1
|
Quiñones JP, Roschger C, Iturmendi A, Henke H, Zierer A, Peniche-Covas C, Brüggemann O. Polyphosphazene-Based Nanocarriers for the Release of Camptothecin and Epirubicin. Pharmaceutics 2022; 14:169. [PMID: 35057062 PMCID: PMC8781282 DOI: 10.3390/pharmaceutics14010169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 12/24/2022] Open
Abstract
The design and study of efficient polymer-based drug delivery systems for the controlled release of anticancer drugs is one of the pillars of nanomedicine. The fight against metastatic and invasive cancers demands therapeutic candidates with increased and selective toxicity towards malignant cells, long-term activity and reduced side effects. In this sense, polyphosphazene nanocarriers were synthesized for the sustained release of the anticancer drugs camptothecin (CPT) and epirubicin (EPI). Linear poly(dichloro)phosphazene was modified with lipophilic tocopherol or testosterone glycinate, with antioxidant and antitumor activity, and with hydrophilic Jeffamine M1000 to obtain different polyphosphazene nanocarriers. It allowed us to encapsulate the lipophilic CPT and the more hydrophilic EPI. The encapsulation process was carried out via solvent exchange/precipitation, attaining a 9.2-13.6 wt% of CPT and 0.3-2.4 wt% of EPI. CPT-loaded polyphosphazenes formed 140-200 nm aggregates in simulated body physiological conditions (PBS, pH 7.4), resulting in an 80-100-fold increase of CPT solubility. EPI-loaded polyphosphazenes formed 250 nm aggregates in an aqueous medium. CPT and EPI release (PBS, pH 7.4, 37 °C) was monitored for 202 h, being almost linear during the first 8 h. The slow release of testosterone and tocopherol was also sustained for 150 h in PBS (pH 7.4 and 6.0) at 37 °C. The co-delivery of testosterone or tocopherol and the anticancer drugs from the nanocarriers was expected. Cells of the human breast cancer cell line MCF-7 demonstrated good uptake of anticancer-drug-loaded nanocarriers after 6 h. Similarly, MCF-7 spheroids showed good uptake of the anticancer-drug-loaded aggregates after 72 h. Almost all anticancer-drug-loaded polyphosphazenes exhibited similar or superior toxicity against MCF-7 cells and spheroids when compared to raw anticancer drugs. Additionally, cell-cycle arrest in the G2/M phase was increased in response to the drug-loaded nanocarriers. Almost no toxicity of anticancer-drug-loaded aggregates against primary human lung fibroblasts was observed. Furthermore, the aggregates displayed no hemolytic activity, which is in contrast to the parent anticancer drugs. Consequently, synthesized polyphosphazene-based nanocarriers might be potential nanomedicines for chemotherapy.
Collapse
Affiliation(s)
- Javier Pérez Quiñones
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria; (A.I.); (H.H.); (O.B.)
| | - Cornelia Roschger
- Department for Cardiac-, Vascular- and Thoracic Surgery, Johannes Kepler University Linz, Kepler University Hospital GmBH, Altenberger Straße 69, 4040 Linz and Krankenhausstraße 7a, 4020 Linz, Austria; (C.R.); (A.Z.)
| | - Aitziber Iturmendi
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria; (A.I.); (H.H.); (O.B.)
| | - Helena Henke
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria; (A.I.); (H.H.); (O.B.)
| | - Andreas Zierer
- Department for Cardiac-, Vascular- and Thoracic Surgery, Johannes Kepler University Linz, Kepler University Hospital GmBH, Altenberger Straße 69, 4040 Linz and Krankenhausstraße 7a, 4020 Linz, Austria; (C.R.); (A.Z.)
| | - Carlos Peniche-Covas
- Facultad de Química, Universidad de La Habana, Zapata S/N entre G y Carlitos Aguirre, La Habana 10400, Cuba;
| | - Oliver Brüggemann
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria; (A.I.); (H.H.); (O.B.)
| |
Collapse
|
2
|
2,6-Dimethoxybenzyl Bromide. MOLBANK 2021. [DOI: 10.3390/m1277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The unstable title compound has been characterized for the first time. Its melting point, UV, IR, 1H and 13C-NMR and high-resolution mass spectra are presented. The X-ray structure has also been determined and shows a rather long C–Br bond perpendicular to the otherwise planar molecule.
Collapse
|
3
|
Fiedler C, Ulbricht C, Truglas T, Wielend D, Bednorz M, Groiss H, Brüggemann O, Teasdale I, Salinas Y. Reversible Speed Regulation of Self-Propelled Janus Micromotors via Thermoresponsive Bottle-Brush Polymers. Chemistry 2021; 27:3262-3267. [PMID: 33205559 PMCID: PMC7898474 DOI: 10.1002/chem.202004792] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Indexed: 01/01/2023]
Abstract
This work reports a reversible braking system for micromotors that can be controlled by small temperature changes (≈5 °C). To achieve this, gated-mesoporous organosilica microparticles are internally loaded with metal catalysts (to form the motor) and the exterior (partially) grafted with thermosensitive bottle-brush polyphosphazenes to form Janus particles. When placed in an aqueous solution of H2 O2 (the fuel), rapid forward propulsion of the motors ensues due to decomposition of the fuel. Conformational changes of the polymers at defined temperatures regulate the bubble formation rate and thus act as brakes with considerable deceleration/acceleration observed. As the components can be easily varied, this represents a versatile, modular platform for the exogenous velocity control of micromotors.
