1
|
Franz AH, Samoshina NM, Samoshin VV. A convenient method for the relative and absolute quantification of lipid components in liposomes by 1H- and 31P NMR-spectroscopy. Chem Phys Lipids 2024; 261:105395. [PMID: 38615786 DOI: 10.1016/j.chemphyslip.2024.105395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/17/2024] [Accepted: 04/05/2024] [Indexed: 04/16/2024]
Abstract
OBJECTIVE Liposomes are promising delivery systems for pharmaceutical applications and have been used in medicine in the recent past. Preparation of liposomes requires reliable characterization and quantification of the phospholipid components for which the traditional cumbersome molybdate method is used frequently. The objective was to improve relative and absolute quantification of lipid components from liposomes. METHODS A reliable method for quantification of lipid composition in liposome formulations in the 1-10 μmol range with 1H- and 31P NMR spectroscopy at 600 MHz has been developed. The method is based on three crystalline small-molecule standards (Ph3PO4, (Tol)3PO4, and Ph3PO) in CDCl3. RESULTS Excellent calibration linearity and chemical stability of the standards was observed. The method was tested in blind fashion on liposomes containing POPC, PEG-ceramide and a pH-sensitive trans-aminocyclohexanol-based amphiphile (TACH).1 Relative quantification (percentage of components) as well as determination of absolute lipid amount was possible with excellent reproducibility with an average error of 5%. Quantification (triplicate) was accomplished in 15 min based on 1H NMR and in 1 h based on 31P NMR. Very little change in mixture composition was observed over multiple preparative steps. CONCLUSION Liposome preparations containing POPC, POPE, DOPC, DPPC, TACH, and PEG-ceramide can be reliably characterized and quantified by 1H NMR and 31P NMR spectroscopy at 600 MHz in the μmol range.
Collapse
Affiliation(s)
- Andreas H Franz
- Department of Chemistry, College of the Pacific, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA.
| | - Nataliya M Samoshina
- Department of Chemistry, College of the Pacific, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA
| | - Vyacheslav V Samoshin
- Department of Chemistry, College of the Pacific, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA
| |
Collapse
|
2
|
Nsairat H, Ibrahim AA, Jaber AM, Abdelghany S, Atwan R, Shalan N, Abdelnabi H, Odeh F, El-Tanani M, Alshaer W. Liposome bilayer stability: emphasis on cholesterol and its alternatives. J Liposome Res 2024; 34:178-202. [PMID: 37378553 DOI: 10.1080/08982104.2023.2226216] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/15/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Liposomes are spherical lipidic nanocarriers composed of natural or synthetic phospholipids with a hydrophobic bilayer and aqueous core, which are arranged into a polar head and a long hydrophobic tail, forming an amphipathic nano/micro-particle. Despite numerous liposomal applications, their use encounters many challenges related to the physicochemical properties strongly affected by their constituents, colloidal stability, and interactions with the biological environment. This review aims to provide a perspective and a clear idea about the main factors that regulate the liposomes' colloidal and bilayer stability, emphasising the roles of cholesterol and its possible alternatives. Moreover, this review will analyse strategies that offer possible approaches to provide more stable in vitro and in vivo liposomes with enhanced drug release and encapsulation efficiencies.
Collapse
Affiliation(s)
- Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Abed Alqader Ibrahim
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Areej M Jaber
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | | | - Randa Atwan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Naeem Shalan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Hiba Abdelnabi
- Faculty of Pharmacy, The University of Jordan, Amman, Jordan
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Fadwa Odeh
- Department of Chemistry, The University of Jordan, Amman, Jordan
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
- Institute of Cancer Therapeutics, University of Bradford, Bradford, UK
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| |
Collapse
|
3
|
Wnętrzak A, Chachaj-Brekiesz A, Kobierski J, Dynarowicz-Latka P. The Structure of Oxysterols Determines Their Behavior at Phase Boundaries: Implications for Model Membranes and Structure-Activity Relationships. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:3-29. [PMID: 38036872 DOI: 10.1007/978-3-031-43883-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The presence of an additional polar group in the cholesterol backbone increases the hydrophilicity of resulting compounds (oxysterols), determines their arrangement at the phase boundary, and interactions with other lipids and proteins. As a result, physicochemical properties of biomembranes (i.e., elasticity, permeability, and ability to bind proteins) are modified, which in turn may affect their functioning. The observed effect depends on the type of oxysterol and its concentration and can be both positive (e.g., antiviral activity) or negative (disturbance of cholesterol homeostasis, signal transduction, and protein segregation). The membrane activity of oxysterols has been successfully studied using membrane models (vesicles, monolayers, and solid supported films). Membrane models, in contrast to the natural systems, provide the possibility to selectively examine the specific aspect of biomolecule-membrane interactions. Moreover, the gradual increase in the complexity of the used model allows to understand the molecular phenomena occurring at the membrane level. The interest in research on artificial membranes has increased significantly in recent years, mainly due to the development of modern and sophisticated physicochemical methods (static and dynamic) in both the micro- and nanoscale, which are applied with the assistance of powerful theoretical calculations. This review provides an overview of the most important findings on this topic in the current literature.
