1
|
Pedrazzoli S, Graziosi G, Salaroli R, Catelli E, Lupini C. Dynamic alterations in T-lymphocyte subsets assessed by flow cytometry in chickens following exposure to infectious bursal disease virus: A systematic review. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105280. [PMID: 39396690 DOI: 10.1016/j.dci.2024.105280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/22/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Infectious bursal disease virus (IBDV) is a significant pathogen in poultry, causing acute immunosuppressive disease in young chickens. While B-lymphocyte involvement in IBDV pathogenesis is known, the role of T-cells is incompletely understood. This systematic review presents the alterations in chicken T-lymphocyte subsets after IBDV exposure, assessed by flow cytometry analysis. Four databases were queried for identifying eligible studies focused on experimental infections measuring T-lymphocyte changes in the bursa of Fabricius, spleen, thymus, and peripheral blood mononuclear cells. Of 488 studies found, 25 met the pre-established criteria and were included in the qualitative synthesis of results. Most studies analysed T-lymphocyte responses during the acute phase of IBDV infection, primarily focusing on CD4+ and CD8+ T-cells. Other subsets, such as γδ T-cells and double-positive CD4+CD8+ T-cells, were less frequently investigated. An increase in T-lymphocytes was noted in the bursa of Fabricius, suggesting their active role in viral clearance. In the spleen, CD4+ T-cells commonly increased, while CD8+ responses varied among studies. Increased levels in T-cells were also noted during the chronic infection in the bursa of Fabricius, possibly due to persistent viral antigens. Overall, variations in flow cytometry methods and T-cell output reporting were noted among studies. Based on the data collected, further investigation into diverse T-cell subpopulations beyond CD4+ and CD8+ is needed, as well as the standardization of flow cytometry assays in chickens.
Collapse
Affiliation(s)
- Sara Pedrazzoli
- Department of Veterinary Medical Sciences, University of Bologna, 40064, Ozzano dell'Emilia BO, Italy.
| | - Giulia Graziosi
- Department of Veterinary Medical Sciences, University of Bologna, 40064, Ozzano dell'Emilia BO, Italy.
| | - Roberta Salaroli
- Department of Veterinary Medical Sciences, University of Bologna, 40064, Ozzano dell'Emilia BO, Italy.
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, 40064, Ozzano dell'Emilia BO, Italy.
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, 40064, Ozzano dell'Emilia BO, Italy.
| |
Collapse
|
2
|
Hollwarth A, Gomez Prieto L. Avian Gastroenterology: Anatomy and Assessment. Vet Clin North Am Exot Anim Pract 2024:S1094-9194(24)00069-0. [PMID: 39725589 DOI: 10.1016/j.cvex.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Gastrointestinal disease is a common presenting complaint in avian patients as owners can readily identify clinical signs associated with disorders of the gastrointestinal system. In birds, vastly different diets, environments, and feeding strategies have resulted in vast anatomic and physiologic differences between families. Practitioners treating avian patients should be familiar with the normal gastrointestinal anatomy and physiology of the species they are treating as well as how these species differences affect the diet and husbandry of captive and noncaptive avian patients.
Collapse
Affiliation(s)
- Ashton Hollwarth
- Great Western Exotics, Unit 10 Berkshire House, County Park, Shrivenham Road, Swindon, Wiltshire SN1 2NR, UK.
| | - Lucia Gomez Prieto
- Great Western Exotics, Unit 10 Berkshire House, County Park, Shrivenham Road, Swindon, Wiltshire SN1 2NR, UK
| |
Collapse
|
3
|
Ceccopieri C, Madej JP. Chicken Secondary Lymphoid Tissues-Structure and Relevance in Immunological Research. Animals (Basel) 2024; 14:2439. [PMID: 39199973 PMCID: PMC11350708 DOI: 10.3390/ani14162439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Recent discoveries have indicated the importance of developing modern strategies for vaccinations, more ethical research models, and effective alternatives to antibiotic treatment in farm animals. Chickens (Gallus gallus) play a crucial role in this context given the commercial and economic relevance of poultry production worldwide and the search for analogies between the immune systems of humans and birds. Specifically, chicken secondary lymphoid tissues share similar features to their human counterparts. Chickens have several secondary or peripheral lymphoid tissues that are the sites where the adaptive immune response is initiated. The more general classification of these organs divides them into the spleen and skin-, pineal-, or mucosa-associated lymphoid tissues. Each of these tissues is further subdivided into separate lymphoid structures that perform specific and different functions along the animal's body. A review summarizing the state of the art of research on chicken secondary lymphoid organs is of great relevance for the design of future studies.
