1
|
Krupovic M, Blomberg J, Coffin JM, Dasgupta I, Fan H, Geering AD, Gifford R, Harrach B, Hull R, Johnson W, Kreuze JF, Lindemann D, Llorens C, Lockhart B, Mayer J, Muller E, Olszewski NE, Pappu HR, Pooggin MM, Richert-Pöggeler KR, Sabanadzovic S, Sanfaçon H, Schoelz JE, Seal S, Stavolone L, Stoye JP, Teycheney PY, Tristem M, Koonin EV, Kuhn JH. Ortervirales: New Virus Order Unifying Five Families of Reverse-Transcribing Viruses. J Virol 2018; 92:e00515-18. [PMID: 29618642 PMCID: PMC5974489 DOI: 10.1128/jvi.00515-18] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Mart Krupovic
- Department of Microbiology, Institut Pasteur, Paris, France
| | - Jonas Blomberg
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - John M Coffin
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Indranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Hung Fan
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Andrew D Geering
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia
| | - Robert Gifford
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Balázs Harrach
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Roger Hull
- Child Okeford, Blandford Forum, Dorset, United Kingdom
| | - Welkin Johnson
- Biology Department, Boston College, Chestnut Hill, Massachusetts, USA
| | - Jan F Kreuze
- Crop and System Sciences Division, International Potato Center (CIP), Lima, Peru
| | - Dirk Lindemann
- Institute of Virology, Technische Universität Dresden, Dresden, Germany
| | - Carlos Llorens
- Biotechvana, Parc Cientific, Universitat de Valencia, Valencia, Spain
| | - Ben Lockhart
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA
| | - Jens Mayer
- Institute of Human Genetics, University of Saarland, Homburg, Germany
| | - Emmanuelle Muller
- CIRAD, UMR BGPI, Montpellier, France
- BGPI, Université Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Neil E Olszewski
- Department of Microbial and Plant Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Hanu R Pappu
- Department of Plant Pathology, Washington State University, Pullman, Washington, USA
| | | | - Katja R Richert-Pöggeler
- Julius Kühn-Institut, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Sead Sabanadzovic
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, Mississippi, USA
| | - Hélène Sanfaçon
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, BC, Canada
| | - James E Schoelz
- Division of Plant Sciences, University of Missouri, Columbia, Missouri, USA
| | - Susan Seal
- Natural Resources Institute, University of Greenwich, Chatham, Kent, United Kingdom
| | - Livia Stavolone
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Bari, Italy
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Jonathan P Stoye
- The Francis Crick Institute and Department of Medicine, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Pierre-Yves Teycheney
- CIRAD, UMR AGAP, Capesterre Belle Eau, Guadeloupe, France
- AGAP, Université Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Michael Tristem
- Imperial College London, Silwood Park Campus, Ascot, Berkshire, United Kingdom
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| |
Collapse
|
2
|
Basta HA, Buzak AJ, McClure MA. Identification of Novel Retroid Agents in Danio rerio, Oryzias latipes, Gasterosteus aculeatus and Tetraodon nigroviridis. Evol Bioinform Online 2017. [DOI: 10.1177/117693430700300018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Retroid agents are genomes that encode a reverse transcriptase (RT) and replicate or transpose by way of an RNA intermediate. The Genome Parsing Suite (GPS) is software created to identify and characterize Retroid agents in any genome database (McClure et al. 2005). The detailed analysis of all Retroid agents found by the GPS in Danio rerio (zebrafish), Oryzias latipes (medaka), Gasterosteus aculeatus (stickleback) and Tetraodon nigroviridis (spotted green pufferfish) reveals extensive Retroid agent diversity in the compact genomes of all four fish. Novel Retroid agents were identified by the GPS software: the telomerase reverse transcriptase (TERT) in O. latipes, G aculeatus and T. nigroviridis and a potential TERT in D. rerio, a retrotransposon in D. rerio, and multiple lineages of endogenous retroviruses (ERVs) in D. rerio, O. latipes and G aculeatus.
