1
|
Rackow B, Rolland C, Mohnen I, Wittmann J, Müsken M, Overmann J, Frunzke J. Isolation and characterization of the new Streptomyces phages Kamino, Geonosis, Abafar, and Scarif infecting a broad range of host species. Microbiol Spectr 2024; 12:e0066324. [PMID: 39320111 PMCID: PMC11536984 DOI: 10.1128/spectrum.00663-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/06/2024] [Indexed: 09/26/2024] Open
Abstract
Streptomyces, a multifaceted genus of soil-dwelling bacteria belonging to the phylum Actinomycetota, features intricate phage-host interactions shaped by its complex life cycle and the synthesis of a diverse array of specialized metabolites. Here, we describe the isolation and characterization of four novel Streptomyces phages infecting a variety of different host species. While phage Kamino, isolated on Streptomyces kasugaensis, is predicted to be temperate and encodes a serine integrase in its genome, phages Geonosis (isolated on Streptomyces griseus) and Abafar and Scarif, isolated on Streptomyces albidoflavus, are virulent phages. Phages Kamino and Geonosis were shown to amplify well in liquid culture leading to a pronounced culture collapse already at low titers. Determination of the host range by testing >40 different Streptomyces species identified phages Kamino, Abafar, and Scarif as broad host-range phages. Overall, the phages described in this study expand the publicly available portfolio of phages infecting Streptomyces and will be instrumental in advancing the mechanistic understanding of the intricate antiviral strategies employed by these multicellular bacteria.IMPORTANCEThe actinobacterial genus Streptomyces is characterized by multicellular, filamentous growth and the synthesis of a diverse range of bioactive molecules. These characteristics also play a role in shaping their interactions with the most abundant predator in the environment, bacteriophages-viruses infecting bacteria. In this study, we characterize four new phages infecting Streptomyces. Out of those, three phages feature a broad host range infecting up to 15 different species. The isolated phages were characterized with respect to plaque and virion morphology, host range, and amplification in liquid culture. In summary, the phages reported in this study contribute to the broader collection of publicly available phages infecting Streptomyces, playing a crucial role in advancing our mechanistic understanding of phage-host interactions of these multicellular bacteria.
Collapse
Affiliation(s)
- Bente Rackow
- Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Clara Rolland
- Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Isabelle Mohnen
- Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Johannes Wittmann
- Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Julia Frunzke
- Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
2
|
Howard A, Carroll-Portillo A, Alcock J, Lin HC. Dietary Effects on the Gut Phageome. Int J Mol Sci 2024; 25:8690. [PMID: 39201374 PMCID: PMC11354428 DOI: 10.3390/ijms25168690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
As knowledge of the gut microbiome has expanded our understanding of the symbiotic and dysbiotic relationships between the human host and its microbial constituents, the influence of gastrointestinal (GI) microbes both locally and beyond the intestine has become evident. Shifts in bacterial populations have now been associated with several conditions including Crohn's disease (CD), Ulcerative Colitis (UC), irritable bowel syndrome (IBS), Alzheimer's disease, Parkinson's Disease, liver diseases, obesity, metabolic syndrome, anxiety, depression, and cancers. As the bacteria in our gut thrive on the food we eat, diet plays a critical role in the functional aspects of our gut microbiome, influencing not only health but also the development of disease. While the bacterial microbiome in the context of disease is well studied, the associated gut phageome-bacteriophages living amongst and within our bacterial microbiome-is less well understood. With growing evidence that fluctuations in the phageome also correlate with dysbiosis, how diet influences this population needs to be better understood. This review surveys the current understanding of the effects of diet on the gut phageome.
Collapse
Affiliation(s)
- Andrea Howard
- School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Amanda Carroll-Portillo
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Joe Alcock
- Department of Emergency Medicine, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Henry C. Lin
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
- Medicine Service, New Mexico VA Health Care System, Albuquerque, NM 87108, USA
| |
Collapse
|
3
|
Kozlova AP, Muntyan VS, Vladimirova ME, Saksaganskaia AS, Kabilov MR, Gorbunova MK, Gorshkov AN, Grudinin MP, Simarov BV, Roumiantseva ML. Soil Giant Phage: Genome and Biological Characteristics of Sinorhizobium Jumbo Phage. Int J Mol Sci 2024; 25:7388. [PMID: 39000497 PMCID: PMC11242549 DOI: 10.3390/ijms25137388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
This paper presents the first in-depth research on the biological and genomic properties of lytic rhizobiophage AP-J-162 isolated from the soils of the mountainous region of Dagestan (North Caucasus), which belongs to the centers of origin of cultivated plants, according to Vavilov N.I. The rhizobiophage host strains are nitrogen-fixing bacteria of the genus Sinorhizobium spp., symbionts of leguminous forage grasses. The phage particles have a myovirus virion structure. The genome of rhizobiophage AP-J-162 is double-stranded DNA of 471.5 kb in length; 711 ORFs are annotated and 41 types of tRNAs are detected. The closest phylogenetic relative of phage AP-J-162 is Agrobacterium phage Atu-ph07, but no rhizobiophages are known. The replicative machinery, capsid, and baseplate proteins of phage AP-J-162 are structurally similar to those of Escherichia phage T4, but there is no similarity between their tail protein subunits. Amino acid sequence analysis shows that 339 of the ORFs encode hypothetical or functionally relevant products, while the remaining 304 ORFs are unique. Additionally, 153 ORFs are similar to those of Atu_ph07, with one-third of the ORFs encoding different enzymes. The biological properties and genomic characteristics of phage AP-J-162 distinguish it as a unique model for exploring phage-microbe interactions with nitrogen-fixing symbiotic microorganisms.