Collapse
Affiliation(s)
- Anita Wnętrzak
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland.
| | | | - Jan Kobierski
- Department of Pharmaceutical Biophysics, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | | |
Collapse
|
4
|
Narisepalli S, Salunkhe SA, Chitkara D, Mittal A. Asiaticoside polymeric nanoparticles for effective diabetic wound healing through increased collagen biosynthesis: In-vitro and in-vivo evaluation. Int J Pharm 2023; 631:122508. [PMID: 36539166 DOI: 10.1016/j.ijpharm.2022.122508] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Asiaticoside (AST) is a naturally available phytoconstituent that enables effective wound healing mainly by promoting collagen biosynthesis. However, the physicochemical nature of AST such as high molecular weight (959.12 g/mol), poor water solubility and poor permeability limits its therapeutic effects. This study aims to develop Asiaticoside polymeric nanoparticles (AST PNP) embedded in a gelatin based biodegradable hydrogel (15 % w/v) for application in the wound cavity to enable sustained release of AST and enhance its therapeutic effects. The AST PNP were fabricated in the desired size range (168.4 nm; PDI (0.09)) and the morphology, rate of fluid uptake, rate of water loss, and water vapor transmission rate of AST PNP incorporated hydrogel were determined. AST PNP gel showed porous structural morphology and possessed ideal characteristics as a graft for wound healing. The drug release kinetics and cellular uptake of AST PNP were investigated wherein, AST PNP demonstrated sustained release profile upto 24 h in comparison to free AST (complete release within 6 h) and exhibited an enhanced intra-cellular uptake in fibroblasts within 3 h compared to the free drug. In-vitrocell culture studies also demonstrated significant proliferation and migration of fibroblasts in the presence of AST PNP. Additionally, AST PNP gel upon application to the wounds of diabetic rats depicted improved wound healing efficacy in terms of improved collagen biosynthesis, upregulated COL-1 protein level (∼1.85 fold vs free AST), and enhanced expression of α-SMA compared to control groups. Altogether, formulation of AST as polymeric nanoparticles in a gel based carrier offered significant improvement in the therapeutic properties of AST for the management of diabetic wounds.
Collapse
Affiliation(s)
- Saibhargav Narisepalli
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India
| | - Shubham A Salunkhe
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India
| | - Anupama Mittal
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India; Department of Cellular and Molecular Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan.
| |
Collapse
|
5
|
Panchal K, Katke S, Dash SK, Gaur A, Shinde A, Saha N, Mehra NK, Chaurasiya A. An expanding horizon of complex injectable products: development and regulatory considerations. Drug Deliv Transl Res 2023; 13:433-472. [PMID: 35963928 PMCID: PMC9376055 DOI: 10.1007/s13346-022-01223-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 12/30/2022]
Abstract
There has been a constant evolution in the pharmaceutical market concerning the new technologies imbibed in delivering drug substances for various indications. This is either market-driven or technology-driven to improve the overall therapeutic efficacy and patients' quality of life. The pharmaceutical industry has experienced rapid growth in the area of complex injectable products because of their effectiveness in the unmet market. These novel parenteral products, viz, the nanoparticles, liposomes, microspheres, suspensions, and emulsions, have proven their worth as "Safe and Effective" products. However, the underlying challenges involved in the development, scalability, and characterization of these injectable products are critical. Moreover, the guidelines available do not provide a clear understanding of these complex products, making it difficult to anticipate the regulatory requirements. Thus, it becomes imperative to comprehend the criticalities and develop an understanding of these products. This review discusses various complexities involved in the parenteral products such as complex drug substances, excipients, dosage forms, drug administration devices like pre-filled syringes and injector pens, and its different characterization tools and techniques. The review also provides a brief discussion on the regulatory aspects and associated hurdles with other parenteral products.
