1
|
Yang H, Tian J, Zhao J, Zhao Y, Zhang G. The Application of Newcastle Disease Virus (NDV): Vaccine Vectors and Tumor Therapy. Viruses 2024; 16:886. [PMID: 38932177 PMCID: PMC11209082 DOI: 10.3390/v16060886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Newcastle disease virus (NDV) is an avian pathogen with an unsegmented negative-strand RNA genome that belongs to the Paramyxoviridae family. While primarily pathogenic in birds, NDV presents no threat to human health, rendering it a safe candidate for various biomedical applications. Extensive research has highlighted the potential of NDV as a vector for vaccine development and gene therapy, owing to its transcriptional modularity, low recombination rate, and lack of a DNA phase during replication. Furthermore, NDV exhibits oncolytic capabilities, efficiently eliciting antitumor immune responses, thereby positioning it as a promising therapeutic agent for cancer treatment. This article comprehensively reviews the biological characteristics of NDV, elucidates the molecular mechanisms underlying its oncolytic properties, and discusses its applications in the fields of vaccine vector development and tumor therapy.
Collapse
Affiliation(s)
- Huiming Yang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.Y.); (J.T.); (J.Z.); (Y.Z.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiaxin Tian
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.Y.); (J.T.); (J.Z.); (Y.Z.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jing Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.Y.); (J.T.); (J.Z.); (Y.Z.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ye Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.Y.); (J.T.); (J.Z.); (Y.Z.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Guozhong Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.Y.); (J.T.); (J.Z.); (Y.Z.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Bai S, Kang Y, Chen W, Xie H, Zhang L, Lv M, Wang J, Wu J, Zhao W. Comparison of Immunogenicity of Alum and MF59-Like Adjuvant Inactivated SARS-CoV-2 Vaccines Against SARS-CoV-2 Variants in Elderly Mice. Viral Immunol 2023; 36:526-533. [PMID: 37625037 DOI: 10.1089/vim.2023.0041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023] Open
Abstract
The constant emergence of variants of concern (VOCs) challenges the effectiveness of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines over time. This is most concerning in clinically vulnerable groups, such as older adults. This study aimed to determine whether the novel adjuvant MF59-like adjuvant can improve cross-immunity against VOCs in aged animals. We compared the humoral and cellular immune responses of Alum and MF59-like adjuvant-formulated inactivated coronavirus disease 2019 (COVID-19) vaccines against prototype and SARS-CoV-2 variants in 18-month-old mice. Our results showed that two doses of the MF59-like adjuvant inactivated vaccines induced more robust binding and pseudo-neutralizing antibodies (Nabs) against the SARS-CoV-2 prototype and VOCs compared to the Alum-adjuvant and reduced Omicron variant escapes from Nabs in aged mice. The humoral immune responses of inactivated vaccines were much lower against VOCs than the prototype with or without adjuvants; however, T cell responses against VOCs were not affected. In addition, Alum and MF59-like adjuvanted vaccines induced Th1-biased immune responses with increased interferon-gamma and interleukin (IL)-2 secreting cells, and hardly detectable IL-4 and IL-5. Furthermore, the MF59-like adjuvant vaccine produced 1.9-2.0 times higher cross-reactive T cell responses against the SARS-CoV-2 prototype and VOCs than the Alum adjuvant. Therefore, our data have important implications for vaccine adjuvant strategies against SARS-CoV-2 VOCs in older adults.