Collapse
Affiliation(s)
| | - Jan P. Madej
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| |
Collapse
|
4
|
Franzo G, Dotto G, Lupini C, Legnardi M, Tucciarone CM, Poletto F, Catelli E, Graziosi G, Cecchinato M, Pasotto D. Exploring Variability: Inflammation Mediator Levels across Tissues and Time in Poultry Experimentally Infected by the G1a and G6 Genogroups of Infectious Bursal Disease Virus (IBDV). Animals (Basel) 2024; 14:1619. [PMID: 38891666 PMCID: PMC11171315 DOI: 10.3390/ani14111619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Infectious bursal disease virus (IBDV) is a significant burden for poultry production and market due to both direct disease and induced immunosuppression. In the present study, the expression of different cytokines in the bursa of Fabricius and thymus was evaluated during a 28-day-long experimental infection with two strains classified in the G1a (Classical) and G6 (ITA) genogroups. Although both strains significantly affected and modulated the expression of different molecules, the G6 strain seemed to induce a delayed immune response or suppress it more promptly. A recovery in the expression of several mediators was observed in the G1a-infected group at the end of the study, but not in the G6 one, further supporting a more persistent immunosuppression. This evidence fits with the higher replication level previously reported for the G6 and with the clinical outcome, as this genotype, although subclinical, has often been considered more immunosuppressive. However, unlike other studies focused on shorter time periods after infection, the patterns observed in this paper were highly variable and complex, depending on the strain, tissue, and time point, and characterized by a non-negligible within-group variability. Besides confirming the strain/genogroup effect on immune system modulation, the present study suggests the usefulness of longer monitoring activities after experimental infection to better understand the complex patterns and interactions with the host response.
Collapse
Affiliation(s)
- Giovanni Franzo
- Department of Animal Medicine, Production and Health, University of Padova, 35020 Legnaro, Italy; (G.D.); (M.L.); (C.M.T.); (F.P.); (M.C.); (D.P.)
| | - Giorgia Dotto
- Department of Animal Medicine, Production and Health, University of Padova, 35020 Legnaro, Italy; (G.D.); (M.L.); (C.M.T.); (F.P.); (M.C.); (D.P.)
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy; (C.L.); (E.C.); (G.G.)
| | - Matteo Legnardi
- Department of Animal Medicine, Production and Health, University of Padova, 35020 Legnaro, Italy; (G.D.); (M.L.); (C.M.T.); (F.P.); (M.C.); (D.P.)
| | - Claudia Maria Tucciarone
- Department of Animal Medicine, Production and Health, University of Padova, 35020 Legnaro, Italy; (G.D.); (M.L.); (C.M.T.); (F.P.); (M.C.); (D.P.)
| | - Francesca Poletto
- Department of Animal Medicine, Production and Health, University of Padova, 35020 Legnaro, Italy; (G.D.); (M.L.); (C.M.T.); (F.P.); (M.C.); (D.P.)
