1
|
Zhang L, Gao W, Su L, He W, Wang Y, Hu M, Liu Z, Liu Y, Feng H. Theoretical Study on Intramolecular Hydrogen Bonds of Flavonoid Cocrystals. Chemphyschem 2024:e202400591. [PMID: 39351923 DOI: 10.1002/cphc.202400591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/29/2024] [Indexed: 11/12/2024]
Abstract
This study investigates the role of intramolecular hydrogen bonds in the formation of cocrystals involving flavonoid molecules, focusing on three active pharmaceutical ingredients (APIs): chrysin (CHR), isoliquiritigenin (ISO), and kaempferol (KAE). These APIs form cocrystals with different cocrystal formers (CCFs) through intramolecular hydrogen bonding. We found that disruption of these intramolecular hydrogen bonds leads to decreased stability compared to molecules with intact bonds. The extrema of molecular electrostatic potential surfaces (MEPS) show that flavonoid molecules with disrupted intramolecular hydrogen bonds have stronger hydrogen bond donors and acceptors than those with intact bonds. Using the artificial bee colony algorithm, dimeric structures of these flavonoid molecules were explored, representing early-stage structures in cocrystal formation, including API-API, API-CCF, and CCF-CCF dimers. It was observed that the number and strength of dimeric interactions significantly increased, and the types of interactions changed when intramolecular hydrogen bonds were disrupted. These findings suggest that disrupting intramolecular hydrogen bonds generally hinders the formation of cocrystals. This theoretical study provides deeper insight into the role of intramolecular hydrogen bonds in the cocrystal formation of flavonoids.
Collapse
Affiliation(s)
- Lisha Zhang
- Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, Hainan Normal University, Haikou, 571158, P. R. China
| | - Wei Gao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Li Su
- Haikou Customs Technology Center, Haikou, 570311, P. R. China
| | - Wenying He
- Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, Hainan Normal University, Haikou, 571158, P. R. China
| | - Yize Wang
- Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, Hainan Normal University, Haikou, 571158, P. R. China
| | - Minghui Hu
- Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, Hainan Normal University, Haikou, 571158, P. R. China
| | - Zixi Liu
- Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, Hainan Normal University, Haikou, 571158, P. R. China
| | - Yanling Liu
- Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, Hainan Normal University, Haikou, 571158, P. R. China
| | - Huajie Feng
- Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, Hainan Normal University, Haikou, 571158, P. R. China
| |
Collapse
|
2
|
Roy P, Chakraborty S, Pandey N, Kumari N, Chougule S, Chatterjee A, Chatterjee K, Mandal P, Gorain B, Dhotre AV, Bansal AK, Ghosh A. Study on Sulfamethoxazole-Piperazine Salt: A Mechanistic Insight into Simultaneous Improvement of Physicochemical Properties. Mol Pharm 2023; 20:5226-5239. [PMID: 37677085 DOI: 10.1021/acs.molpharmaceut.3c00646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Multidrug salts represent more than one drug in a crystal lattice and thus could be used to deliver multiple drugs in a single dose. It showcases unique physicochemical properties in comparison to individual components, which could lead to improved efficacy and therapeutic synergism. This study presents the preparation and scale-up of sulfamethoxazole-piperazine salt, which has been thoroughly characterized by X-ray diffraction and thermal and spectroscopic analyses. A detailed mechanistic study investigates the impact of piperazine on the microenvironmental pH of the salt and its effect on the speciation profile, solubility, dissolution, and diffusion profile. Also, the improvement in the physicochemical properties of sulfamethoxazole due to the formation of salt was explored with lattice energy contributions. A greater ionization of sulfamethoxazole (due to pH changes contributed by piperazine) and lesser lattice energy of sulfamethoxazole-piperazine contributed to improved solubility, dissolution, and permeability. Moreover, the prepared salt addresses the stability issues of piperazine and exhibits good stability behavior under accelerated stability conditions. Due to the improvement of physicochemical properties, the sulfamethoxazole-piperazine salt demonstrates better pharmacokinetic parameters in comparison to sulfamethoxazole and provides a strong suggestion for the reduction of dose. The following study suggests that multidrug salts can concurrently enhance the physicochemical properties of drugs and present themselves as improved fixed-dose combinations.