Collapse
Affiliation(s)
- Kanan Panchal
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Medchal District, Jawahar Nagar, Kapra Mandal, Telangana, 500078, India
| | - Sumeet Katke
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Medchal District, Jawahar Nagar, Kapra Mandal, Telangana, 500078, India
| | - Sanat Kumar Dash
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Medchal District, Jawahar Nagar, Kapra Mandal, Telangana, 500078, India
| | - Ankit Gaur
- Formulation Development, Par Formulations Pvt. Ltd, Navi Mumbai, Endo India, 400 708, India
| | - Aishwarya Shinde
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Medchal District, Jawahar Nagar, Kapra Mandal, Telangana, 500078, India
| | - Nithun Saha
- Research & Development - Injectables, MSN Laboratories Pvt. Ltd, Pashamaylaram, Sangareddy, Telangana, 502307, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500 037, India
| | - Akash Chaurasiya
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Medchal District, Jawahar Nagar, Kapra Mandal, Telangana, 500078, India.
| |
Collapse
|
6
|
Aman Mohammadi M, Farshi P, Ahmadi P, Ahmadi A, Yousefi M, Ghorbani M, Hosseini SM. Encapsulation of Vitamins Using Nanoliposome: Recent Advances and Perspectives. Adv Pharm Bull 2023; 13:48-68. [PMID: 36721823 PMCID: PMC9871282 DOI: 10.34172/apb.2023.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 02/03/2023] Open
Abstract
Nowadays the importance of vitamins is clear for everyone. However, many patients are suffering from insufficient intake of vitamins. Incomplete intake of different vitamins from food sources due to their destruction during food processing or decrease in their bioavailability when mixing with other food materials, are factors resulting in vitamin deficiency in the body. Therefore, various lipid based nanocarriers such as nanoliposomes were developed to increase the bioavailability of bioactive compounds. Since the function of nanoliposomes containing vitamins on the body has a direct relationship with the quality of produced nanoliposomes, this review study was planned to investigate the several aspects of liposomal characteristics such as size, polydispersity index, zeta potential, and encapsulation efficiency on the quality of synthesized vitamin-loaded nanoliposomes.
Collapse
Affiliation(s)
- Masoud Aman Mohammadi
- Student Research Committee, Department of Food Technology, Faculty of Nutrition Science and Food Technology, Nutritional and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,These authors contributed equally in this Article
| | - Parastou Farshi
- Food Science Institute, Kansas State University, Manhattan KS, USA.,These authors contributed equally in this Article
| | - Parisa Ahmadi
- Student Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azam Ahmadi
- Student Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Yousefi
- Student Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marjan Ghorbani
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Corresponding Authors: Marjan Ghorbani, Tel: +98 41 33378165, Fax: +98 41 33378165, , and Seyede Marzieh Hosseini, Tel: +98 21 22622322, Fax: +98 21 22622322,
| | - Seyede Marzieh Hosseini
- Department of Food Technology, Faculty of Nutrition Sciences and Food Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Corresponding Authors: Marjan Ghorbani, Tel: +98 41 33378165, Fax: +98 41 33378165, , and Seyede Marzieh Hosseini, Tel: +98 21 22622322, Fax: +98 21 22622322,
| |
Collapse
|
7
|
Saddiqi ME, Kadir AA, Abdullah FFJ, Zakaria MZAB, Banke IS. Preparation, characterization and in vitro cytotoxicity evaluation of free and liposome-encapsulated tylosin. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Tomsen-Melero J, Merlo-Mas J, Carreño A, Sala S, Córdoba A, Veciana J, González-Mira E, Ventosa N. Liposomal formulations for treating lysosomal storage disorders. Adv Drug Deliv Rev 2022; 190:114531. [PMID: 36089182 DOI: 10.1016/j.addr.2022.114531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/13/2022] [Accepted: 09/04/2022] [Indexed: 01/24/2023]
Abstract
Lysosomal storage disorders (LSD) are a group of rare life-threatening diseases caused by a lysosomal dysfunction, usually due to the lack of a single enzyme required for the metabolism of macromolecules, which leads to a lysosomal accumulation of specific substrates, resulting in severe disease manifestations and early death. There is currently no definitive cure for LSD, and despite the approval of certain therapies, their effectiveness is limited. Therefore, an appropriate nanocarrier could help improve the efficacy of some of these therapies. Liposomes show excellent properties as drug carriers, because they can entrap active therapeutic compounds offering protection, biocompatibility, and selectivity. Here, we discuss the potential of liposomes for LSD treatment and conduct a detailed analysis of promising liposomal formulations still in the preclinical development stage from various perspectives, including treatment strategy, manufacturing, characterization, and future directions for implementing liposomal formulations for LSD.