Collapse
Affiliation(s)
- Christine Fiedler
- Institute of Polymer ChemistryJohannes Kepler University LinzAltenbergerstraße 694040LinzAustria
| | - Christoph Ulbricht
- Institute of Physical Chemistry-Linz Institute for Organic Solar CellsJohannes Kepler University LinzAltenbergerstraße 694040LinzAustria
| | - Tia Truglas
- Christian Doppler Laboratory for Nanoscale Phase TransformationsCenter of Surface and NanoanalyticsJohannes Kepler University LinzAltenbergerstraße 694040LinzAustria
| | - Dominik Wielend
- Institute of Physical Chemistry-Linz Institute for Organic Solar CellsJohannes Kepler University LinzAltenbergerstraße 694040LinzAustria
| | - Mateusz Bednorz
- Institute of Physical Chemistry-Linz Institute for Organic Solar CellsJohannes Kepler University LinzAltenbergerstraße 694040LinzAustria
| | - Heiko Groiss
- Christian Doppler Laboratory for Nanoscale Phase TransformationsCenter of Surface and NanoanalyticsJohannes Kepler University LinzAltenbergerstraße 694040LinzAustria
| | - Oliver Brüggemann
- Institute of Polymer ChemistryJohannes Kepler University LinzAltenbergerstraße 694040LinzAustria
| | - Ian Teasdale
- Institute of Polymer ChemistryJohannes Kepler University LinzAltenbergerstraße 694040LinzAustria
- Linz Institute of TechnologyJohannes Kepler University LinzAltenbergerstraße 694040LinzAustria
| | - Yolanda Salinas
- Institute of Polymer ChemistryJohannes Kepler University LinzAltenbergerstraße 694040LinzAustria
- Linz Institute of TechnologyJohannes Kepler University LinzAltenbergerstraße 694040LinzAustria
| |
Collapse
|
4
|
Linhardt A, König M, Iturmendi A, Henke H, Brüggemann O, Teasdale I. Degradable, Dendritic Polyols on a Branched Polyphosphazene Backbone. Ind Eng Chem Res 2018; 57:3602-3609. [PMID: 29568158 PMCID: PMC5857928 DOI: 10.1021/acs.iecr.7b05301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/16/2018] [Accepted: 02/23/2018] [Indexed: 11/30/2022]
Abstract
Herein, we present the design, synthesis, and characterization of fully degradable, hybrid, star-branched dendritic polyols. First multiarmed polyphosphazenes were prepared as a star-branched scaffold which upon functionalization produced globular branched hydroxyl-functionalized polymers with over 1700 peripheral functional end groups. These polyols with unique branched architectures could be prepared with controlled molecular weights and relatively narrow dispersities. Furthermore, the polymers are shown to undergo hydrolytic degradation to low molecular weight degradation products, the rate of which could be controlled through postpolymerization functionalization of the phosphazene backbone.
Collapse
Affiliation(s)
- Anne Linhardt
- Institute of Polymer Chemistry, Johannes
Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria
| | - Michael König
- Institute of Polymer Chemistry, Johannes
Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria
| | - Aitziber Iturmendi
- Institute of Polymer Chemistry, Johannes
Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria
| | - Helena Henke
- Institute of Polymer Chemistry, Johannes
Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria
| | - Oliver Brüggemann
- Institute of Polymer Chemistry, Johannes
Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria
| | - Ian Teasdale
- Institute of Polymer Chemistry, Johannes
Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria
| |
Collapse
|
5
|
Immobilized phosphine–phosphite rhodium complexes: highly active and enantioselective catalysts for asymmetric hydrogenation under continuous flow conditions. MONATSHEFTE FUR CHEMIE 2017. [DOI: 10.1007/s00706-017-2048-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Henke H, Brüggemann O, Teasdale I. Branched Macromolecular Architectures for Degradable, Multifunctional Phosphorus-Based Polymers. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201600644] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/10/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Helena Henke
- Institute of Polymer Chemistry; Johannes Kepler University Linz; Altenberger Straße 69 4040 Linz Austria
| | - Oliver Brüggemann
- Institute of Polymer Chemistry; Johannes Kepler University Linz; Altenberger Straße 69 4040 Linz Austria
| | - Ian Teasdale
- Institute of Polymer Chemistry; Johannes Kepler University Linz; Altenberger Straße 69 4040 Linz Austria
| |
Collapse
|