Collapse
Affiliation(s)
- Alexandra P Kozlova
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia
| | - Victoria S Muntyan
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia
| | - Maria E Vladimirova
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia
| | - Alla S Saksaganskaia
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia
| | - Marsel R Kabilov
- SB RAS Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Maria K Gorbunova
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia
| | - Andrey N Gorshkov
- Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, 197376 Saint Petersburg, Russia
| | - Mikhail P Grudinin
- Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, 197376 Saint Petersburg, Russia
| | - Boris V Simarov
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia
| | - Marina L Roumiantseva
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia
| |
Collapse
|
4
|
Faleiros CA, Nunes AT, Gonçalves OS, Alexandre PA, Poleti MD, Mattos EC, Perna-Junior F, Rodrigues PHM, Fukumasu H. Exploration of mobile genetic elements in the ruminal microbiome of Nellore cattle. Sci Rep 2024; 14:13056. [PMID: 38844487 PMCID: PMC11156634 DOI: 10.1038/s41598-024-63951-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
Metagenomics has made it feasible to elucidate the intricacies of the ruminal microbiome and its role in the differentiation of animal production phenotypes of significance. The search for mobile genetic elements (MGEs) has taken on great importance, as they play a critical role in the transfer of genetic material between organisms. Furthermore, these elements serve a dual purpose by controlling populations through lytic bacteriophages, thereby maintaining ecological equilibrium and driving the evolutionary progress of host microorganisms. In this study, we aimed to identify the association between ruminal bacteria and their MGEs in Nellore cattle using physical chromosomal links through the Hi-C method. Shotgun metagenomic sequencing and the proximity ligation method ProxiMeta were used to analyze DNA, getting 1,713,111,307 bp, which gave rise to 107 metagenome-assembled genomes from rumen samples of four Nellore cows maintained on pasture. Taxonomic analysis revealed that most of the bacterial genomes belonged to the families Lachnospiraceae, Bacteroidaceae, Ruminococcaceae, Saccharofermentanaceae, and Treponemataceae and mostly encoded pathways for central carbon and other carbohydrate metabolisms. A total of 31 associations between host bacteria and MGE were identified, including 17 links to viruses and 14 links to plasmids. Additionally, we found 12 antibiotic resistance genes. To our knowledge, this is the first study in Brazilian cattle that connect MGEs with their microbial hosts. It identifies MGEs present in the rumen of pasture-raised Nellore cattle, offering insights that could advance biotechnology for food digestion and improve ruminant performance in production systems.
Collapse
Affiliation(s)
- Camila A Faleiros
- Department of Veterinary Medicine, School of Animal Science and Food Engineering (FZEA), University of São Paulo, Pirassununga, SP, 13635-900, Brazil
| | - Alanne T Nunes
- Department of Veterinary Medicine, School of Animal Science and Food Engineering (FZEA), University of São Paulo, Pirassununga, SP, 13635-900, Brazil
| | - Osiel S Gonçalves
- Department of Microbiology, Institute of Biotechnology Applied to Agriculture (BIOAGRO), Federal University of Viçosa, Viçosa, MG, 36570-000, Brazil
| | - Pâmela A Alexandre
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food, Brisbane, QLD, Australia
| | - Mirele D Poleti
- Department of Veterinary Medicine, School of Animal Science and Food Engineering (FZEA), University of São Paulo, Pirassununga, SP, 13635-900, Brazil
| | - Elisângela C Mattos
- Department of Veterinary Medicine, School of Animal Science and Food Engineering (FZEA), University of São Paulo, Pirassununga, SP, 13635-900, Brazil
| | - Flavio Perna-Junior
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ-USP), Pirassununga, São Paulo, 13635-900, Brazil
| | - Paulo H Mazza Rodrigues
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ-USP), Pirassununga, São Paulo, 13635-900, Brazil
| | - Heidge Fukumasu
- Department of Veterinary Medicine, School of Animal Science and Food Engineering (FZEA), University of São Paulo, Pirassununga, SP, 13635-900, Brazil.
| |
Collapse
|
5
|
Usman SS, Christina E. Characterization and genome-informatic analysis of a novel lytic mendocina phage vB_PmeS_STP12 suitable for phage therapy pseudomonas or biocontrol. Mol Biol Rep 2024; 51:419. [PMID: 38483683 DOI: 10.1007/s11033-024-09362-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/16/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND A novel lytic bacteriophage (phage) was isolated with Pseudomonas mendocina strain STP12 (P. mendocina) from the untreated site of Sewage Treatment Plant of Lovely Professional University, India. P. mendocina is a Gram-negative, rod-shaped, aerobic bacterium belonging to the family Pseudomonadaceae and has been reported in fifteen (15) cases of economically important diseases worldwide. METHODS AND RESULTS Here, a novel phage specifically infecting and killing P. mendocina strain STP12 was isolated from sewage sample using enrichment, spot test and double agar overlay (DAOL) method and was designated as vB_PmeS_STP12. The phage vB-PmeS-STP12 was viable at wide range of pH and temperature ranging from 4 to10 and - 20 to 70 °C respectively. Host range and efficiency of plating (EOP) analysis indicated that phage vB-PmeS-STP12 was capable of infecting and killing P. mendocina strain STP6 with EOP of 0.34. Phage vB_PmeS_STP12 was found to have a significant bacterial reduction (p < 0.005) at all the doses administered, particularly at optimal MOI of 1 PFU/CFU, compared to the control. Morphological analysis using high resolution transmission electron microscopy (HR-TEM) revealed an icosahedral capsid of ~ 55 nm in diameter on average with a short, non-contractile tail. The genome of vB_PmeS_STP12 is a linear, dsDNA containing 36,212 bp in size with a GC content of 58.87% harbouring 46 open reading frames (ORFs). The 46 predicted ORFs encode proteins with functional information categorized as lysis, replication, packaging, regulation, assembly, infection, immune, and hypothetical. However, the genome of vB_PmeS_STP12 appeared to be devoid of tRNAs, integrase gene, toxins genes, virulence factors, antimicrobial resistance genes (ARGs) and CRISPR arrays. The blast analysis with phylogeny revealed that vB_PmeS_STP12 is genetically similar to Pseudomonas phage PMBT14, Pseudomonas phage Almagne and Serratia phage Serbin with a highest identity of 74.00%, 74.93% and 59.48% respectively. CONCLUSIONS Taken together, characterization, morphological analysis and genome-informatics indicated that vB_PmeS_STP12 is podovirus morphotype belonging to the class Caudoviticetes, family Zobellviridae which appeared to be devoid of integrase gene, ARGs, CRISPR arrays, virulence factors and toxins genes, exhibiting stability and infectivity at wide range of pH (4 to10) and temperature (-20 to 70 °C), thereby making vB_PmeS_STP12 suitable for phage therapy or biocontrol. Based on the bibliometric analysis and data availability with respect to sequences deposited in GenBank, this is the first report of a phage infecting Pseudomonas mendocina.