Collapse
Affiliation(s)
- Judit Tomsen-Melero
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain; Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | | | - Aida Carreño
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain; Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Santi Sala
- Nanomol Technologies SL, 08193 Cerdanyola del Vallès, Spain
| | - Alba Córdoba
- Nanomol Technologies SL, 08193 Cerdanyola del Vallès, Spain
| | - Jaume Veciana
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain; Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Elisabet González-Mira
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain; Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| | - Nora Ventosa
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain; Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| |
Collapse
|
9
|
Tomnikova A, Orgonikova A, Krizek T. Liposomes: preparation and characterization with a special focus on the application of capillary electrophoresis. MONATSHEFTE FUR CHEMIE 2022; 153:687-695. [PMID: 35966959 PMCID: PMC9360637 DOI: 10.1007/s00706-022-02966-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022]
Abstract
Liposomes are nowadays a matter of tremendous interest. Due to their amphiphilic character, various substances with different properties can be incorporated into them and they are especially suitable as a model system for controlled transport of bioactive substances and drugs to the final destination in the body; for example, COVID-19 vaccines use liposomes as a carrier of mRNA. Liposomes mimicking composition of various biological membranes can be prepared with a proper choice of the lipids used, which proved to be important tool in the early drug development. This review deals with commonly used methods for the preparation and characterization of liposomes which is essential for their later use. The alternative capillary electrophoresis methods for physico-chemical characterization such as determination of membrane permeability of liposome, its size and charge, and encapsulation efficiency are included. Two different layouts using liposomes to yield more efficient separation of various analytes are also presented, capillary electrochromatography, and liposomal electrokinetic chromatography.
Collapse
Affiliation(s)
- Alice Tomnikova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Andrea Orgonikova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomas Krizek
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
10
|
Dymek M, Sikora E. Liposomes as biocompatible and smart delivery systems – The current state. Adv Colloid Interface Sci 2022; 309:102757. [DOI: 10.1016/j.cis.2022.102757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/01/2022]
|
11
|
Belkilani M, Farre C, Chevalier Y, Minot S, Bessueille F, Abdelghani A, Jaffrezic-Renault N, Chaix C. Mechanisms of Influenza Virus HA2 Peptide Interaction with Liposomes Studied by Dual-Wavelength MP-SPR. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32970-32981. [PMID: 35834580 DOI: 10.1021/acsami.2c09039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A phospholipid-based liposome layer was used as an effective biomimetic membrane model to study the binding of the pH-dependent fusogenic peptide (E4-GGYC) from the influenza virus hemagglutinin HA2 subunit. To this end, a multiparameter surface plasmon resonance approach (MP-SPR) was used for monitoring peptide-liposome interactions at two pH values (4.5 and 8) by means of recording sensorgrams in real time without the need for labeling. Biotinylated liposomes were first immobilized as a monolayer onto the surface of an SPR gold chip coated with a streptavidin layer. Multiple sets of sensorgrams with different HA2 peptide concentrations were generated at both pHs. Dual-wavelength Fresnel layer modeling was applied to calculate the thickness (d) and the refractive index (n) of the liposome layer to monitor the change in its optical parameters upon interaction with the peptide. At acidic pH, the peptide, in its α helix form, entered the lipid bilayer of liposomes, inducing vesicle swelling and increasing membrane robustness. Conversely, a contraction of liposomes was observed at pH 8, associated with noninsertion of the peptide in the double layer of phospholipids. The equilibrium dissociation constant KD = 4.7 × 10-7 M of the peptide/liposome interaction at pH 4.5 was determined by fitting the "OneToOne" model to the experimental sensorgrams using Trace Drawer software. Our experimental approach showed that the HA2 peptide at a concentration up to 100 μM produced no disruption of liposomes at pH 4.5.
