and Australian (AUS) μVars with the same oyster stocks as planted in the field and, in addition, two stocks of the Eastern oyster, C. virginica. No mortality was observed in control oysters. One C. virginica stock suffered ~10% mortality when challenged with both μVars tested. Two Pacific oyster stocks suffered 75 to 90% mortality, while one C. gigas stock had relatively low mortality when challenged with the AUS μVar (~22%) and higher mortality when challenged with the French μVar (~72%). Conversely, C. sikamea suffered lower mortality when challenged with the French μVar (~22%) and higher mortality with the AUS μVar (~44%). All dead oysters had higher viral loads (~1000×) as measured by quantitative PCR relative to those that survived. However, some survivors had high levels of virus, including those from species with lower mortality. Field mortality in TB correlated with laboratory mortality of the FRA μVar (69% correlation) but not with that of the AUS μVar, which also lacked correlation with the FRA μVar. The variation in response to OsHV-1 variant challenges by oyster species and stocks demonstrates the need for empirical assessment of multiple OsHV-1 variants.
Collapse
Affiliation(s)
- Carolyn S Friedman
- School of Aquatic & Fishery Sciences, University of Washington, Box 355020, Seattle, WA 98105, USA
| | - Kimberly S Reece
- Virginia Institute of Marine Sciences, William & Mary, P.O. Box 1346, Gloucester Point, Virginia 23062, USA
| | - Bryanda J T Wippel
- School of Aquatic & Fishery Sciences, University of Washington, Box 355020, Seattle, WA 98105, USA
| | - M Victoria Agnew
- Institute of Marine and Environmental Technology, University of Maryland Baltimore County, 701 E Pratt Street, Baltimore, MD 21202, USA
| | - Lionel Dégremont
- Ifremer, SG2M-LGPMM, Station La Tremblade, 17390 La Tremblade, France
| | - Arun K Dhar
- Aquaculture Pathology Laboratory, Animal and Comparative Biomedical Sciences, The University of Arizona, 1117 E Lowell Road, Tucson, AZ 85721, USA
| | - Peter Kirkland
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW 2568, Australia
| | - Alanna MacIntyre
- Virginia Institute of Marine Sciences, William & Mary, P.O. Box 1346, Gloucester Point, Virginia 23062, USA
| | - Benjamin Morga
- Ifremer, SG2M-LGPMM, Station La Tremblade, 17390 La Tremblade, France
| | - Clara Robison
- Virginia Institute of Marine Sciences, William & Mary, P.O. Box 1346, Gloucester Point, Virginia 23062, USA
| | - Colleen A Burge
- Institute of Marine and Environmental Technology, University of Maryland Baltimore County, 701 E Pratt Street, Baltimore, MD 21202, USA.
| |
Collapse
|