Collapse
Affiliation(s)
- Sani Sharif Usman
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, 144401, India
- Department of Biological Sciences, Faculty of Science, Federal University of Kashere, P.M.B. 0182, Gombe, Nigeria
| | - Evangeline Christina
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, 144401, India.
| |
Collapse
|
6
|
Carroll-Portillo A, Lin DM, Lin HC. The Diversity of Bacteriophages in the Human Gut. Methods Mol Biol 2024; 2738:17-30. [PMID: 37966590 DOI: 10.1007/978-1-0716-3549-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Bacteriophages, commonly referred to as phages, are viruses that infect bacteria and are among the most numerous microorganisms on the planet. They occur throughout nature occupying every habitat where their bacterial hosts can be found. Within these communities, phages are responsible for shaping the bacterial community structure and function through their interactions. Phages shape the community structure and function within the human gut but are also able to influence the human host. As such, there is increased interest in understanding the composition and activity of the gastrointestinal phages, although these studies have been hindered by the difficulties accompanying the study of the human gut. Here, we summarize the methods and findings pertaining to the diversity of the human gastrointestinal phages.
Collapse
Affiliation(s)
- Amanda Carroll-Portillo
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM, USA.
| | - Derek M Lin
- Biomedical Research Institute of New Mexico, Albuquerque, NM, USA
| | - Henry C Lin
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM, USA
- Medicine Service, New Mexico VA Health Care System, Albuquerque, NM, USA
| |
Collapse
|
7
|
Turner D, Adriaenssens EM, Lehman SM, Moraru C, Kropinski AM. Bacteriophage Taxonomy: A Continually Evolving Discipline. Methods Mol Biol 2024; 2734:27-45. [PMID: 38066361 DOI: 10.1007/978-1-0716-3523-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
While taxonomy is an often underappreciated branch of science, it serves very important roles. Bacteriophage taxonomy has evolved from a discipline based mainly on morphology, characterized by the work of David Bradley and Hans-Wolfgang Ackermann, to the sequence-based approach that is taken today. The Bacterial Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV) takes a holistic approach to classifying prokaryote viruses by measuring overall DNA and protein similarity and phylogeny before making decisions about the taxonomic position of a new virus. The huge number of complete genomes being deposited with the National Center for Biotechnology Information (NCBI) and other public databases has resulted in a reassessment of the taxonomy of many viruses, and the future will see the introduction of new viral families and higher orders.
Collapse
Affiliation(s)
- Dann Turner
- School of Applied Sciences, College of Health, Science and Society, University of the West of England, Bristol, UK
| | | | - Susan M Lehman
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Cristina Moraru
- Department of The Biology of Geological Processes, Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Andrew M Kropinski
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
8
|
Vacheron J, Heiman CM, Garneau JR, Kupferschmied P, de Jonge R, Garrido-Sanz D, Keel C. Molecular and evolutionary basis of O-antigenic polysaccharide-driven phage sensitivity in environmental pseudomonads. Microbiol Spectr 2023; 11:e0204923. [PMID: 37800913 PMCID: PMC10715155 DOI: 10.1128/spectrum.02049-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/16/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE The application of plant-beneficial microorganisms to protect crop plants is a promising alternative to the usage of chemicals. However, biocontrol research often faces difficulties in implementing this approach due to the inconsistency of the bacterial inoculant to establish itself within the root microbiome. Beneficial bacterial inoculants can be decimated by the presence of their natural predators, notably bacteriophages (also called phages). Thus, it is important to gain knowledge regarding the mechanisms behind phage-bacteria interactions to overcome this challenge. Here, we evidence that the major long O-antigenic polysaccharide (O-PS, O-antigen) of the widely used model plant-beneficial bacterium Pseudomonas protegens CHA0 is the receptor of its natural predator, the phage ΦGP100. We examined the distribution of the gene cluster directing the synthesis of this O-PS and identified signatures of horizontal gene acquisitions. Altogether, our study highlights the importance of bacterial cell surface structure variation in the complex interplay between phages and their Pseudomonas hosts.