Collapse
Affiliation(s)
- Meryem Belkilani
- Institute of Analytical Sciences, University of Lyon, CNRS, Claude Bernard Lyon 1 University, 5 rue de la Doua, F-69100 Villeurbanne, France
- University of Tunis, ENSIT, av. Taha Hussein, Montfleury, 1008 Tunis, Tunisia
- INSAT, Research Unit of Nanobiotechnology and Valorisation of Medicinal Plants, University of Carthage, 1080 Charguia Cedex, Tunisia
| | - Carole Farre
- Institute of Analytical Sciences, University of Lyon, CNRS, Claude Bernard Lyon 1 University, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Yves Chevalier
- University of Lyon, CNRS, Claude Bernard Lyon 1 University, LAGEPP, 43 bd 11 Novembre, F-69622 Villeurbanne, France
| | - Sylvain Minot
- Institute of Analytical Sciences, University of Lyon, CNRS, Claude Bernard Lyon 1 University, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - François Bessueille
- Institute of Analytical Sciences, University of Lyon, CNRS, Claude Bernard Lyon 1 University, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Adnane Abdelghani
- INSAT, Research Unit of Nanobiotechnology and Valorisation of Medicinal Plants, University of Carthage, 1080 Charguia Cedex, Tunisia
| | - Nicole Jaffrezic-Renault
- Institute of Analytical Sciences, University of Lyon, CNRS, Claude Bernard Lyon 1 University, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Carole Chaix
- Institute of Analytical Sciences, University of Lyon, CNRS, Claude Bernard Lyon 1 University, 5 rue de la Doua, F-69100 Villeurbanne, France
| |
Collapse
|
12
|
Šeremet D, Štefančić M, Petrović P, Kuzmić S, Doroci S, Mandura Jarić A, Vojvodić Cebin A, Pjanović R, Komes D. Development, Characterization and Incorporation of Alginate-Plant Protein Covered Liposomes Containing Ground Ivy ( Glechoma hederacea L.) Extract into Candies. Foods 2022; 11:foods11121816. [PMID: 35742016 PMCID: PMC9222263 DOI: 10.3390/foods11121816] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023] Open
Abstract
Ground ivy (Glechoma hederacea L.) has been known as a medicinal plant in folk medicine for generations and, as a member of the Lamiaceae family, is characterized with a high content of rosmarinic acid. The aim of the present study was to formulate delivery systems containing bioactive compounds from ground ivy in encapsulated form and incorporated into candies. Liposomes were examined as the encapsulation systems that were additionally coated with an alginate–plant protein gel to reduce leakage of the incorporated material. Bioactive characterization of the ground ivy extract showed a high content of total phenolics (1186.20 mg GAE/L) and rosmarinic acid (46.04 mg/L). The formulation of liposomes with the high encapsulation efficiency of rosmarinic acid (97.64%), with at least a double bilayer and with polydisperse particle size distribution was achieved. Alginate microparticles reinforced with rice proteins provided the highest encapsulation efficiency for rosmarinic acid (78.16%) and were therefore used for the successful coating of liposomes, as confirmed by FT-IR analysis. Coating liposomes with alginate–rice protein gel provided prolonged controlled release of rosmarinic acid during simulated gastro-intestinal digestion, and the same was noted when they were incorporated into candies.