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy; (C.L.); (E.C.); (G.G.)
| | - Giulia Graziosi
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy; (C.L.); (E.C.); (G.G.)
| | - Mattia Cecchinato
- Department of Animal Medicine, Production and Health, University of Padova, 35020 Legnaro, Italy; (G.D.); (M.L.); (C.M.T.); (F.P.); (M.C.); (D.P.)
| | - Daniela Pasotto
- Department of Animal Medicine, Production and Health, University of Padova, 35020 Legnaro, Italy; (G.D.); (M.L.); (C.M.T.); (F.P.); (M.C.); (D.P.)
| |
Collapse
|
5
|
Wang Y, Feng H, Li X, Ruan Y, Guo Y, Cui X, Zhang P, Li Y, Wang X, Wang X, Wei L, Yi Y, Zhang L, Yang X, Liu H. Dampening of ISGylation of RIG-I by ADAP regulates type I interferon response of macrophages to RNA virus infection. PLoS Pathog 2024; 20:e1012230. [PMID: 38776321 PMCID: PMC11111093 DOI: 10.1371/journal.ppat.1012230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/29/2024] [Indexed: 05/24/2024] Open
Abstract
While macrophage is one of the major type I interferon (IFN-I) producers in multiple tissues during viral infections, it also serves as an important target cell for many RNA viruses. However, the regulatory mechanism for the IFN-I response of macrophages to respond to a viral challenge is not fully understood. Here we report ADAP, an immune adaptor protein, is indispensable for the induction of the IFN-I response of macrophages to RNA virus infections via an inhibition of the conjugation of ubiquitin-like ISG15 (ISGylation) to RIG-I. Loss of ADAP increases RNA virus replication in macrophages, accompanied with a decrease in LPS-induced IFN-β and ISG15 mRNA expression and an impairment in the RNA virus-induced phosphorylation of IRF3 and TBK1. Moreover, using Adap-/- mice, we show ADAP deficiency strongly increases the susceptibility of macrophages to RNA-virus infection in vivo. Mechanically, ADAP selectively interacts and functionally cooperates with RIG-I but not MDA5 in the activation of IFN-β transcription. Loss of ADAP results in an enhancement of ISGylation of RIG-I, whereas overexpression of ADAP exhibits the opposite effect in vitro, indicating ADAP is detrimental to the RNA virus-induced ISGylation of RIG-I. Together, our data demonstrate a novel antagonistic activity of ADAP in the cell-intrinsic control of RIG-I ISGylation, which is indispensable for initiating and sustaining the IFN-I response of macrophages to RNA virus infections and replication.
Collapse
Affiliation(s)
- Yan Wang
- Institutes of Biology and Medical Sciences (IBMS), Soochow University, Suzhou, Jiangsu Province, China
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu Province, China
| | - Haixia Feng
- Institutes of Biology and Medical Sciences (IBMS), Soochow University, Suzhou, Jiangsu Province, China
| | - Xiao Li
- Institutes of Biology and Medical Sciences (IBMS), Soochow University, Suzhou, Jiangsu Province, China
| | - Yina Ruan
- Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Department of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Yueping Guo
- Department of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Xinxing Cui
- Institutes of Biology and Medical Sciences (IBMS), Soochow University, Suzhou, Jiangsu Province, China
| | - Pengchao Zhang
- Institutes of Biology and Medical Sciences (IBMS), Soochow University, Suzhou, Jiangsu Province, China
| | - Yanli Li
- Institutes of Biology and Medical Sciences (IBMS), Soochow University, Suzhou, Jiangsu Province, China
| | - Xinning Wang
- Institutes of Biology and Medical Sciences (IBMS), Soochow University, Suzhou, Jiangsu Province, China
| | - Xingran Wang
- Institutes of Biology and Medical Sciences (IBMS), Soochow University, Suzhou, Jiangsu Province, China
| | - Luxin Wei
- Department of General Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
| | - Yulan Yi
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu Province, China
| | - Lifeng Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaodong Yang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hebin Liu
- Institutes of Biology and Medical Sciences (IBMS), Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
6
|
Zhang T, Wang S, Liu Y, Qi X, Gao Y. Advances on adaptive immune responses affected by infectious bursal disease virus in chicken. Front Immunol 2024; 14:1330576. [PMID: 38268928 PMCID: PMC10806451 DOI: 10.3389/fimmu.2023.1330576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024] Open
Abstract
Infectious bursal disease (IBD) is an acute, highly infectious, and immunosuppressive disease caused by the infectious bursal disease virus (IBDV), which interferes with the immune system, causes hypoimmunity and seriously threatens the healthy development of the poultry industry. Adaptive immune response, an important defense line of host resistance to pathogen infection, is the host-specific immune response mainly mediated by T and B lymphocytes. As an important immunosuppressive pathogen in poultry, IBDV infection is closely related to the injury of the adaptive immune system. In this review, we focus on recent advances in adaptive immune response influenced by IBDV infection, especially the damage on immune organs, as well as the effect on humoral immune response and cellular immune response, hoping to provide a theoretical basis for further exploration of the molecular mechanism of immunosuppression induced by IBDV infection and the establishment of novel prevention and control measures for IBD.