Collapse
Affiliation(s)
- Jordan Vacheron
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Clara M. Heiman
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Julian R. Garneau
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Peter Kupferschmied
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Ronnie de Jonge
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, the Netherlands
| | - Daniel Garrido-Sanz
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Christoph Keel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Zheng K, Liang Y, Paez-Espino D, Zou X, Gao C, Shao H, Sung YY, Mok WJ, Wong LL, Zhang YZ, Tian J, Chen F, Jiao N, Suttle CA, He J, McMinn A, Wang M. Identification of hidden N4-like viruses and their interactions with hosts. mSystems 2023; 8:e0019723. [PMID: 37702511 PMCID: PMC10654107 DOI: 10.1128/msystems.00197-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/19/2023] [Indexed: 09/14/2023] Open
Abstract
IMPORTANCE The findings of this study are significant, as N4-like viruses represent a unique viral lineage with a distinct replication mechanism and a conserved core genome. This work has resulted in a comprehensive global map of the entire N4-like viral lineage, including information on their distribution in different biomes, evolutionary divergence, genomic diversity, and the potential for viral-mediated host metabolic reprogramming. As such, this work significantly contributes to our understanding of the ecological function and viral-host interactions of bacteriophages.
Collapse
Affiliation(s)
- Kaiyang Zheng
- Key Laboratory of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Yantao Liang
- Key Laboratory of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - David Paez-Espino
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Mammoth Biosciences Inc., South San Francisco, California, USA
| | - Xiao Zou
- Qingdao Central Hospital, Qingdao, China
| | - Chen Gao
- Key Laboratory of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Hongbing Shao
- Key Laboratory of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Yeong Yik Sung
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu (UMT), Kuala Terengganu, Malaysia
| | - Wen Jye Mok
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu (UMT), Kuala Terengganu, Malaysia
| | - Li Lian Wong
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu (UMT), Kuala Terengganu, Malaysia
| | - Yu-Zhong Zhang
- Key Laboratory of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Jiwei Tian
- Key Laboratory of Physical Oceanography, Ministry of Education, Ocean University of China, Qingdao, China
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland, USA
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| | - Curtis A. Suttle
- Department of Earth, Ocean and Atmospheric Sciences, Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jianfeng He
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, China
| | - Andrew McMinn
- Key Laboratory of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Min Wang
- Key Laboratory of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
10
|
Džunková M, Moraru C, Anantharaman K. Editorial: Advances in viromics: new tools, challenges, and data towards characterizing human and environmental viromes. Front Microbiol 2023; 14:1290062. [PMID: 37822741 PMCID: PMC10562684 DOI: 10.3389/fmicb.2023.1290062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023] Open
Affiliation(s)
- Mária Džunková
- Institute for Integrative Systems Biology, University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Cristina Moraru
- Environmental Metagenomics, Faculty of Chemistry, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Essen, Germany
| | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
11
|
Abstract
The gut microbiome is a dense and metabolically active consortium of microorganisms and viruses located in the lower gastrointestinal tract of the human body. Bacteria and their viruses (phages) are the most abundant members of the gut microbiome. Investigating their biology and the interplay between the two is important if we are to understand their roles in human health and disease. In this review, we summarize recent advances in resolving the taxonomic structure and ecological functions of the complex community of phages in the human gut-the gut phageome. We discuss how age, diet, and geography can all have a significant impact on phageome composition. We note that alterations to the gut phageome have been observed in several diseases such as inflammatory bowel disease, irritable bowel syndrome, and colorectal cancer, and we evaluate whether these phageome changes can directly or indirectly contribute to disease etiology and pathogenesis. We also highlight how lack of standardization in studying the gut phageome has contributed to variation in reported results.
Collapse
Affiliation(s)
- Ciara A Tobin
- APC Microbiome Ireland, Cork, Ireland; , ,
- School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, Cork, Ireland; , ,
- School of Microbiology, University College Cork, Cork, Ireland
| | - Andrey N Shkoporov
- APC Microbiome Ireland, Cork, Ireland; , ,
- School of Microbiology, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
| |
Collapse
|
12
|
Coutinho FH, Silveira CB, Sebastián M, Sánchez P, Duarte CM, Vaqué D, Gasol JM, Acinas SG. Water mass age structures the auxiliary metabolic gene content of free-living and particle-attached deep ocean viral communities. MICROBIOME 2023; 11:118. [PMID: 37237317 PMCID: PMC10224230 DOI: 10.1186/s40168-023-01547-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/10/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND Viruses play important roles in the ocean's biogeochemical cycles. Yet, deep ocean viruses are one of the most under-explored fractions of the global biosphere. Little is known about the environmental factors that control the composition and functioning of their communities or how they interact with their free-living or particle-attached microbial hosts. RESULTS We analysed 58 viral communities associated with size-fractionated free-living (0.2-0.8 μm) and particle-attached (0.8-20 μm) cellular metagenomes from bathypelagic (2150-4018 m deep) microbiomes obtained during the Malaspina expedition. These metagenomes yielded 6631 viral sequences, 91% of which were novel, and 67 represented high-quality genomes. Taxonomic classification assigned 53% of the viral sequences to families of tailed viruses from the order Caudovirales. Computational host prediction associated 886 viral sequences to dominant members of the deep ocean microbiome, such as Alphaproteobacteria (284), Gammaproteobacteria (241), SAR324 (23), Marinisomatota (39), and Chloroflexota (61). Free-living and particle-attached viral communities had markedly distinct taxonomic composition, host prevalence, and auxiliary metabolic gene content, which led to the discovery of novel viral-encoded metabolic genes involved in the folate and nucleotide metabolisms. Water mass age emerged as an important factor driving viral community composition. We postulated this was due to changes in quality and concentration of dissolved organic matter acting on the host communities, leading to an increase of viral auxiliary metabolic genes associated with energy metabolism among older water masses. CONCLUSIONS These results shed light on the mechanisms by which environmental gradients of deep ocean ecosystems structure the composition and functioning of free-living and particle-attached viral communities. Video Abstract.