Collapse
Affiliation(s)
- Holly A. Basta
- Department of Microbiology and the Center for Computational Biology, Montana State University at Bozeman, 109 Lewis Hall, Bozeman, MT 59717, U.S.A
| | - Alex J. Buzak
- Department of Microbiology and the Center for Computational Biology, Montana State University at Bozeman, 109 Lewis Hall, Bozeman, MT 59717, U.S.A
| | - Marcella A. McClure
- Department of Microbiology and the Center for Computational Biology, Montana State University at Bozeman, 109 Lewis Hall, Bozeman, MT 59717, U.S.A
| |
Collapse
|
3
|
Homologous Capsid Proteins Testify to the Common Ancestry of Retroviruses, Caulimoviruses, Pseudoviruses, and Metaviruses. J Virol 2017; 91:JVI.00210-17. [PMID: 28356531 DOI: 10.1128/jvi.00210-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
4
|
Klinger PP, Schubert U. The ubiquitin–proteasome system in HIV replication: potential targets for antiretroviral therapy. Expert Rev Anti Infect Ther 2014; 3:61-79. [PMID: 15757458 DOI: 10.1586/14787210.3.1.61] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Since the discovery of HIV approximately 20 years ago, more than 60 million individuals have been infected, and AIDS still remains one of the most devastating diseases humankind has ever faced. Unfortunately, there is little hope that an effective vaccine will be developed in the near future. Current antiretroviral treatment is based on drugs that either target the viral enzymes (protease and reverse transcriptase) or the attachment and entry of the virus. Although the introduction of highly active antiretroviral therapy in the mid-1990s has led to a profound reduction in HIV-related morbidity and mortality, the complete eradication of the virus from infected individuals has never been achieved. In addition, these antiviral drugs can induce serious adverse effects, particularly when administered in combination over prolonged treatment periods. A further drawback to these treatments is that with the high mutation rate of HIV, drug-resistant mutants are evolving, particularly when antiretroviral treatment only suppresses virus replication to marginal levels in latently infected cells making up the virus reservoirs in vivo. Cellular genes have much lower mutation rates, and drug-mediated modulation of specific cellular pathways represents an attractive antiviral strategy. Recent findings showing that proteasome inhibitors interfere with budding, maturation and infectivity of HIV have triggered intensive investigation of the hitherto unappreciated function of the ubiquitin-proteasome system in HIV replication. It was also observed that, like several other retroviruses, HIV-1 virions contain a small amount of mono-ubiquitinylated Gag proteins. Currently, two E3-type ubiquitin ligases, in addition to one E3-like protein, have been identified as regulators of HIV budding. These ligases might represent interesting targets for therapeutic intervention.
Collapse
Affiliation(s)
- Patricia P Klinger
- University of Erlangen-Nuremberg, Institute of Clinical and Molecular Virology, Schlossgarten 4, 91054 Erlangen, Germany
| | | |
Collapse
|
5
|
Dawkins RL, Willamson JF, Lester S, Dawkins ST. Mutation versus polymorphism in evolution. Genomics 2013; 101:211-2. [DOI: 10.1016/j.ygeno.2013.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 01/23/2013] [Accepted: 01/26/2013] [Indexed: 11/27/2022]
|
6
|
Weber B, Heitkam T, Holtgräwe D, Weisshaar B, Minoche AE, Dohm JC, Himmelbauer H, Schmidt T. Highly diverse chromoviruses of Beta vulgaris are classified by chromodomains and chromosomal integration. Mob DNA 2013; 4:8. [PMID: 23448600 PMCID: PMC3605345 DOI: 10.1186/1759-8753-4-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 01/22/2013] [Indexed: 12/25/2022] Open
Abstract
Background Chromoviruses are one of the three genera of Ty3-gypsy long terminal repeat (LTR) retrotransposons, and are present in high copy numbers in plant genomes. They are widely distributed within the plant kingdom, with representatives even in lower plants such as green and red algae. Their hallmark is the presence of a chromodomain at the C-terminus of the integrase. The chromodomain exhibits structural characteristics similar to proteins of the heterochromatin protein 1 (HP1) family, which mediate the binding of each chromovirus type to specific histone variants. A specific integration via the chromodomain has been shown for only a few chromoviruses. However, a detailed study of different chromoviral clades populating a single plant genome has not yet been carried out. Results We conducted a comprehensive survey of chromoviruses within the Beta vulgaris (sugar beet) genome, and found a highly diverse chromovirus population, with significant differences in element size, primarily caused by their flanking LTRs. In total, we identified and annotated full-length members of 16 families belonging to the four plant chromoviral clades: CRM, Tekay, Reina, and Galadriel. The families within each clade are structurally highly conserved; in particular, the position of the chromodomain coding region relative to the polypurine tract is clade-specific. Two distinct groups of chromodomains were identified. The group II chromodomain was present in three chromoviral clades, whereas families of the CRM clade contained a more divergent motif. Physical mapping using representatives of all four clades identified a clade-specific integration pattern. For some chromoviral families, we detected the presence of expressed sequence tags, indicating transcriptional activity. Conclusions We present a detailed study of chromoviruses, belonging to the four major clades, which populate a single plant genome. Our results illustrate the diversity and family structure of B. vulgaris chromoviruses, and emphasize the role of chromodomains in the targeted integration of these viruses. We suggest that the diverse sets of plant chromoviruses with their different localization patterns might help to facilitate plant-genome organization in a structural and functional manner.