Collapse
Affiliation(s)
- Parag Roy
- Solid State Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Soumalya Chakraborty
- Solid State Pharmaceutics Lab, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Mohali 160062, Punjab, India
| | - Noopur Pandey
- Solid State Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Nimmy Kumari
- Solid State Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Sourav Chougule
- Solid State Pharmaceutics Lab, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Mohali 160062, Punjab, India
| | - Amrita Chatterjee
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Kaberi Chatterjee
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Pallab Mandal
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Ananta V Dhotre
- College of Dairy Technology, Warud, Maharashtra Animal and Fishery Sciences University, Pusad, Nagpur 445204, Maharashtra, India
| | - Arvind Kumar Bansal
- Solid State Pharmaceutics Lab, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Mohali 160062, Punjab, India
| | - Animesh Ghosh
- Solid State Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| |
Collapse
|
3
|
Xu J, Shi Q, Wang Y, Wang Y, Xin J, Cheng J, Li F. Recent Advances in Pharmaceutical Cocrystals: A Focused Review of Flavonoid Cocrystals. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020613. [PMID: 36677670 PMCID: PMC9861466 DOI: 10.3390/molecules28020613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
Cocrystallization is currently an attractive technique for tailoring the physicochemical properties of active pharmaceutical ingredients (APIs). Flavonoids are a large class of natural products with a wide range of beneficial properties, including anticancer, anti-inflammatory, antiviral and antioxidant properties, which makes them extensively studied. In order to improve the properties of flavonoids, such as solubility and bioavailability, the formation of cocrystals may be a feasible strategy. This review discusses in detail the possible hydrogen bond sites in the structure of APIs and the hydrogen bonding networks in the cocrystal structures, which will be beneficial for the targeted synthesis of flavonoid cocrystals. In addition, some successful studies that favorably alter the physicochemical properties of APIs through cocrystallization with coformers are also highlighted here. In addition to improving the solubility and bioavailability of flavonoids in most cases, flavonoid cocrystals may also alter their other properties, such as anti-inflammatory activity and photoluminescence properties.
Collapse
Affiliation(s)
- Jia Xu
- Correspondence: (J.X.); (F.L.)
| | | | | | | | | | | | - Fang Li
- Correspondence: (J.X.); (F.L.)
| |
Collapse
|
4
|
Optical absorption measurements and optoelectronic DFT calculations for ethanol solvated quercetin and anhydrous/hydrated quercetin crystals. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Guan D, Xuan B, Wang C, Long R, Jiang Y, Mao L, Kang J, Wang Z, Chow SF, Zhou Q. Improving the Physicochemical and Biopharmaceutical Properties of Active Pharmaceutical Ingredients Derived from Traditional Chinese Medicine through Cocrystal Engineering. Pharmaceutics 2021; 13:2160. [PMID: 34959440 PMCID: PMC8704577 DOI: 10.3390/pharmaceutics13122160] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 01/18/2023] Open
Abstract
Active pharmaceutical ingredients (APIs) extracted and isolated from traditional Chinese medicines (TCMs) are of interest for drug development due to their wide range of biological activities. However, the overwhelming majority of APIs in TCMs (T-APIs), including flavonoids, terpenoids, alkaloids and phenolic acids, are limited by their poor physicochemical and biopharmaceutical properties, such as solubility, dissolution performance, stability and tabletability for drug development. Cocrystallization of these T-APIs with coformers offers unique advantages to modulate physicochemical properties of these drugs without compromising the therapeutic benefits by non-covalent interactions. This review provides a comprehensive overview of current challenges, applications, and future directions of T-API cocrystals, including cocrystal designs, preparation methods, modifications and corresponding mechanisms of physicochemical and biopharmaceutical properties. Moreover, a variety of studies are presented to elucidate the relationship between the crystal structures of cocrystals and their resulting properties, along with the underlying mechanism for such changes. It is believed that a comprehensive understanding of cocrystal engineering could contribute to the development of more bioactive natural compounds into new drugs.
Collapse
Affiliation(s)
- Danyingzi Guan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (D.G.); (R.L.); (Y.J.); (L.M.); (J.K.); (Z.W.)
| | - Bianfei Xuan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| | - Chengguang Wang
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Ruitao Long
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (D.G.); (R.L.); (Y.J.); (L.M.); (J.K.); (Z.W.)
| | - Yaqin Jiang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (D.G.); (R.L.); (Y.J.); (L.M.); (J.K.); (Z.W.)
| | - Lina Mao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (D.G.); (R.L.); (Y.J.); (L.M.); (J.K.); (Z.W.)
| | - Jinbing Kang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (D.G.); (R.L.); (Y.J.); (L.M.); (J.K.); (Z.W.)
| | - Ziwen Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (D.G.); (R.L.); (Y.J.); (L.M.); (J.K.); (Z.W.)