Collapse
Affiliation(s)
- Tao Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Suyan Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yongzhen Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaole Qi
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yulong Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
- National Poultry Laboratory Animal Resource Center, Harbin, China
| |
Collapse
|
7
|
Shahsavandi S, Torabi S, Ebrahimi MM, Ghadiri MB. Down-regulating CD19 surface markers expression correlates with infectious bursal disease virus replication. Vet Immunol Immunopathol 2023; 264:110658. [PMID: 37748249 DOI: 10.1016/j.vetimm.2023.110658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/03/2023] [Accepted: 09/15/2023] [Indexed: 09/27/2023]
Abstract
The infectious bursal disease virus (IBDV) causes an acute and highly contagious immunosuppressive response in young chickens by targeting B lymphocytes in immune organs. Changes in regulatory T-cell ratio and apoptosis have been demonstrated during IBDV infection in these cells. The possible change in CD19 expression as the precursor of B cells after IBDV replication was detected in this study. Raji cells were infected with an IBDV isolate at MOIs of 1.0 and 3.0. The viral kinetics were determined using the characteristic virus-induced CPE, cell viability, and infectious titer. Induction of apoptosis and also changes in the CD19 expression within the virus infection were assessed by flow cytometry. The Raji cells were found to be susceptible to IBDV infection by producing marked CPEs dependent on MOI. The infectivity titers were determined in intra- and extracellular samples at the defined hours. The kinetics of early IBDV replication in Raji cells were nearly identical for both MOIs, but a significant difference in the infectivity titer was observed at 48 hpi. The quick apoptotic events were observed to be significantly higher in MOI 3.0, which was correlated with the lower virus titer. A significant CD19 expression change in the IBDV-infected Raji cells was revealed. The results suggested that Raji cells mimic the IBDV replication in lymphoid organs and the virus replication is related to CD19 expression frequencies in the lymphoid cells.
Collapse
Affiliation(s)
- Shahla Shahsavandi
- Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization, Karaj, Iran.
| | - Samira Torabi
- Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization, Karaj, Iran
| | - Mohammad Majid Ebrahimi
- Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization, Karaj, Iran
| | - Mohammad Bagher Ghadiri
- Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization, Karaj, Iran
| |
Collapse
|
8
|
Wen J, Wu Y, Han J, Tian Y, Man C. Stress-induced immunosuppression affecting immune response to Newcastle disease virus vaccine through "miR-155-CTLA-4" pathway in chickens. PeerJ 2023; 11:e14529. [PMID: 36874964 PMCID: PMC9979835 DOI: 10.7717/peerj.14529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/15/2022] [Indexed: 03/03/2023] Open
Abstract
MiR-155 and CTLA-4 are important factors involved in the regulation of immune function. However, there is no report about their involvement in function regulation of stress-induced immunosuppression affecting immune response. In this study, the chicken model of stress-induced immunosuppression affecting immune response (simulation with dexamethasone and immunization with Newcastle disease virus (NDV) attenuated vaccine) was established, then the expression characteristics of miR-155 and CTLA-4 gene were analyzed at several key time points during the processes of stress-induced immunosuppression affecting NDV vaccine immune response at serum and tissue levels. The results showed that miR-155 and CTLA-4 were the key factors involved in stress-induced immunosuppression and NDV immune response, whose functions involved in the regulation of immune function were different in different tissues and time points, and 2 day post immunization (dpi), 5dpi and 21dpi were the possible key regulatory time points. CTLA-4, the target gene of miR-155, had significant game regulation relationships between them in various tissues, such as bursa of Fabricius, thymus and liver, indicating that miR-155-CTLA-4 pathway was one of the main mechanisms of their involvement in the regulations of stress-induced immunosuppression affecting NDV immune response. This study can lay the foundation for in-depth exploration of miR-155-CTLA-4 pathway involved in the regulation of immune function.