Collapse
Affiliation(s)
- Beatrice Weber
- Institute of Botany, Dresden University of Technology, Dresden D-01062, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Wollrab C, Heitkam T, Holtgräwe D, Weisshaar B, Minoche AE, Dohm JC, Himmelbauer H, Schmidt T. Evolutionary reshuffling in the Errantivirus lineage Elbe within the Beta vulgaris genome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:636-51. [PMID: 22804913 DOI: 10.1111/j.1365-313x.2012.05107.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
LTR retrotransposons and retroviruses are closely related. Although a viral envelope gene is found in some LTR retrotransposons and all retroviruses, only the latter show infectivity. The identification of Ty3-gypsy-like retrotransposons possessing putative envelope-like open reading frames blurred the taxonomical borders and led to the establishment of the Errantivirus, Metavirus and Chromovirus genera within the Metaviridae. Only a few plant Errantiviruses have been described, and their evolutionary history is not well understood. In this study, we investigated 27 retroelements of four abundant Elbe retrotransposon families belonging to the Errantiviruses in Beta vulgaris (sugar beet). Retroelements of the Elbe lineage integrated between 0.02 and 5.59 million years ago, and show family-specific variations in autonomy and degree of rearrangements: while Elbe3 members are highly fragmented, often truncated and present in a high number of solo LTRs, Elbe2 members are mainly autonomous. We observed extensive reshuffling of structural motifs across families, leading to the formation of new retrotransposon families. Elbe retrotransposons harbor a typical envelope-like gene, often encoding transmembrane domains. During the course of Elbe evolution, the additional open reading frames have been strongly modified or independently acquired. Taken together, the Elbe lineage serves as retrotransposon model reflecting the various stages in Errantivirus evolution, and allows a detailed analysis of retrotransposon family formation.
Collapse
Affiliation(s)
- Cora Wollrab
- Department of Biology, Dresden University of Technology, D-01062, Dresden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Iskra-Caruana ML, Baurens FC, Gayral P, Chabannes M. A four-partner plant–virus interaction: enemies can also come from within. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1394-1402. [PMID: 20923349 DOI: 10.1094/mpmi-05-10-0107] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Plant viruses are disseminated by either vertical (vegetative multiplication or sexual reproduction) or horizontal (vector-mediated) propagation. Plant pararetroviruses—members of the Caulimoviridae family—have developed an alternative strategy for vertical propagation via integration within the host plant genome, although integration is not required for viral replication. Integrated endogenous pararetrovirus (EPRV) sequences have undergone extensive viral genome rearrangements and contain more than one copy of the viral genome. Furthermore, EPRV can become infectious upon spontaneous escape of active virus following stresses such as wounding, tissue culture, or interspecific crosses. Such infectious EPRV are of great importance, not only in terms of their ability to precipitate epidemic outbreaks but also because of their effect on breeding of numerous plant genomes in temperate and tropical crops. This is especially true for banana, a crop susceptible to banana streak viruses, the causative agents of banana streak disease. Thus, the classical three-component banana–Banana streak virus (BSV)–mealybug pathosystem can be expanded to include endogenous BSV as an alternative source of active virions. The BSV-banana pathosystem is one of only three pathosystems known to date to harbor this remarkable feature, and the present review focuses exclusively on it to illustrate this four-partner interaction.
Collapse
|
10
|
Weber B, Wenke T, Frömmel U, Schmidt T, Heitkam T. The Ty1-copia families SALIRE and Cotzilla populating the Beta vulgaris genome show remarkable differences in abundance, chromosomal distribution, and age. Chromosome Res 2009; 18:247-63. [DOI: 10.1007/s10577-009-9104-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 11/25/2009] [Indexed: 01/22/2023]
|
11
|
The classification and nomenclature of endogenous viruses of the family Caulimoviridae. Arch Virol 2009; 155:123-31. [DOI: 10.1007/s00705-009-0488-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 08/03/2009] [Indexed: 10/20/2022]
|
12
|
Evolution of teleost fish retroviruses: characterization of new retroviruses with cellular genes. J Virol 2009; 83:10152-62. [PMID: 19625413 DOI: 10.1128/jvi.02546-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interactions between retroviruses and their hosts can be of a beneficial or detrimental nature. Some endogenous retroviruses are involved in development, while others cause disease. The Genome Parsing Suite (GPS) is a software tool to track and trace all Retroid agents in any sequenced genome (M. A. McClure et al., Genomics 85:512-523, 2005). Using the GPS, the retroviral content was assessed in four model teleost fish. Eleven new species of fish retroviruses are identified and characterized. The reverse transcriptase protein sequences were used to reconstruct a fish retrovirus phylogeny, thereby, significantly expanding the epsilon-retrovirus family. Most of these novel retroviruses encode additional genes, some of which are homologous to cellular genes that would confer viral advantage. Although the fish divergence is much more ancient, retroviruses began infecting fish genomes approximately 4 million years ago.