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| | - Qun Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (D.G.); (R.L.); (Y.J.); (L.M.); (J.K.); (Z.W.)
| |
Collapse
|
6
|
Guo M, Sun X, Chen J, Cai T. Pharmaceutical cocrystals: A review of preparations, physicochemical properties and applications. Acta Pharm Sin B 2021; 11:2537-2564. [PMID: 34522597 PMCID: PMC8424375 DOI: 10.1016/j.apsb.2021.03.030] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/22/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022] Open
Abstract
Pharmaceutical cocrystals are multicomponent systems in which at least one component is an active pharmaceutical ingredient and the others are pharmaceutically acceptable ingredients. Cocrystallization of a drug substance with a coformer is a promising and emerging approach to improve the performance of pharmaceuticals, such as solubility, dissolution profile, pharmacokinetics and stability. This review article presents a comprehensive overview of pharmaceutical cocrystals, including preparation methods, physicochemical properties, and applications. Furthermore, some examples of drug cocrystals are highlighted to illustrate the effect of crystal structures on the various aspects of active pharmaceutical ingredients, such as physical stability, chemical stability, mechanical properties, optical properties, bioavailability, sustained release and therapeutic effect. This review will provide guidance for more efficient design and manufacture of pharmaceutical cocrystals with desired physicochemical properties and applications.
Collapse
|
7
|
Barbosa TWL, Talmeli RMS, Junior HDO, Doriguetto AC, de Araújo MB, Bonfilio R. Solid state characterization, solubility, intrinsic dissolution and stability behavior of allopurinol hydrochloride salt. Drug Dev Ind Pharm 2021; 47:799-808. [PMID: 34034596 DOI: 10.1080/03639045.2021.1934872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Since each solid form of an active pharmaceutical ingredient (API) can exhibit particular physicochemical properties, the objectives of this work were to characterize and study the solubility/stability properties of allopurinol hydrochloride salt (ALO-HCl) for the first time. ALO-HCl was obtained through an unreported recrystallization process and studied by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). All characterization techniques were effective for the differentiation of ALO-HCl from the preferred pharmaceutical form (ALO). DSC and TGA studies showed a solid-state conversion from ALO-HCl to ALO upon HCl loss. Solubility and dissolution tests showed that ALO-HCl converts to ALO in aqueous media. Moreover, the effect of the common ion decreased the amount of drug released from ALO-HCl during the intrinsic dissolution assay in HCl medium. The stability studies showed a partial conversion from ALO-HCl to ALO after 6 months of storage. The results indicate that comparative studies between crystalline forms of APIs are of great importance, as they contribute to the understanding of aspects related to the quality of medicines.
Collapse
Affiliation(s)
| | - Rafaela M S Talmeli
- Faculty of Pharmaceutical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, Brazil
| | - Homero de O Junior
- Faculty of Pharmaceutical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, Brazil
| | - Antônio C Doriguetto
- Institute of Chemistry, Federal University of Alfenas (UNIFAL-MG), Alfenas, Brazil
| | - Magali B de Araújo
- Faculty of Pharmaceutical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, Brazil
| | - Rudy Bonfilio
- Faculty of Pharmaceutical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, Brazil
| |
Collapse
|
8
|
Araya-Sibaja AM, Fandaruff C, Wilhelm K, Vega-Baudrit JR, Guillén-Girón T, Navarro-Hoyos M. Crystal Engineering to Design of Solids: From Single to Multicomponent Organic Materials. MINI-REV ORG CHEM 2020. [DOI: 10.2174/1570193x16666190430153231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Primarily composed of organic molecules, pharmaceutical materials, including drugs and
excipients, frequently exhibit physicochemical properties that can affect the formulation, manufacturing
and packing processes as well as product performance and safety. In recent years, researchers
have intensively developed Crystal Engineering (CE) in an effort to reinvent bioactive molecules
with well-known, approved pharmacological effects. In general, CE aims to improve the physicochemical
properties without affecting their intrinsic characteristics or compromising their stability.