Collapse
Affiliation(s)
- Jie Wen
- Harbin Normal University, Harbin, China
| | - Yiru Wu
- Harbin Normal University, Harbin, China
| | | | | | | |
Collapse
|
9
|
Wang Q, Chu F, Zhang X, Hu H, Lu L, Wang F, Yu Y, Zhang Y, Ma J, Xu Z, Eldemery F, Ou C, Liu X. Infectious bursal disease virus replication is inhibited by avain T cell chemoattractant chemokine CCL19. Front Microbiol 2022; 13:912908. [PMID: 35935208 PMCID: PMC9355407 DOI: 10.3389/fmicb.2022.912908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Chemokine CCL19, together with its receptor CCR7, is one of the most important factors recruiting immune cells into target organ during virus infection. Our previous study has shown that CCL19 played a vital role in the process of T cell trafficking into bursae during bursal disease virus (IBDV) infection. In this study, we hypothesized that CCL19 could exert direct influences on IBDV replication other than recruiting immune cells. A eukaryotic expression vector of pEGFP-N1/CCL19 was successfully constructed and identified by PCR, double enzymes digestion, and sequencing. Different concentrations of pEGFP-N1/CCL19 plasmids were transfected into DF1 cells and CCL19 protein was highly expressed. Then, DF1 cells were infected with IBDV B87 strain post-transfection. Based on PCR and Western blot results, CCL19 could obviously decrease the gene levels of VP1 and VP2 and the protein levels of VP2 and VP3. When CCL19 was knocked down, the gene levels of VP1 and VP2 were significantly upregulated. Moreover, indirect immunostaining revealed that the IBDV content was largely decreased after CCL19 overexpression. Additionally, CCL19 inhibitory effects might rely on activation of the JNK signal pathway. Taken together, chemokine CCL19 directly blocks IBDV replication in DF1 cells, indicating that CCL19 could play crucial functions other than recruiting T cells during the pathogenesis of IBDV.
Collapse
Affiliation(s)
- Qiuxia Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Fuming Chu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Xin Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Huilong Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Lang Lu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Fang Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yan Yu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yanhong Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Jinyou Ma
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Zhiyong Xu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Fatma Eldemery
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Changbo Ou
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
- *Correspondence: Changbo Ou
| | - Xingyou Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- College of Life Science, Xinxiang University, Xinxiang, China
- Xingyou Liu
| |
Collapse
|
10
|
Trapp J, Rautenschlein S. Infectious bursal disease virus' interferences with host immune cells: What do we know? Avian Pathol 2022; 51:303-316. [PMID: 35616498 DOI: 10.1080/03079457.2022.2080641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractInfectious bursal disease virus (IBDV) induces one of the most important immunosuppressive diseases in chickens leading to high economic losses due increased mortality and condemnation rates, secondary infections and the need for antibiotic treatment. Over 400 publications have been listed in PubMed.gov in the last five years pointing out the research interest in this disease and the development of improved preventive measures. While B cells are the main target cells of the virus, also other immune and non-immune cell populations are affected leading a multifaceted impact on the normally well orchestrated immune system in IBDV-infected birds. Recent studies clearly revealed the contribution of innate immune cells as well as T cells to a cytokine storm and subsequent death of affected birds in the acute phase of the disease. Transcriptomics identified differential regulation of immune related genes between different chicken genotypes as well as virus strains, which may be associated with a variable disease outcome. The recent availability of primary B cell culture systems allowed a closer look into virus-host interactions during IBDV-infection. The new emerging field of research with transgenic chickens will open up new opportunities to understand the impact of IBDV on the host also under in vivo conditions, which will help to understand the complex virus-host interactions further.