Collapse
|
13
|
Hafez EE, Abdel Ghany AA, Paterson AH, Zaki EA. Sequence heterogeneity of the envelope-like domain in cultivated allotetraploid Gossypium species and their diploid progenitors. J Appl Genet 2009; 50:17-23. [PMID: 19193978 DOI: 10.1007/bf03195647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Retroviral envelope (env)-like sequences in 2 cultivated allotetraploid cottons and their diploid progenitors have been identified and characterized in this study. DNA sequence analysis reveals that these sequences are heterogeneous. The observed sequence diversity, however, seems to preserve coding information. This is evidenced by the detection of the transmembrane domain (TM), which is the most conserved feature of the divergent retroviral env genes. The high ratio of synonymous to nonsynonymous changes suggests that these sequences are evolving under purifying selection. Phylogenetic analysis shows that Gossypium sequences closely cluster with a lineage of plant endogenous retroviruses that have an env-like gene. These results provide evidence for the antiquity and the wide diversity of env-like sequences in the Gossypium genome.
Collapse
Affiliation(s)
- E E Hafez
- Molecular plant pathology Department, Arid land research institute, Mubarak City for Research, Alexandria, Egypt
| | | | | | | |
Collapse
|
14
|
Novick PA, Basta H, Floumanhaft M, McClure MA, Boissinot S. The Evolutionary Dynamics of Autonomous Non-LTR Retrotransposons in the Lizard Anolis Carolinensis Shows More Similarity to Fish Than Mammals. Mol Biol Evol 2009; 26:1811-22. [DOI: 10.1093/molbev/msp090] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
15
|
Nested Ty3-gypsy retrotransposons of a single Beta procumbens centromere contain a putative chromodomain. Chromosome Res 2009; 17:379-96. [PMID: 19322668 DOI: 10.1007/s10577-009-9029-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 01/12/2009] [Accepted: 01/12/2009] [Indexed: 12/18/2022]
Abstract
LTR retrotransposons belong to a major group of DNA sequences that are often localized in plant centromeres. Using BAC inserts originating from the centromere of a monosomic wild beet (Beta procumbens) chromosome fragment in Beta vulgaris, two complete LTR retrotransposons were identified. Both elements, designated Beetle1 and Beetle2, possess a coding region with genes in the order characteristic for Ty3-gypsy retrotransposons. Beetle1 and Beetle2 have a chromodomain in the C-terminus of the integrase gene and are highly similar to the centromeric retrotransposons (CRs) of rice, maize, and barley. Both retroelements were localized in the centromeric region of B. procumbens chromosomes by fluorescence in-situ hybridization. They can therefore be classified as centromere-specific chromoviruses. PCR analysis using RNA as template indicated that Beetle1 and Beetle2 are transcriptionally active. On the basis of the sequence diversity between the LTR sequences, it was estimated that Beetle1 and Beetle2 transposed within the last 60,000 years and 130,000 years, respectively. The centromeric localization of Beetle1 and Beetle2 and their transcriptional activity combined with high sequence conservation within each family play an important structural role in the centromeres of B. procumbens chromosomes.
Collapse
|
16
|
Miguel C, Simões M, Oliveira MM, Rocheta M. Envelope-like retrotransposons in the plant kingdom: evidence of their presence in gymnosperms (Pinus pinaster). J Mol Evol 2008; 67:517-25. [PMID: 18925379 DOI: 10.1007/s00239-008-9168-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 06/22/2008] [Accepted: 09/22/2008] [Indexed: 10/21/2022]
Abstract
Retroviruses differ from retrotransposons due to their infective capacity, which depends critically on the encoded envelope. Some plant retroelements contain domains reminiscent of the env of animal retroviruses but the number of such elements described to date is restricted to angiosperms. We show here the first evidence of the presence of putative env-like gene sequences in a gymnosperm species, Pinus pinaster (maritime pine). Using a degenerate primer approach for conserved domains of RNaseH gene, three clones from putative envelope-like retrotransposons (PpRT2, PpRT3, and PpRT4) were identified. The env-like sequences of P. pinaster clones are predicted to encode proteins with transmembrane domains. These sequences showed identity scores of up to 30% with env-like sequences belonging to different organisms. A phylogenetic analysis based on protein alignment of deduced aminoacid sequences revealed that these clones clustered with env-containing plant retrotransposons, as well as with retrotransposons from invertebrate organisms. The differences found among the sequences of maritime pine clones isolated here suggest the existence of different putative classes of env-like retroelements. The identification for the first time of env-like genes in a gymnosperm species may support the ancestrality of retroviruses among plants shedding light on their role in plant evolution.