Collapse
Affiliation(s)
- Felipe H Coutinho
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM), CSIC, 08003, Barcelona, Spain.
| | - Cynthia B Silveira
- Department of Biology, University of Miami, Coral Gables, FL, USA
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Sciences, University of Miami, Miami, FL, USA
| | - Marta Sebastián
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM), CSIC, 08003, Barcelona, Spain
| | - Pablo Sánchez
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM), CSIC, 08003, Barcelona, Spain
| | - Carlos M Duarte
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Dolors Vaqué
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM), CSIC, 08003, Barcelona, Spain
| | - Josep M Gasol
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM), CSIC, 08003, Barcelona, Spain
| | - Silvia G Acinas
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM), CSIC, 08003, Barcelona, Spain.
| |
Collapse
|
13
|
Shafigh Kheljan F, Sheikhzadeh Hesari F, Aminifazl MS, Skurnik M, Goladze S, Zarrini G. Design of Phage-Cocktail-Containing Hydrogel for the Treatment of Pseudomonas aeruginosa-Infected Wounds. Viruses 2023; 15:803. [PMID: 36992511 PMCID: PMC10051971 DOI: 10.3390/v15030803] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/12/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Recently, the treatment of infected wounds has become a global problem due to increased antibiotic resistance in bacteria. The Gram-negative opportunistic pathogen Pseudomonas aeruginosa is often present in chronic skin infections, and it has become a threat to public health as it is increasingly multidrug resistant. Due to this, new measures to enable treatment of infections are necessary. Treatment of bacterial infections with bacteriophages, known as phage therapy, has been in use for a century, and has potential with its antimicrobial effect. The main purpose of this study was to create a phage-containing wound dressing with the ability to prevent bacterial infection and rapid wound healing without side effects. Several phages against P. aeruginosa were isolated from wastewater, and two polyvalent phages were used to prepare a phage cocktail. The phage cocktail was loaded in a hydrogel composed of polymers of sodium alginate (SA) and carboxymethyl cellulose (CMC). To compare the antimicrobial effects, hydrogels containing phages, ciprofloxacin, or phages plus ciprofloxacin were produced, and hydrogels without either. The antimicrobial effect of these hydrogels was investigated in vitro and in vivo using an experimental mouse wound infection model. The wound-healing process in different mouse groups showed that phage-containing hydrogels and antibiotic-containing hydrogels have almost the same antimicrobial effect. However, in terms of wound healing and pathological process, the phage-containing hydrogels performed better than the antibiotic alone. The best performance was achieved with the phage-antibiotic hydrogel, indicating a synergistic effect between the phage cocktail and the antibiotic. In conclusion, phage-containing hydrogels eliminate efficiently P. aeruginosa in wounds and may be a proper option for treating infectious wounds.
Collapse
Affiliation(s)
- Fatemeh Shafigh Kheljan
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 5166616471, Iran; (F.S.K.); (F.S.H.)
| | - Farzam Sheikhzadeh Hesari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 5166616471, Iran; (F.S.K.); (F.S.H.)
| | - Mohammad Sadegh Aminifazl
- Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran;
| | - Mikael Skurnik
- Human Microbiome Research Program, Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, 00014 HUS Helsinki, Finland; (M.S.); (S.G.)
| | - Sophia Goladze
- Human Microbiome Research Program, Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, 00014 HUS Helsinki, Finland; (M.S.); (S.G.)
| | - Gholamreza Zarrini
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 5166616471, Iran; (F.S.K.); (F.S.H.)
| |
Collapse
|
14
|
Abraha HB, Lee JW, Kim G, Ferdiansyah MK, Ramesha RM, Kim KP. Genomic diversity and comprehensive taxonomical classification of 61 Bacillus subtilis group member infecting bacteriophages, and the identification of ortholog taxonomic signature genes. BMC Genomics 2022; 23:835. [PMID: 36526963 PMCID: PMC9756591 DOI: 10.1186/s12864-022-09055-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Despite the applications of Bacillus subtilis group species in various sectors, limited information is available regarding their phages. Here, 61 B. subtilis group species-infecting phages (BSPs) were studied for their taxonomic classification considering the genome-size, genomic diversity, and the host, followed by the identification of orthologs taxonomic signature genes. RESULTS BSPs have widely ranging genome sizes that can be bunched into groups to demonstrate correlations to family and subfamily classifications. Comparative analysis re-confirmed the existing, BSPs-containing 14 genera and 21 species and displayed inter-genera similarities within existing subfamilies. Importantly, it also revealed the need for the creation of new taxonomic classifications, including 28 species, nine genera, and two subfamilies (New subfamily1 and New subfamily2) to accommodate inter-genera relatedness. Following pangenome analysis, no ortholog shared by all BSPs was identified, while orthologs, namely, the tail fibers/spike proteins and poly-gamma-glutamate hydrolase, that are shared by more than two-thirds of the BSPs were identified. More importantly, major capsid protein (MCP) type I, MCP type II, MCP type III and peptidoglycan binding proteins that are distinctive orthologs for Herelleviridae, Salasmaviridae, New subfamily1, and New subfamily2, respectively, were identified and analyzed which could serve as signatures to distinguish BSP members of the respective taxon. CONCLUSIONS In this study, we show the genomic diversity and propose a comprehensive classification of 61 BSPs, including the proposition for the creation of two new subfamilies, followed by the identification of orthologs taxonomic signature genes, potentially contributing to phage taxonomy.