Collapse
Affiliation(s)
- Danijela Šeremet
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti St 6, 10 000 Zagreb, Croatia; (D.Š.); (M.Š.); (S.D.); (A.M.J.); (A.V.C.)
| | - Martina Štefančić
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti St 6, 10 000 Zagreb, Croatia; (D.Š.); (M.Š.); (S.D.); (A.M.J.); (A.V.C.)
| | - Predrag Petrović
- Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11 000 Belgrade, Serbia; (P.P.); (R.P.)
| | - Sunčica Kuzmić
- Forensic Science Centre “Ivan Vučetić” Zagreb, Forensic Science Office, University of Zagreb, Ilica 335, 10 000 Zagreb, Croatia;
| | - Shefkije Doroci
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti St 6, 10 000 Zagreb, Croatia; (D.Š.); (M.Š.); (S.D.); (A.M.J.); (A.V.C.)
| | - Ana Mandura Jarić
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti St 6, 10 000 Zagreb, Croatia; (D.Š.); (M.Š.); (S.D.); (A.M.J.); (A.V.C.)
| | - Aleksandra Vojvodić Cebin
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti St 6, 10 000 Zagreb, Croatia; (D.Š.); (M.Š.); (S.D.); (A.M.J.); (A.V.C.)
| | - Rada Pjanović
- Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11 000 Belgrade, Serbia; (P.P.); (R.P.)
| | - Draženka Komes
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti St 6, 10 000 Zagreb, Croatia; (D.Š.); (M.Š.); (S.D.); (A.M.J.); (A.V.C.)
- Correspondence: ; Tel.: +385-1-4605-183
| |
Collapse
|
13
|
van der Koog L, Gandek TB, Nagelkerke A. Liposomes and Extracellular Vesicles as Drug Delivery Systems: A Comparison of Composition, Pharmacokinetics, and Functionalization. Adv Healthc Mater 2022; 11:e2100639. [PMID: 34165909 PMCID: PMC11468589 DOI: 10.1002/adhm.202100639] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/27/2021] [Indexed: 12/11/2022]
Abstract
Over the past decades, lipid-based nanoparticle drug delivery systems (DDS) have caught the attention of researchers worldwide, encouraging the field to rapidly develop improved ways for effective drug delivery. One of the most prominent examples is liposomes, which are spherical shaped artificial vesicles composed of lipid bilayers and able to encapsulate both hydrophilic and hydrophobic materials. At the same time, biological nanoparticles naturally secreted by cells, called extracellular vesicles (EVs), have emerged as promising more complex biocompatible DDS. In this review paper, the differences and similarities in the composition of both vesicles are evaluated, and critical mediators that affect their pharmacokinetics are elucidate. Different strategies that have been assessed to tweak the pharmacokinetics of both liposomes and EVs are explored, detailing the effects on circulation time, targeting capacity, and cytoplasmic delivery of therapeutic cargo. Finally, whether a hybrid system, consisting of a combination of only the critical constituents of both vesicles, could offer the best of both worlds is discussed. Through these topics, novel leads for further research are provided and, more importantly, gain insight in what the liposome field and the EV field can learn from each other.
Collapse
Affiliation(s)
- Luke van der Koog
- Molecular PharmacologyGroningen Research Institute of PharmacyGRIAC Research Institute, University Medical Center GroningenUniversity of GroningenP.O. Box 196, XB10Groningen9700 ADThe Netherlands
| | - Timea B. Gandek
- Pharmaceutical AnalysisGroningen Research Institute of PharmacyUniversity of GroningenP.O. Box 196, XB20Groningen9700 ADThe Netherlands
| | - Anika Nagelkerke
- Pharmaceutical AnalysisGroningen Research Institute of PharmacyUniversity of GroningenP.O. Box 196, XB20Groningen9700 ADThe Netherlands
| |
Collapse
|
14
|
Jacob S, Nair AB, Shah J, Gupta S, Boddu SHS, Sreeharsha N, Joseph A, Shinu P, Morsy MA. Lipid Nanoparticles as a Promising Drug Delivery Carrier for Topical Ocular Therapy-An Overview on Recent Advances. Pharmaceutics 2022; 14:533. [PMID: 35335909 PMCID: PMC8955373 DOI: 10.3390/pharmaceutics14030533] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