Collapse
Affiliation(s)
- Shuang Bai
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Respiratory Infectious Diseases, Beijing, China
| | - Yanli Kang
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Respiratory Infectious Diseases, Beijing, China
| | - Weixin Chen
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Respiratory Infectious Diseases, Beijing, China
| | - Hui Xie
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Respiratory Infectious Diseases, Beijing, China
| | - Lichi Zhang
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Respiratory Infectious Diseases, Beijing, China
| | - Min Lv
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Respiratory Infectious Diseases, Beijing, China
| | - Jian Wang
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Respiratory Infectious Diseases, Beijing, China
| | - Jiang Wu
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Respiratory Infectious Diseases, Beijing, China
| | - Wei Zhao
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Respiratory Infectious Diseases, Beijing, China
| |
Collapse
|
3
|
Wu Q, Wei L, Du X, Sun W, Li S, Guo X, Jiang M, Liu J, Xue Z, Li H, Zhang T, Wang W, Ren G. Development and evaluation of Newcastle disease - avian influenza bivalent vector vaccines in commercial chickens. Int Immunopharmacol 2023; 120:110363. [PMID: 37245299 DOI: 10.1016/j.intimp.2023.110363] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/05/2023] [Accepted: 05/17/2023] [Indexed: 05/30/2023]
Abstract
Avian influenza (AI) and Newcastle disease (ND) are regarded as the leading viral infectious diseases affecting the global poultry industry. Vaccination is a successful therapeutic intervention to safeguard birds against both ND and AI infections. In this research, ND-AI bivalent vaccines were developed through the incorporation of HA and IRES-GMCSF gene fragments at varying locations of NDV rClone30 vectors. The two constructed vaccines were rClone30-HA-IRES-GMCSF(PM) and rClone30-HA(PM)-IRES-GMCSF(NP). Next, 27-day-old Luhua chickens (the maternal antibody level was reduced to 1.4 log2) were inoculated with the same dose of the vaccines, and humoral and cellular immune responses were assessed at multiple time points. Compared to the commercial vaccine, the levels of anti-NDV antibodies following the administration of the ND-AI vaccines were above the theoretical protection value of 4 log2. The levels of anti-AIV antibodies in the bivalent vaccine group were notably higher than those in the commercial vaccine group. Furthermore, the content of inflammatory factors and transcription levels were significantly increased in chickens administered ND-AI vaccines. The ND-AI vaccines induced stronger proliferative responses of B cells or CD3+, CD8+, and CD4 + T cells. Hematoxylin and eosin staining showed that the tissue damage induced by the two recombinant vaccines was similar to that of commercial vaccines. The outcomes of the study suggest that the two bivalent ND-AI vaccine candidates produced using the reverse genetics approach are both secure and effective. This approach not only enables the multiuse of one vaccine but also provides a new concept for the development of other vaccines against infectious viral diseases.
Collapse
Affiliation(s)
- Qing Wu
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Lan Wei
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Xin Du
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Wenying Sun
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Shuang Li
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Xiaochen Guo
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Ming Jiang
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Jinmiao Liu
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Zhiqiang Xue
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Huijuan Li
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Tingting Zhang
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Wei Wang
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Guiping Ren
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin, China; Research Center of Genetic Engineering of Pharmaceuticals of Heilongjiang Province, Northeast Agricultural University, Harbin, China; Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
4
|
Wang S, Liang B, Wang W, Li L, Feng N, Zhao Y, Wang T, Yan F, Yang S, Xia X. Viral vectored vaccines: design, development, preventive and therapeutic applications in human diseases. Signal Transduct Target Ther 2023; 8:149. [PMID: 37029123 PMCID: PMC10081433 DOI: 10.1038/s41392-023-01408-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 04/09/2023] Open
Abstract
Human diseases, particularly infectious diseases and cancers, pose unprecedented challenges to public health security and the global economy. The development and distribution of novel prophylactic and therapeutic vaccines are the prioritized countermeasures of human disease. Among all vaccine platforms, viral vector vaccines offer distinguished advantages and represent prominent choices for pathogens that have hampered control efforts based on conventional vaccine approaches. Currently, viral vector vaccines remain one of the best strategies for induction of robust humoral and cellular immunity against human diseases. Numerous viruses of different families and origins, including vesicular stomatitis virus, rabies virus, parainfluenza virus, measles virus, Newcastle disease virus, influenza virus, adenovirus and poxvirus, are deemed to be prominent viral vectors that differ in structural characteristics, design strategy, antigen presentation capability, immunogenicity and protective efficacy. This review summarized the overall profile of the design strategies, progress in advance and steps taken to address barriers to the deployment of these viral vector vaccines, simultaneously highlighting their potential for mucosal delivery, therapeutic application in cancer as well as other key aspects concerning the rational application of these viral vector vaccines. Appropriate and accurate technological advances in viral vector vaccines would consolidate their position as a leading approach to accelerate breakthroughs in novel vaccines and facilitate a rapid response to public health emergencies.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Bo Liang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Weiqi Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ling Li
- China National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, Qingdao, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| |
Collapse
|
5
|
Fulber JPC, Kamen AA. Development and Scalable Production of Newcastle Disease Virus-Vectored Vaccines for Human and Veterinary Use. Viruses 2022; 14:975. [PMID: 35632717 PMCID: PMC9143368 DOI: 10.3390/v14050975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
The COVID-19 pandemic has highlighted the need for efficient vaccine platforms that can rapidly be developed and manufactured on a large scale to immunize the population against emerging viruses. Viral-vectored vaccines are prominent vaccine platforms that have been approved for use against the Ebola virus and SARS-CoV-2. The Newcastle Disease Virus is a promising viral vector, as an avian paramyxovirus that infects poultry but is safe for use in humans and other animals. NDV has been extensively studied not only as an oncolytic virus but also a vector for human and veterinary vaccines, with currently ongoing clinical trials for use against SARS-CoV-2. However, there is a gap in NDV research when it comes to process development and scalable manufacturing, which are critical for future approved vaccines. In this review, we summarize the advantages of NDV as a viral vector, describe the steps and limitations to generating recombinant NDV constructs, review the advances in human and veterinary vaccine candidates in pre-clinical and clinical tests, and elaborate on production in embryonated chicken eggs and cell culture. Mainly, we discuss the existing data on NDV propagation from a process development perspective and provide prospects for the next steps necessary to potentially achieve large-scale NDV-vectored vaccine manufacturing.