Collapse
Affiliation(s)
- Haftom Baraki Abraha
- Department of Food Science and Technology, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Jae-Won Lee
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Gayeong Kim
- Department of Food Science and Technology, Jeonbuk National University, Jeonju, 54896, South Korea
| | | | | | - Kwang-Pyo Kim
- Department of Food Science and Technology, Jeonbuk National University, Jeonju, 54896, South Korea.
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896, South Korea.
| |
Collapse
|
15
|
Bumunang EW, McAllister TA, Polo RO, Ateba CN, Stanford K, Schlechte J, Walker M, MacLean K, Niu YD. Genomic Profiling of Non-O157 Shiga Toxigenic Escherichia coli-Infecting Bacteriophages from South Africa. PHAGE (NEW ROCHELLE, N.Y.) 2022; 3:221-230. [PMID: 36793886 PMCID: PMC9917312 DOI: 10.1089/phage.2022.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Background Non-O157 Shiga toxigenic Escherichia coli (STEC) are one of the most important food and waterborne pathogens worldwide. Although bacteriophages (phages) have been used for the biocontrol of these pathogens, a comprehensive understanding of the genetic characteristics and lifestyle of potentially effective candidate phages is lacking. Materials and Methods In this study, 10 non-O157-infecting phages previously isolated from feedlot cattle and dairy farms in the North-West province of South Africa were sequenced, and their genomes were analyzed. Results Comparative genomics and proteomics revealed that the phages were closely related to other E. coli-infecting Tunaviruses, Seuratviruses, Carltongylesviruses, Tequatroviruses, and Mosigviruses from the National Center for Biotechnology Information GenBank database. Phages lacked integrases associated with a lysogenic cycle and genes associated with antibiotic resistance and Shiga toxins. Conclusions Comparative genomic analysis identified a diversity of unique non-O157-infecting phages, which could be used to mitigate the abundance of various non-O157 STEC serogroups without safety concerns.
Collapse
Affiliation(s)
- Emmanuel W. Bumunang
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Tim A. McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Canada
| | - Rodrigo Ortega Polo
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Canada
| | - Collins N. Ateba
- Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Kim Stanford
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada
| | - Jared Schlechte
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Matthew Walker
- Canadian Science Centre for Human and Animal Health, Public Health Agency of Canada, Winnipeg, Canada
| | - Kellie MacLean
- Cumming School of Medicine, Faculty of Science, University of Calgary, Calgary, Canada
| | - Yan D. Niu
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
16
|
Pandolfo M, Telatin A, Lazzari G, Adriaenssens EM, Vitulo N. MetaPhage: an Automated Pipeline for Analyzing, Annotating, and Classifying Bacteriophages in Metagenomics Sequencing Data. mSystems 2022; 7:e0074122. [PMID: 36069454 PMCID: PMC9599279 DOI: 10.1128/msystems.00741-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022] Open
Abstract
Phages are the most abundant biological entities on the planet, and they play an important role in controlling density, diversity, and network interactions among bacterial communities through predation and gene transfer. To date, a variety of bacteriophage identification tools have been developed that differ in the phage mining strategies used, input files requested, and results produced. However, new users attempting bacteriophage analysis can struggle to select the best methods and interpret the variety of results produced. Here, we present MetaPhage, a comprehensive reads-to-report pipeline that streamlines the use of multiple phage miners and generates an exhaustive report. The report both summarizes and visualizes the key findings and enables further exploration of key results via interactive filterable tables. The pipeline is implemented in Nextflow, a widely adopted workflow manager that enables an optimized parallelization of tasks in different locations, from local server to the cloud; this ensures reproducible results from containerized packages. MetaPhage is designed to enable scalability and reproducibility; also, it can be easily expanded to include new miners and methods as they are developed in this continuously growing field. MetaPhage is freely available under a GPL-3.0 license at https://github.com/MattiaPandolfoVR/MetaPhage. IMPORTANCE Bacteriophages (viruses that infect bacteria) are the most abundant biological entities on earth and are increasingly studied as members of the resident microbiota community in many environments, from oceans to soils and the human gut. Their identification is of great importance to better understand complex bacterial dynamics and microbial ecosystem function. A variety of metagenome bacteriophage identification tools have been developed that differ in the phage mining strategies used, input files requested, and results produced. To facilitate the management and the execution of such a complex workflow, we developed MetaPhage (MP), a comprehensive reads-to-report pipeline that streamlines the use of multiple phage miners and generates an exhaustive report. The pipeline is implemented in Nextflow, a widely adopted workflow manager that enables an optimized parallelization of tasks. MetaPhage is designed to enable scalability and reproducibility and offers an installation-free, dependency-free, and conflict-free workflow execution.
Collapse
Affiliation(s)
- Mattia Pandolfo
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Gioele Lazzari
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Nicola Vitulo
- Department of Biotechnology, University of Verona, Verona, Italy
| |
Collapse
|
17
|
Tarakanov RI, Lukianova AA, Evseev PV, Pilik RI, Tokmakova AD, Kulikov EE, Toshchakov SV, Ignatov AN, Dzhalilov FSU, Miroshnikov KA. Ayka, a Novel Curtobacterium Bacteriophage, Provides Protection against Soybean Bacterial Wilt and Tan Spot. Int J Mol Sci 2022; 23:10913. [PMID: 36142829 PMCID: PMC9502298 DOI: 10.3390/ijms231810913] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 12/24/2022] Open
Abstract
Diseases caused by the Gram-positive bacterium Curtobacteriumflaccumfaciens pv. flaccumfaciens (Cff) inflict substantial economic losses in soybean cultivation. Use of specific bacterial viruses (bacteriophages) for treatment of seeds and plants to prevent the development of bacterial infections is a promising approach for bioprotection in agriculture. Phage control has been successfully tested for a number of staple crops. However, this approach has never been applied to treat bacterial diseases of legumes caused by Cff, and no specific bacteriophages have been known to date. This paper presents detailed characteristics of the first lytic bacteriophage infecting this pathogen. Phage Ayka, related to φ29-like (Salasmaviridae) viruses, but representing a new subfamily, was shown to control the development of bacterial wilt and tan spot in vitro and in greenhouse plants.