Due to complicated anatomical and physical properties, targeted drug delivery to ocular tissues continues to be a key challenge for formulation scientists. Various attempts are currently being made to improve the in vivo performance of therapeutic molecules by encapsulating them in various nanocarrier systems or devices and administering them via invasive/non-invasive or minimally invasive drug administration methods. Biocompatible and biodegradable lipid nanoparticles have emerged as a potential alternative to conventional ocular drug delivery systems to overcome various ocular barriers. Lipid-based nanocarrier systems led to major technological advancements and therapeutic advantages during the last few decades of ocular therapy, such as high precorneal residence time, sustained drug release profile, minimum dosing frequency, decreased drug toxicity, targeted site delivery, and, therefore, an improvement in ocular bioavailability. In addition, such formulations can be given as fine dispersion in patient-friendly droppable preparation without causing blurred vision and ocular sensitivity reactions. The unique advantages of lipid nanoparticles, namely, solid lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, and liposomes in intraocular targeted administration of various therapeutic drugs are extensively discussed. Ongoing and completed clinical trials of various liposome-based formulations and various characterization techniques designed for nanoemulsion in ocular delivery are tabulated. This review also describes diverse solid lipid nanoparticle preparation methods, procedures, advantages, and limitations. Functionalization approaches to overcome the drawbacks of lipid nanoparticles, as well as the exploration of new functional additives with the potential to improve the penetration of macromolecular pharmaceuticals, would quickly progress the challenging field of ocular drug delivery systems.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.); (M.A.M.)
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
| | - Sumeet Gupta
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana 133203, India;
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates;
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.); (M.A.M.)
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.); (M.A.M.)
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| |
Collapse
|
15
|
Liposomal-Based Formulations: A Path from Basic Research to Temozolomide Delivery Inside Glioblastoma Tissue. Pharmaceutics 2022; 14:pharmaceutics14020308. [PMID: 35214041 PMCID: PMC8875825 DOI: 10.3390/pharmaceutics14020308] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma (GBM) is a lethal brain cancer with a very difficult therapeutic approach and ultimately frustrating results. Currently, therapeutic success is mainly limited by the high degree of genetic and phenotypic heterogeneity, the blood brain barrier (BBB), as well as increased drug resistance. Temozolomide (TMZ), a monofunctional alkylating agent, is the first line chemotherapeutic drug for GBM treatment. Yet, the therapeutic efficacy of TMZ suffers from its inability to cross the BBB and very short half-life (~2 h), which requires high doses of this drug for a proper therapeutic effect. Encapsulation in a (nano)carrier is a promising strategy to effectively improve the therapeutic effect of TMZ against GBM. Although research on liposomes as carriers for therapeutic agents is still at an early stage, their integration in GBM treatment has a great potential to advance understanding and treating this disease. In this review, we provide a critical discussion on the preparation methods and physico-chemical properties of liposomes, with a particular emphasis on TMZ-liposomal formulations targeting GBM developed within the last decade. Furthermore, an overview on liposome-based formulations applied to translational oncology and clinical trials formulations in GBM treatment is provided. We emphasize that despite many years of intense research, more careful investigations are still needed to solve the main issues related to the manufacture of reproducible liposomal TMZ formulations for guaranteed translation to the market.