Collapse
Affiliation(s)
- Célia Miguel
- Instituto de Biologia Experimental e Tecnológica/Instituto de Tecnologia Química e Biológica, Univ. Nova de Lisboa (IBET/ITQB-UNL), Quinta do Marquês, 2784-505, Oeiras, Portugal.
| | | | | | | |
Collapse
|
17
|
Noreen F, Akbergenov R, Hohn T, Richert-Pöggeler KR. Distinct expression of endogenous Petunia vein clearing virus and the DNA transposon dTph1 in two Petunia hybrida lines is correlated with differences in histone modification and siRNA production. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:219-29. [PMID: 17444906 DOI: 10.1111/j.1365-313x.2007.03040.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Endogenous viruses exist in all kingdoms. They usually have active mechanisms of integration, as in bacteriophage lambda and animal retroviruses, and sophisticated mechanisms to maintain a proviral state over decades and generations. Plant para retroviruses, however, neither have an integrase, nor genes for maintaining the proviral state. How are those elements controlled, and under what conditions can they be activated? Here we study the proviral state of endogenous petunia vein clearing virus (ePVCV). Our results support the hypothesis that the proviral state is associated with a host silencing mechanism manifested by DNA methylation, chromatin modification and production of small interfering (si) RNAs. PVCV may be induced by applying abiotic stress, leading to the development of viral symptoms and increased transcript and siRNA levels. Similar levels of ePVCV DNA methylation were observed in two different lines of Petunia hybrida, RdC (rose du ciel) and W138, the latter known for its active version of transposon dTph1. In contrast, significant differences in histone modification were detected. The predominant association of ePVCV sequences with histone H3 methylated at lysine 9 (H3mK9) in RdC and with about equal amounts of H3mK9 and H3mK4 in W138 indicates a less repressive proviral state in the latter cultivar.
Collapse
Affiliation(s)
- Faiza Noreen
- Friedrich Miescher Institute, Maulbeerstlasse 66, CH-4058 Basel, Switzerland
| | | | | | | |
Collapse
|
18
|
|
19
|
Macas J, Neumann P. Ogre elements--a distinct group of plant Ty3/gypsy-like retrotransposons. Gene 2006; 390:108-16. [PMID: 17052864 DOI: 10.1016/j.gene.2006.08.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 08/07/2006] [Accepted: 08/08/2006] [Indexed: 11/22/2022]
Abstract
Ogre elements are a group of LTR retrotransposons recently discovered in legume plants, where they constitute almost 40% of the genome in some species. They are exceptional in their size (reaching 25 kb) and possess several specific features, including an intron within a polyprotein-coding region, and an extra open reading frame (ORF1) encoding a protein of unknown function located upstream of the gag gene. Although these features make Ogres interesting for further research, identification of additional elements from a broader range of plant taxa has been complicated by the divergence of their sequences, preventing their detection using similarity-based searches. Here we report the results of structure-based computational searches for Ogre elements in available plant genomic sequences, which proved to be more efficient and revealed occurrences of Ogres in three families of dicot plants (Leguminosae, Solanaceae and Salicaceae). In addition, a representative set of 85 elements was retrieved from a model legume species Medicago truncatula. All identified full-length elements were used for comparative analysis, which showed that in spite of only little conservation of their nucleotide sequences, their protein domains were highly conserved, including several regions within ORF1. Further, the elements shared the same functional regions, including a primer binding site complementary to tRNA(arg), a conserved motif within a polypurine tract, and a putative intron between the pro and rt/rh coding domains. These findings, together with analysis of their phylogenetic relationship to other retrotransposons based on similarities of rt domains suggest that Ogre elements from different plant taxa have a common origin and thus constitute a distinct group of Ty3/gypsy retrotransposons.
Collapse
Affiliation(s)
- Jirí Macas
- Institute of Plant Molecular Biology, Ceské Budejovice, Czech Republic.
| | | |
Collapse
|
20
|
Kejnovsky E, Kubat Z, Macas J, Hobza R, Mracek J, Vyskot B. Retand: a novel family of gypsy-like retrotransposons harboring an amplified tandem repeat. Mol Genet Genomics 2006; 276:254-63. [PMID: 16826419 DOI: 10.1007/s00438-006-0140-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Accepted: 06/02/2006] [Indexed: 12/13/2022]
Abstract
In this paper we describe a pair of novel Ty3/gypsy retrotransposons isolated from the dioecious plant Silene latifolia, consisting of a non-autonomous element Retand-1 (3.7 kb) and its autonomous partner Retand-2 (11.1 kb). These two elements have highly similar long terminal repeat (LTR) sequences but differ in the presence of the typical retroelement coding regions (gag-pol genes), most of which are missing in Retand-1. Moreover, Retand-2 contains two additional open reading frames in antisense orientation localized between the pol gene and right LTR. Retand transcripts were detected in all organs tested (leaves, flower buds and roots) which, together with the high sequence similarity of LTRs in individual elements, indicates their recent transpositional activity. The autonomous elements are similarly abundant (2,700 copies) as non-autonomous ones (2,100 copies) in S. latifolia genome. Retand elements are also present in other Silene species, mostly in subtelomeric heterochromatin regions of all chromosomes. The only exception is the subtelomere of the short arm of the Y chromosome in S. latifolia which is known to lack the terminal heterochromatin. An interesting feature of the Retand elements is the presence of a tandem repeat sequence, which is more amplified in the non-autonomous Retand-1.