CE involves the molecular recognition of non-covalent interactions, in which organic materials are
responsible for the regular arrangement of molecules into crystal lattices. Modern CE, encompasses
all manipulations that result in the alteration of crystal packing as well as methods that disrupt crystal
lattices or reduce the size of crystals, or a combination of them. Nowadays, cocrystallisation has been
the most explored strategy to improve solubility, dissolution rate and bioavailability of Active Pharmaceutical
Ingredients (API). However, its combinatorial nature involving two or more small organic
molecules, and the use of diverse crystallisation processes increase the possible outcomes. As a result,
numerous organic materials can be obtained as well as several physicochemical and mechanical
properties can be improved. Therefore, this review will focus on novel organic solids obtained when
CE is applied including crystalline and amorphous, single and multicomponent as well as nanosized
ones, that have contributed to improving not only solubility, dissolution rate, bioavailability permeability
but also, chemical and physical stability and mechanical properties.
Collapse
Affiliation(s)
| | | | - Krissia Wilhelm
- Escuela de Quimica, Universidad de Costa Rica, San Jose 11501-2060, Costa Rica
| | | | - Teodolito Guillén-Girón
- Escuela de Ciencia e Ingenieria de los Materiales, Tecnologico de Costa Rica, Cartago 159-7050, Costa Rica
| | | |
Collapse
|
9
|
Shebis Y, Kumar VB, Gedanken A, Poverenov E. Cooperative crystallization effect in the formation of sonochemically grafted active materials based on polysaccharides. Colloids Surf B Biointerfaces 2020; 190:110931. [PMID: 32151912 DOI: 10.1016/j.colsurfb.2020.110931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 10/24/2022]
Abstract
The current study explores the formation of active eco-friendly materials capable of preventing microbial contamination using in situ ultrasonic grafting of vanillin, curcumin and a curcumin-vanillin mixture on the surfaces of carboxymethylcellulose (CMC) and chitosan films. Spectroscopic, microscopic, physical and mechanical studies revealed that the films grafted with curcumin-vanillin mixture demonstrate improved mechanical properties and higher degree of order. The bioactivity of the prepared films was tested on food model, fresh-cut melons and films with a deposited curcumin-vanillin mixture showed superior antibacterial properties. For instance, this mixture-grafted on CMC films demonstrated a total inhibition of yeast/mold proliferation during 12 days. The HR-SEM studies of the mixture-grafted films revealed the presence of crystalline structures. Cooperative crystallization effect between the curcumin (the crystal maker) and the volatile vanillin is suggested to be responsible for the observed effects. According to our knowledge, this is the first usage of co-crystallization method in surface deposition. The results point out to a general strategy of combining a crystal maker agent with a volatile active agent during in situ sonochemical deposition to form bioactive materials that can be further used for food packaging, agriculture, pharmacology and more.
Collapse
Affiliation(s)
- Yevgenia Shebis
- Agro-Nanotechnology and Advanced Materials Research Center, Department of Food Science, Agriculture Research Organization, The Volcani Center, Rishon Lezion, Israel; Faculty of Agriculture, Biochemistry and Food Sciences, The Hebrew University of Jerusalem, Israel
| | - Vijay Bhooshan Kumar
- Department of Chemistry and Kanbar Laboratory for Nanomaterials, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Aharon Gedanken
- Department of Chemistry and Kanbar Laboratory for Nanomaterials, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Elena Poverenov
- Agro-Nanotechnology and Advanced Materials Research Center, Department of Food Science, Agriculture Research Organization, The Volcani Center, Rishon Lezion, Israel.
| |
Collapse
|
10
|
Selivanova IA, Terekhov RP. Crystal engineering as a scientific basis for modification of physicochemical properties of bioflavonoids. Russ Chem Bull 2020. [DOI: 10.1007/s11172-019-2684-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Huang S, Xue Q, Xu J, Ruan S, Cai T. Simultaneously Improving the Physicochemical Properties, Dissolution Performance, and Bioavailability of Apigenin and Daidzein by Co-Crystallization With Theophylline. J Pharm Sci 2019; 108:2982-2993. [DOI: 10.1016/j.xphs.2019.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 11/15/2022]
|
12
|
A new mixed inhibitor of adenosine deaminase produced by endophytic Cochliobolus sp. from medicinal plant seeds. Folia Microbiol (Praha) 2019; 65:293-302. [PMID: 31273645 DOI: 10.1007/s12223-019-00723-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 06/03/2019] [Indexed: 12/14/2022]
Abstract
Medicinal plants have been studied for potential endophytic interactions and numerous studies have provided evidence that seeds harbor diverse microbial communities, not only on their surfaces but also within the embryo. Adenosine deaminase (ADA) is known as a potential therapeutic target for the treatment of lymphoproliferative disorders and cancer. Therefore, in this study, 20 types of medicinal plant seeds were used to screen endophytic fungi with tissue homogenate and streak. In addition, 128 morphologically distinct endophyte strains were isolated and their ADA inhibitory activity determined by a spectrophotometric assay. The strain with the highest inhibitory activity was identified as Cochliobolus sp. Seven compounds were isolated from the strain using a chromatography method. Compound 3 showed the highest ADA inhibitory activity and was identified as 5-hydroxy-2-hydroxymethyl-4H-pyran-4-one, based on the results of 1H and 13C NMR spectroscopy. The results of molecular docking suggested that compound 3 binds to the active site and the nonspecific binding site of the ADA. Furthermore, we found that compound 3 is a mixed ADA inhibitor. These results indicate that endophytic strains are a promising source of ADA inhibitors and that compound 3 may be a superior source for use in the preparation of biologically active ADA inhibitor compounds used to treat cancer.