Collapse
Affiliation(s)
- Johanna Trapp
- Clinic for Poultry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| |
Collapse
|
11
|
Qu X, Li X, Li Z, Liao M, Dai M. Chicken Peripheral Blood Mononuclear Cells Response to Avian Leukosis Virus Subgroup J Infection Assessed by Single-Cell RNA Sequencing. Front Microbiol 2022; 13:800618. [PMID: 35359721 PMCID: PMC8964181 DOI: 10.3389/fmicb.2022.800618] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/21/2022] [Indexed: 01/23/2023] Open
Abstract
Chicken peripheral blood mononuclear cells (PBMCs) exhibit wide-ranging cell types, but current understanding of their subclasses, immune cell classification, and function is limited and incomplete. Here we performed single-cell RNA sequencing (scRNA-seq) of PBMCs in Avian leukosis virus subgroup J (ALV-J) infected and control chickens at 21 days post infection (DPI) to determine chicken PBMCs subsets and their specific molecular and cellular characteristics. Eight cell populations and their potential marker genes were identified in PBMCs. T cell populations had the strongest response to (ALV-J) infection, based on the detection of the largest number of differentially expressed genes (DEGs), and could be further grouped into four subsets: activated CD4+ T cells, Th1-like cells, Th2-like cells, and cytotoxic CD8+ T cells. Furthermore, pseudotime analysis results suggested that chicken CD4+ T cells could potentially differentiate into Th1-like and Th2-like cells. Moreover, ALV-J infection activated CD4+ T cell was probably inclined to differentiate into Th1-like cells. Compared to the control PBMCs, ALV-J infection also had an obvious impact on PBMCs composition. B cells showed inconspicuous response and their numbers decreased in PBMCs from ALV-J infected chicken. Proportions of cytotoxic Th1-like cells and CD8+ T cells increased in the T cell population of PBMCs from ALV-J infected chicken, which were potentially key mitigating effectors against ALV-J infection. More importantly, our results provide a rich resource of gene expression profiles of chicken PBMCs subsets for a systems-level understanding of their function in homeostatic condition as well as in response to viral infection.
Collapse
Affiliation(s)
- Xiaoyun Qu
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaobo Li
- Core Facilities for Medical Science, Sun Yat-sen University, Guangzhou, China
| | - Ziwei Li
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Manman Dai
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
12
|
Seifi T, Reza Kamali A. Antiviral performance of graphene-based materials with emphasis on COVID-19: A review. MEDICINE IN DRUG DISCOVERY 2021; 11:100099. [PMID: 34056572 PMCID: PMC8151376 DOI: 10.1016/j.medidd.2021.100099] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease-2019 has been one of the most challenging global epidemics of modern times with a large number of casualties combined with economic hardships across the world. Considering that there is still no definitive cure for the recent viral crisis, this article provides a review of nanomaterials with antiviral activity, with an emphasis on graphene and its derivatives, including graphene oxide, reduced graphene oxide and graphene quantum dots. The possible interactions between surfaces of such nanostructured materials with coronaviruses are discussed. The antiviral mechanisms of graphene materials can be related to events such as the inactivation of virus and/or the host cell receptor, electrostatic trapping and physico-chemical destruction of viral species. These effects can be enhanced by functionalization and/or decoration of carbons with species that enhances graphene-virus interactions. The low-cost and large-scale preparation of graphene materials with enhanced antiviral performances is an interesting research direction to be explored.
Collapse
Affiliation(s)
- Tahereh Seifi
- Energy and Environmental Materials Research Centre (E2MC), School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Ali Reza Kamali
- Energy and Environmental Materials Research Centre (E2MC), School of Metallurgy, Northeastern University, Shenyang 110819, China
| |
Collapse
|