Collapse
Affiliation(s)
- Eduard Kejnovsky
- Laboratory of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic.
| | | | | | | | | | | |
Collapse
|
21
|
DeMarco R, Machado AA, Bisson-Filho AW, Verjovski-Almeida S. Identification of 18 new transcribed retrotransposons in Schistosoma mansoni. Biochem Biophys Res Commun 2005; 333:230-40. [PMID: 15939396 DOI: 10.1016/j.bbrc.2005.05.080] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Accepted: 05/13/2005] [Indexed: 11/28/2022]
Abstract
This work describes 18 new transcribed retrotransposons of the blood fluke Schistosoma mansoni. Among them, 9 were LTR, 8 non-LTR, and 1 Penelope-like element (PLE) retrotransposon. Sequences were generated by in silico reconstruction using S. mansoni ESTs and transcripts obtained by rapid amplification of cDNA ends, complemented in some cases by sequencing of genomic clones amplified by PCR. A novel element from the ancient R2/R4/CRE transposon group is described for the first time in S. mansoni. In addition, one non-LTR retrotransposon family displays long (40-450 bp) 3'-UTR with at least six different transcribed sequences among the copies, five LTR retrotransposons have abundantly transcribed incomplete copies lacking the sequence segment coding for the reverse transcriptase domain, and four non-LTR retrotransposons code for DNA-binding PHD domains that may give them a differential targeting. These results allow for a comprehensive description of the transcribed retrotransposon diversity of this complex human parasite.
Collapse
Affiliation(s)
- Ricardo DeMarco
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, Brazil
| | | | | | | |
Collapse
|
22
|
Capy P. Classification and nomenclature of retrotransposable elements. Cytogenet Genome Res 2005; 110:457-61. [PMID: 16093698 DOI: 10.1159/000084978] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2003] [Accepted: 03/24/2004] [Indexed: 11/19/2022] Open
Abstract
The classification and nomenclature of retrotransposable elements is reviewed. A comparison is made between the initial classification summarized in Capy et al. (1997b), and the more recent proposal based on the classification of the viruses (Hull, 2001). Several problems, mainly relating to the position of elements belonging to the DIRS-like or Bel-like groups, are discussed. The first classification is now out of date, and must be revisited to take account of the discovery of new elements, however the second cannot be extended to the DNA elements. There is therefore, clear evidence of the need to adopt a general and a common classification.
Collapse
Affiliation(s)
- P Capy
- Laboratoire Populations, Génétique et Evolution, CNRS, Gif/Yvette, France.
| |
Collapse
|
23
|
McClure MA, Richardson HS, Clinton RA, Hepp CM, Crowther BA, Donaldson EF. Automated characterization of potentially active retroid agents in the human genome. Genomics 2005; 85:512-23. [PMID: 15780754 DOI: 10.1016/j.ygeno.2004.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Accepted: 12/29/2004] [Indexed: 11/22/2022]
Abstract
Retroid agents are genomes that encode the reverse transcriptase (RT) and replicate by way of an RNA intermediate. Some retroid agents are implicated in disease via insertional mutagenesis, while others have been found to encode proteins essential to primate reproduction or provide regulatory sequences for host cell processes. The Genome Parsing Suite (GPS), a generic multistep automated process, was developed to characterize all RT-like sequences in the human genome database and to annotate the gene complement of the retroid agents that encode these sequences. In this report the GPS analyzes all significant WU-tBLASTn hits returned for 30 representative RT queries. A total of 128,779 unique RT signals were identified, and 7594 of these were retrieved by RTs not previously reported in the human genome. We have identified 9652 full-length long interspersed nuclear elements (LINEs). Only 159 LINEs are without stop codons or frameshifts.
Collapse
Affiliation(s)
- Marcella A McClure
- Department of Microbiology and the Center for Computational Biology, Montana State University at Bozeman, 109 Lewis Hall, Bozeman, MT 59717, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Neumann P, Pozárková D, Koblízková A, Macas J. PIGY, a new plant envelope-class LTR retrotransposon. Mol Genet Genomics 2005; 273:43-53. [PMID: 15668770 DOI: 10.1007/s00438-004-1092-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Accepted: 11/19/2004] [Indexed: 11/29/2022]
Abstract
Plant LTR retrotransposons of the envelope class define a new branch in the Metaviridae family. They differ from other LTR retrotransposons mainly by the presence of an additional ORF downstream of the gag-pol region which has been hypothesized to be equivalent to the envelope gene of retroviruses. Here we present a newly identified element from pea (Pisum sativum), named PIGY, that has all the features characteristic of this group of LTR retrotransposons. In addition to the potential coding sequence downstream of the gag-pol region, PIGY has a primer binding site complementary to tRNA(asp) and a polypurine tract with a TGGGG motif and is of large size (13,645 bp). The relationship between PIGY and other retrotransposons of the env-class was confirmed by a phylogenetic analysis of their reverse transcriptase domains. One distinctive feature of PIGY is that its env-like region is actually composed of two similar ORFs, each of which encodes a protein with similarity to the Athila envelope-like protein. PIGY is present in the pea genome in 1-5x10(3) copies and is transcriptionally active, suggesting that some of these elements may still be capable of active transposition. Another new env-class retrotransposon similar to PIGY was also identified among genomic sequences of Medicago truncatula.