Collapse
|
13
|
Sharma A, Kashyap D, Sak K, Tuli HS, Sharma AK. Therapeutic charm of quercetin and its derivatives: a review of research and patents. Pharm Pat Anal 2018; 7:15-32. [PMID: 29227203 DOI: 10.4155/ppa-2017-0030] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/05/2017] [Indexed: 07/28/2024]
Abstract
Bioactive polyphenolic compounds derived from plants are being utilized for prevention of various chronic diseases including cancer and cardiovascular disorders. Quercetin, a potential poly-phenolic flavonol, found in onions, apples and berries, has been implicated against cancer proliferation, chronic inflammation and various other oxidative manifestations. Evidences suggested that quercetin negatively regulates the numerous crucial signaling pathways associated with life-threatening diseases. Major signaling pathways including NF-κB, MAPK, PI3K-AKT and mTOR are found to be regulated by quercetin. In addition, several patents have reported recently on quercetin derivatives describing wide therapeutic applications such as anticancer/antiproliferatory, antioxidative/antiaging, antiviral, anti-inflammatory, cardioprotective. Present review emphasizes the chemistry and sources of quercetin followed by description of its broad-spectrum therapeutic potential along with proposed mechanisms of action. Furthermore, this review also highlights the important modifications in the basic chemical structure of quercetin in terms of published patents. Insolubility of the bioactive compounds restricts their medicinal importance which could be overcome by modifications in the chemical structure of so-called derivatives. Most of the patents deal with the modifications in chemical structure of quercetin mainly at hydroxyl groups and C-6 and C-7 positions.
Collapse
Affiliation(s)
- Ajay Sharma
- Department of Chemistry, Career Point University, Tikker-kharwarian, Hamirpur, Himachal Pradesh 176041, India
| | - Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, Punjab 160012, India
| | | | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana-Ambala, Haryana, India
| | - Anil K Sharma
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana-Ambala, Haryana, India
| |
Collapse
|
14
|
Vasisht K, Chadha K, Karan M, Bhalla Y, Jena AK, Chadha R. Enhancing biopharmaceutical parameters of bioflavonoid quercetin by cocrystallization. CrystEngComm 2016. [DOI: 10.1039/c5ce01899d] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study highlights the improved biopharmaceutical properties of quercetin with therapeutically active coformers: picolinic acid and nicotinamide, using cocrystallization, well supported by antioxidant, antihaemolytic and pharmacokinetic activities.
Collapse
Affiliation(s)
- Karan Vasisht
- University Institute of Pharmaceutical Sciences
- Panjab University
- Chandigarh 160014, India
| | - Kunal Chadha
- University Institute of Pharmaceutical Sciences
- Panjab University
- Chandigarh 160014, India
| | - Maninder Karan
- University Institute of Pharmaceutical Sciences
- Panjab University
- Chandigarh 160014, India
| | - Yashika Bhalla
- University Institute of Pharmaceutical Sciences
- Panjab University
- Chandigarh 160014, India
| | - Ashish Kumar Jena
- University Institute of Pharmaceutical Sciences
- Panjab University
- Chandigarh 160014, India
| | - Renu Chadha
- University Institute of Pharmaceutical Sciences
- Panjab University
- Chandigarh 160014, India
| |
Collapse
|
15
|
Xu J, Huang Y, Ruan S, Chi Z, Qin K, Cai B, Cai T. Cocrystals of isoliquiritigenin with enhanced pharmacokinetic performance. CrystEngComm 2016. [DOI: 10.1039/c6ce01809b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|