Collapse
Affiliation(s)
| | - Amine A. Kamen
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada;
| |
Collapse
|
6
|
Siddiqui A, Adnan A, Abbas M, Taseen S, Ochani S, Essar MY. Revival of the heterologous prime-boost technique in COVID-19: An outlook from the history of outbreaks. Health Sci Rep 2022; 5:e531. [PMID: 35229055 PMCID: PMC8866911 DOI: 10.1002/hsr2.531] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The heterologous prime-boost vaccination technique is not novel as it has a history of deployment in previous outbreaks. AIM Hence, this narrative review aims to provide critical insight for reviving the heterologous prime-boost immunization strategy for SARS-CoV-2 vaccination relative to a brief positive outlook on the mix-dose approach deployed in previous and existing outbreaks (ie, Ebola virus disease (EVD), malaria, tuberculosis, hepatitis B, HIV and influenza virus). METHODOLOGY AND MATERIALS A Boolean search was carried out to find the literature in MEDLINE-PubMed, Clinicaltrials, and Cochrane Central Register of Controlled Trials databases up till December 22, 2021, using the specific keywords that include "SARS-CoV2", "COVID-19", "Ebola," "Malaria," "Tuberculosis," "Human Immunodeficiency Virus," "Hepatitis B," "Influenza," "Mix and match," "Heterologous prime-boost," with interposition of "OR" and "AND." Full text of all the related articles in English language with supplementary appendix was retrieved. In addition, the full text of relevant cross-references was also retrieved. RESULTS Therefore, as generally evident by the primary outcomes, that is, safety, reactogenicity, and immunogenicity reported and updated by preclinical and clinical studies for addressing previous and existing outbreaks so far, including COVID-19, it is understood that heterologous prime-boost immunization has been proven successful for eliciting a more efficacious immune response as of yet in comparison to the traditional homologous prime-boost immunization regimen. DISCUSSION Accordingly, with increasing cases of COVID-19, many countries such as Germany, Pakistan, Canada, Thailand, and the United Kingdom have started administering the heterologous vaccination as the technique aids to rationalize the usage of the available vaccines to aid in the global race to vaccinate majority to curb the spread of COVID-19 efficiently. However, the article emphasizes the need for more large controlled trials considering demographic details of vaccine recipients, which would play an essential role in clearing the mistrust about safety concerns to pace up the acceptance of the technique across the globe. CONCLUSION Consequently, by combatting the back-to-back waves of COVID-19 and other challenging variants of concerns, including Omicron, the discussed approach can also help in addressing the expected evolution of priority outbreaks as coined by WHO, that is, "Disease X" in 2018 with competency, which according to WHO can turn into the "next pandemic" or the "next public health emergency," thus would eventually lead to eradicating the risk of "population crisis."
Collapse
Affiliation(s)
- Amna Siddiqui
- Department of MBBSKarachi Medical and Dental CollegeKarachi CityPakistan
| | - Alishba Adnan
- Department of MBBSKarachi Medical and Dental CollegeKarachi CityPakistan
| | - Munib Abbas
- Department of MBBSKarachi Medical and Dental CollegeKarachi CityPakistan
| | - Shafaq Taseen
- Department of MBBSKarachi Medical and Dental CollegeKarachi CityPakistan
| | - Sidhant Ochani
- Department of MBBSKhairpur Medical CollegeKhairpur Mir'sPakistan
| | | |
Collapse
|