Collapse
Affiliation(s)
- Pavel Neumann
- Laboratory of Molecular Cytogenetics, Institute of Plant Molecular Biology, Branisovská 31, Ceské Budejovice, CZ, 37005, Czech Republic.
| | | | | | | |
Collapse
|
25
|
Christensen T. Association of human endogenous retroviruses with multiple sclerosis and possible interactions with herpes viruses. Rev Med Virol 2005; 15:179-211. [PMID: 15782388 DOI: 10.1002/rmv.465] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The hypothesis that human endogenous retroviruses (HERVs) play a role in autoimmune diseases is subject to increasing attention. HERVs represent both putative susceptibility genes and putative pathogenic viruses in the immune-mediated neurological disease multiple sclerosis (MS). Gammaretroviral HERV sequences are found in reverse transcriptase-positive virions produced by cultured mononuclear cells from MS patients, and they have been isolated from MS samples of plasma, serum and CSF, and characterised to some extent at the nucleotide, protein/enzyme, virion and immunogenic level. Two types of sequences, HERV-H and HERV-W, have been reported. No known HERV-H or HERV-W copy contains complete ORFs in all prerequisite genes, although several copies have coding potential, and several such sequences are specifically activated in MS, apparently resulting in the production of complete, competent virions. Increased antibody reactivity to specific Gammaretroviral HERV epitopes is found in MS serum and CSF, and cell-mediated immune responses have also been reported. Further, HERV-encoded proteins can have neuropathogenic effects. The activating factor(s) in the process resulting in protein or virion production may be members of the Herpesviridae. Several herpes viruses, such as HSV-1, VZV, EBV and HHV-6, have been associated with MS pathogenesis, and retroviruses and herpes viruses have complex interactions. The current understanding of HERVs, and specifically the investigations of HERV activation and expression in MS are the major subjects of this review, which also proposes to synergise the herpes and HERV findings, and presents several possible pathogenic mechanisms for HERVs in MS.
Collapse
Affiliation(s)
- Tove Christensen
- Institute of Medical Microbiology and Immunology, Bartholin Building, University of Aarhus, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
26
|
Heidecker G, Lloyd PA, Fox K, Nagashima K, Derse D. Late assembly motifs of human T-cell leukemia virus type 1 and their relative roles in particle release. J Virol 2004; 78:6636-48. [PMID: 15163754 PMCID: PMC416494 DOI: 10.1128/jvi.78.12.6636-6648.2004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2003] [Accepted: 03/11/2004] [Indexed: 11/20/2022] Open
Abstract
Three late assembly domain consensus motifs, namely PTAP, PPPY, and LYPXL, have been identified in different retroviruses. They have been shown to interact with the cellular proteins TSG101, Nedd4, and AP2 or AIP, respectively. Human T-cell leukemia virus type 1 (HTLV-1) has a PPPY and a PTAP motif, separated by two amino acids, located at the end of MA, but only the PPPY motif is conserved in the deltaretrovirus group. Like other retroviral peptides carrying the late motif, MA is mono- or di-ubiquitinated. A mutational analysis showed that 90% of PPPY mutant particles were retained in the cell compared to 15% for the wild-type virus. Mutations of the PTAP motif resulted in a 20% decrease in particle release. In single-cycle infectivity assays, the infectious titers of late motif mutants correlated with the amounts of released virus, as determined by an enzyme-linked immunosorbent assay. We observed binding of MA to the WW domains of the Nedd4 family member WWP1 but not to the amino-terminal ubiquitin E2 variant domain of TSG101 in mammalian two-hybrid analyses. The binding to WWP1 was eliminated when the PPPY motif was mutated. However, MA showed binding to TSG101 in the yeast two-hybrid system that was dependent on an intact PTAP motif. A dominant-negative (DN) mutant of WWP1 could inhibit budding of the intact HTLV-1 virus. In contrast, DN TSG101 only affected the release of virus-like particles encoded by Gag expression plasmids. Electron and fluorescent microscopy showed that Gag accumulates in large patches in the membranes of cells expressing viruses with PPPY mutations. Very few tethered immature particles could be detected in these samples, suggesting that budding is impaired at an earlier step than in other retroviruses.