Collapse
Affiliation(s)
- Rashit I. Tarakanov
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia
| | - Anna A. Lukianova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
| | - Peter V. Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
| | - Roksana I. Pilik
- Agrobiotechnology Department, Agrarian and Technological Institute, RUDN University, Miklukho-Maklaya Str., 6, 117198 Moscow, Russia
| | - Anna D. Tokmakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, National Research University, Institutskiy Per, 9, Dolgoprudny, 141701 Moscow, Russia
| | - Eugene E. Kulikov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, National Research University, Institutskiy Per, 9, Dolgoprudny, 141701 Moscow, Russia
- Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prosp. 60-Letia Oktyabrya, 7-2, 117312 Moscow, Russia
| | - Stepan V. Toshchakov
- Center for Genome Research, National Research Center “Kurchatov Institute”, Kurchatov Sq., 1, 123098 Moscow, Russia
| | - Alexander N. Ignatov
- Agrobiotechnology Department, Agrarian and Technological Institute, RUDN University, Miklukho-Maklaya Str., 6, 117198 Moscow, Russia
| | - Fevzi S.-U. Dzhalilov
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia
| | - Konstantin A. Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
| |
Collapse
|
18
|
Albrycht K, Rynkiewicz AA, Harasymczuk M, Barylski J, Zielezinski A. Daily Reports on Phage-Host Interactions. Front Microbiol 2022; 13:946070. [PMID: 35910653 PMCID: PMC9329054 DOI: 10.3389/fmicb.2022.946070] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding phage-host relationships is crucial for the study of virus biology and the application of phages in biotechnology and medicine. However, information concerning the range of hosts for bacterial and archaeal viruses is scattered across numerous databases and is difficult to obtain. Therefore, here we present PHD (Phage & Host Daily), a web application that offers a comprehensive, up-to-date catalog of known phage-host associations that allows users to select viruses targeting specific bacterial and archaeal taxa of interest. Our service combines the latest information on virus-host interactions from seven source databases with current taxonomic classification retrieved directly from the groups and institutions responsible for its maintenance. The web application also provides summary statistics on host and virus diversity, their pairwise interactions, and the host range of deposited phages. PHD is updated daily and available at http://phdaily.info or http://combio.pl/phdaily.
Collapse
Affiliation(s)
- Kamil Albrycht
- Department of Computational Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Adam A. Rynkiewicz
- Department of Computational Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Michal Harasymczuk
- Department of Traumatology, Orthopaedics and Hand Surgery, University of Medical Sciences, Poznan, Poland
| | - Jakub Barylski
- Department of Molecular Virology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Andrzej Zielezinski
- Department of Computational Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
19
|
Li J, Yang F, Xiao M, Li A. Advances and challenges in cataloging the human gut virome. Cell Host Microbe 2022; 30:908-916. [PMID: 35834962 DOI: 10.1016/j.chom.2022.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
The human gut virome, which is often referred to as the "dark matter" of the gut microbiome, remains understudied. A better understanding of the composition and variations of the gut virome across populations is critical for exploring its impact on diseases and health. A series of advances in the characterization of human gut virome have unveiled high genetic diversity and various functional potentials of gut viruses. Here, we summarize the recently available human gut virome databases and discuss their features, procedures, and challenges with the intention to provide a reference to researchers to use while choosing a profiling database. We also propose a "best practice" for cataloging the viral population.
Collapse
Affiliation(s)
- Junhua Li
- BGI-Shenzhen, Shenzhen 518083, China; Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China.
| | | | - Minfeng Xiao
- BGI-Shenzhen, Shenzhen 518083, China; Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China.
| | - Aixin Li
- BGI-Shenzhen, Shenzhen 518083, China; Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
| |
Collapse
|
20
|
Wakinaka T, Matsutani M, Watanabe J, Mogi Y, Tokuoka M, Ohnishi A. Ribitol-Containing Wall Teichoic Acid of Tetragenococcus halophilus Is Targeted by Bacteriophage phiWJ7 as a Binding Receptor. Microbiol Spectr 2022; 10:e0033622. [PMID: 35311554 PMCID: PMC9045211 DOI: 10.1128/spectrum.00336-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/21/2022] [Indexed: 12/04/2022] Open
Abstract
Tetragenococcus halophilus, a halophilic lactic acid bacterium, is used in the fermentation process of soy sauce manufacturing. For many years, bacteriophage infections of T. halophilus have been a major industrial problem that causes fermentation failure. However, studies focusing on the mechanisms of tetragenococcal host-phage interactions are not sufficient. In this study, we generated two phage-insensitive derivatives from the parental strain T. halophilus WJ7, which is susceptible to the virulent phage phiWJ7. Whole-genome sequencing of the derivatives revealed that insertion sequences were transposed into a gene encoding poly(ribitol phosphate) polymerase (TarL) in both derivatives. TarL is responsible for the biosynthesis of ribitol-containing wall teichoic acid, and WJ7 was confirmed to contain ribitol in extracted wall teichoic acid, but the derivative was not. Cell walls of WJ7 irreversibly adsorbed phiWJ7, but those of the phage-insensitive derivatives did not. Additionally, 25 phiWJ7-insensitive derivatives were obtained, and they showed mutations not only in tarL but also in tarI and tarJ, which are responsible for the synthesis of CDP-ribitol. These results indicate that phiWJ7 targets the ribitol-containing wall teichoic acid of host cells as a binding receptor. IMPORTANCE Information about the mechanisms of host-phage interactions is required for the development of efficient strategies against bacteriophage infections. Here, we identified the ribitol-containing wall teichoic acid as a host receptor indispensable for bacteriophage infection. The complete genome sequence of tetragenococcal phage phiWJ7 belonging to the family Rountreeviridae is also provided here. This study could become the foundation for a better understanding of host-phage interactions of tetragenococci.