Collapse
Affiliation(s)
- Gisela Heidecker
- Molecular Biology of Retroviruses Section, Basic Research Lab, National Cancer Institute/NIH, NCI-Frederick, Bldg. 567, Rm. 155, Frederick, MD 21702-1201, USA.
| | | | | | | | | |
Collapse
|
27
|
Abstract
The past 10 years have been productive in the characterization of fungal transposable elements (TEs). All eukaryotic TEs described are found including an extraordinary prevalence of active members of the pogo family. The role of TEs in mutation and genome organization is well documented, leading to significant advances in our perception of the mechanisms underlying genetic changes in these organisms. TE-mediated changes, associated with transposition and recombination, provide a broad range of genetic variation, which is useful for natural populations in their adaptation to environmental constraints, especially for those lacking the sexual stage. Interestingly, some fungal species have evolved distinct silencing mechanisms that are regarded as host defense systems against TEs. The examination of forces acting on the evolutionary dynamics of TEs should provide important insights into the interactions between TEs and the fungal genome. Another issue of major significance is the practical applications of TEs in gene tagging and population analysis, which will undoubtedly facilitate research in systematic biology and functional genomics.
Collapse
Affiliation(s)
- Marie-Josée Daboussi
- Institut de Génétique et Microbiologie, Université Paris-Sud, F-91405 Orsay cedex, France.
| | | |
Collapse
|
28
|
Ott DE, Coren LV, Sowder RC, Adams J, Schubert U. Retroviruses have differing requirements for proteasome function in the budding process. J Virol 2003; 77:3384-93. [PMID: 12610113 PMCID: PMC149504 DOI: 10.1128/jvi.77.6.3384-3393.2003] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Proteasome inhibitors reduce the budding of human immunodeficiency virus types 1 (HIV-1) and 2, simian immunodeficiency virus, and Rous sarcoma virus. To investigate this effect further, we examined the budding of other retroviruses from proteasome inhibitor-treated cells. The viruses tested differed in their Gag organization, late (L) domain usage, or assembly site from those previously examined. We found that proteasome inhibition decreased the budding of murine leukemia virus (plasma membrane assembly, PPPY L domain) and Mason-Pfizer monkey virus (cytoplasmic assembly, PPPY L domain), similar to the reduction observed for HIV-1. Thus, proteasome inhibitors can affect the budding of a virus that assembles within the cytoplasm. However, the budding of mouse mammary tumor virus (MMTV; cytoplasmic assembly, unknown L domain) was unaffected by proteasome inhibitors, similar to the proteasome-independent budding previously observed for equine infectious anemia virus (plasma membrane assembly, YPDL L domain). Examination of MMTV particles detected Gag-ubiquitin conjugates, demonstrating that an interaction with the ubiquitination system occurs during assembly, as previously found for other retroviruses. For all of the cell lines tested, the inhibitor treatment effectively inactivated proteasomes, as measured by the accumulation of polyubiquitinated proteins. The ubiquitination system was also inhibited, as evidenced by the loss of monoubiquitinated histones from treated cells. These results and those from other viruses show that proteasome inhibitors reduce the budding of viruses that utilize either a PPPY- or PTAP-based L domain and that this effect does not depend on the assembly site or the presence of monoubiquitinated Gag in the virion.
Collapse
Affiliation(s)
- David E Ott
- AIDS Vaccine Program, SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, Maryland 21702-1201, USA.
| | | | | | | | | |
Collapse
|
29
|
Barnett AL, Wensel DL, Li W, Fass D, Cunningham JM. Structure and mechanism of a coreceptor for infection by a pathogenic feline retrovirus. J Virol 2003; 77:2717-29. [PMID: 12552012 PMCID: PMC141074 DOI: 10.1128/jvi.77.4.2717-2729.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Infection of T lymphocytes by the cytopathic retrovirus feline leukemia virus subgroup T (FeLV-T) requires FeLIX, a cellular coreceptor that is encoded by an endogenous provirus and closely resembles the receptor-binding domain (RBD) of feline leukemia virus subgroup B (FeLV-B). We determined the structure of FeLV-B RBD, which has FeLIX activity, to a 2.5-A resolution by X-ray crystallography. The structure of the receptor-specific subdomain of this glycoprotein differs dramatically from that of Friend murine leukemia virus (Fr-MLV), which binds a different cell surface receptor. Remarkably, we find that Fr-MLV RBD also activates FeLV-T infection of cells expressing the Fr-MLV receptor and that FeLV-B RBD is a competitive inhibitor of infection under these conditions. These studies suggest that FeLV-T infection relies on the following property of mammalian leukemia virus RBDs: the ability to couple interaction with one of a variety of receptors to the activation of a conserved membrane fusion mechanism. A comparison of the FeLV-B and Fr-MLV RBD structures illustrates how receptor-specific regions are linked to conserved elements critical for postbinding events in virus entry.
Collapse
Affiliation(s)
- Anna L Barnett
- Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|