Collapse
Affiliation(s)
| | | | - Jun Watanabe
- Manufacturing Division, Yamasa Corporation, Choshi, Japan
- Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
- Institute of Fermentation Sciences, Fukushima University, Fukushima, Japan
| | - Yoshinobu Mogi
- Manufacturing Division, Yamasa Corporation, Choshi, Japan
| | - Masafumi Tokuoka
- Department of Fermentation Science, Faculty of Applied Bio-Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Akihiro Ohnishi
- Department of Fermentation Science, Faculty of Applied Bio-Science, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
21
|
Turner D, Adriaenssens EM, Tolstoy I, Kropinski AM. Phage Annotation Guide: Guidelines for Assembly and High-Quality Annotation. PHAGE (NEW ROCHELLE, N.Y.) 2021; 2:170-182. [PMID: 35083439 PMCID: PMC8785237 DOI: 10.1089/phage.2021.0013] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
All sequencing projects of bacteriophages (phages) should seek to report an accurate and comprehensive annotation of their genomes. This article defines 14 questions for those new to phage genomics that should be addressed before submitting a genome sequence to the International Nucleotide Sequence Database Collaboration or writing a publication.
Collapse
Affiliation(s)
- Dann Turner
- Department of Applied Sciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, United Kingdom
| | | | - Igor Tolstoy
- Viral Resources, National Center for Biotechnology Information, U.S. National Library of Medicine, Bethesda, Maryland, USA
| | - Andrew M. Kropinski
- Department of Food Science, and University of Guelph, Guelph, Ontario, Canada
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
22
|
Halovirus HF2 Intergenic Repeat Sequences Carry Promoters. Viruses 2021; 13:v13122388. [PMID: 34960657 PMCID: PMC8707807 DOI: 10.3390/v13122388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
Halovirus HF2 was the first member of the Haloferacalesvirus genus to have its genome fully sequenced, which revealed two classes of intergenic repeat (IR) sequences: class I repeats of 58 bp in length, and class II repeats of 29 bp in length. Both classes of repeat contain AT-rich motifs that were conjectured to represent promoters. In the present study, nine IRs were cloned upstream of the bgaH reporter gene, and all displayed promoter activity, providing experimental evidence for the previous conjecture. Comparative genomics showed that IR sequences and their relative genomic positions were strongly conserved among other members of the same virus genus. The transcription of HF2 was also examined by the reverse-transcriptase-PCR (RT-PCR) method, which demonstrated very long transcripts were produced that together covered most of the genome, and from both strands. The presence of long counter transcripts suggests a regulatory role or possibly unrecognized coding potential.
Collapse
|
23
|
Maffei E, Shaidullina A, Burkolter M, Heyer Y, Estermann F, Druelle V, Sauer P, Willi L, Michaelis S, Hilbi H, Thaler DS, Harms A. Systematic exploration of Escherichia coli phage-host interactions with the BASEL phage collection. PLoS Biol 2021; 19:e3001424. [PMID: 34784345 PMCID: PMC8594841 DOI: 10.1371/journal.pbio.3001424] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 09/27/2021] [Indexed: 01/08/2023] Open
Abstract
Bacteriophages, the viruses infecting bacteria, hold great potential for the treatment of multidrug-resistant bacterial infections and other applications due to their unparalleled diversity and recent breakthroughs in their genetic engineering. However, fundamental knowledge of the molecular mechanisms underlying phage-host interactions is mostly confined to a few traditional model systems and did not keep pace with the recent massive expansion of the field. The true potential of molecular biology encoded by these viruses has therefore remained largely untapped, and phages for therapy or other applications are often still selected empirically. We therefore sought to promote a systematic exploration of phage-host interactions by composing a well-assorted library of 68 newly isolated phages infecting the model organism Escherichia coli that we share with the community as the BASEL (BActeriophage SElection for your Laboratory) collection. This collection is largely representative of natural E. coli phage diversity and was intensively characterized phenotypically and genomically alongside 10 well-studied traditional model phages. We experimentally determined essential host receptors of all phages, quantified their sensitivity to 11 defense systems across different layers of bacterial immunity, and matched these results to the phages' host range across a panel of pathogenic enterobacterial strains. Clear patterns in the distribution of phage phenotypes and genomic features highlighted systematic differences in the potency of different immunity systems and suggested the molecular basis of receptor specificity in several phage groups. Our results also indicate strong trade-offs between fitness traits like broad host recognition and resistance to bacterial immunity that might drive the divergent adaptation of different phage groups to specific ecological niches. We envision that the BASEL collection will inspire future work exploring the biology of bacteriophages and their hosts by facilitating the discovery of underlying molecular mechanisms as the basis for an effective translation into biotechnology or therapeutic applications.
Collapse
Affiliation(s)
- Enea Maffei
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | - Yannik Heyer
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | | | - Luc Willi
- Biozentrum, University of Basel, Basel, Switzerland
| | - Sarah Michaelis
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - David S. Thaler
- Biozentrum, University of Basel, Basel, Switzerland
- Program for the Human Environment, Rockefeller University, New York City, New York, United States of America
| | | |
Collapse
|