Collapse
|
16
|
Liang W, Dong Y, Shao R, Zhang S, Wu X, Huang X, Sun B, Zeng B, Zhao J. Application of Nanoparticles in Drug Delivery for the Treatment of Osteosarcoma: Focusing on the Liposomes. J Drug Target 2021; 30:463-475. [PMID: 34962448 DOI: 10.1080/1061186x.2021.2023160] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Osteosarcoma (OS) is one of the most common primary bone malignancies in children and adolescents. The toxicity to healthy tissues from conventional therapeutic strategies, including chemotherapy and radiotherapy, and drug resistance, severely affect OS patients' quality of life and cancer-specific outcomes. Many efforts have been made to develop various nanomaterial-based drug delivery systems with specific properties to overcome these limitations. Among the developed nanocarriers, liposomes are the most successful and promising candidates for providing targeted tumor therapy and enhancing the safety and therapeutic effect of encapsulated agents. Liposomes have low immunogenicity, high biocompatibility, prolonged half-life, active group protection, cell-like membrane structure, safety, and effectiveness. This review will discuss various nanomaterial-based carriers in cancer therapy and then the characteristics and design of liposomes with a particular focus on the targeting feature. We will also summarize the recent advances in the liposomal drug delivery system for OS treatment in preclinical and clinical studies.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China
| | - Yongqiang Dong
- Department of Orthopedics, Xinchang People's Hospital, Shaoxing 312500, China
| | - Ruyi Shao
- Department of Orthopedics, Zhuji People's Hospital, Shaoxing 312500, China
| | - Songou Zhang
- College of Medicine, Shaoxing University, Shaoxing 312000, China
| | - Xudong Wu
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China
| | - Xiaogang Huang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China
| | - Bin Sun
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China
| | - Bin Zeng
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China
| | - Jiayi Zhao
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China
| |
Collapse
|
17
|
Okeyo PO, Rajendran ST, Zór K, Boisen A. Sensing technologies and experimental platforms for the characterization of advanced oral drug delivery systems. Adv Drug Deliv Rev 2021; 176:113850. [PMID: 34182015 DOI: 10.1016/j.addr.2021.113850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 12/18/2022]
Abstract
Complex and miniaturized oral drug delivery systems are being developed rapidly for targeted, controlled drug release and improved bioavailability. Standard analytical techniques are widely used to characterize i) drug carrier and active pharmaceutical ingredients before loading into a delivery device (to ensure the solid form), and ii) the entire drug delivery system during the development process. However, in light of the complexity and the size of some of these systems, standard techniques as well as novel sensing technologies and experimental platforms need to be used in tandem. These technologies and platforms are discussed in this review, with a special focus on passive delivery systems in size range from a few 100 µm to a few mm. Challenges associated with characterizing these systems and evaluating their effect on oral drug delivery in the preclinical phase are also discussed.
Collapse
|
18
|
Havlíková M, Jugl A, Krouská J, Szabová J, Mravcová L, Venerová T, Chang CH, Pekař M, Mravec F. Interactions between Cationic Ion Pair Amphiphile Vesicles and Hyaluronan-A Physicochemical Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8525-8533. [PMID: 34214390 DOI: 10.1021/acs.langmuir.1c00993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
High-resolution ultrasound spectroscopy (HR-US), size and ζ-potential titrations, and isothermal titration calorimetry (ITC) were used to characterize the interactions between hyaluronan and catanionic ion pair amphiphile vesicles composed of hexadecyltrimethylammonium-dodecylsulphate (HTMA-DS), dioctadecyldimethylammonium chloride (DODAC), and cholesterol. In addition to these methods, visual observations were performed with the selected molecular weight of hyaluronan. A very good correlation was obtained between data from size titration, HR-US, and visual observation, which indicated in lower charge ratios the formation of hyaluronan-coated vesicles. On the contrary, at higher charge ratios, coated vesicles disintegrated to a size of around 2000 nm. The intensity of these interactions and the disaggregation were dependent on the molecular weight of hyaluronan. All interactions studied by ITC showed strong exothermic behavior, and these interactions between vesicles and hyaluronan were confirmed from the first addition, independently of the molecular weight of hyaluronan.
Collapse
Affiliation(s)
- Martina Havlíková
- Materials Research Centre, Faculty of Chemistry, Institute of Physical and Applied Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic
| | - Adam Jugl
- Materials Research Centre, Faculty of Chemistry, Institute of Physical and Applied Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic
| | - Jitka Krouská
- Materials Research Centre, Faculty of Chemistry, Institute of Physical and Applied Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic
| | - Jana Szabová
- Materials Research Centre, Faculty of Chemistry, Institute of Physical and Applied Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic
| | - Ludmila Mravcová
- Materials Research Centre, Faculty of Chemistry, Institute of Physical and Applied Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic
| | - Tereza Venerová
- Materials Research Centre, Faculty of Chemistry, Institute of Physical and Applied Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic
| | - Chien-Hsiang Chang
- Department of Chemical Engineering, National Cheng Kung University, No. 1, University Road, East District, Tainan City 70101, Taiwan
| | - Miloslav Pekař
- Materials Research Centre, Faculty of Chemistry, Institute of Physical and Applied Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic
| | - Filip Mravec
- Materials Research Centre, Faculty of Chemistry, Institute of Physical and Applied Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic
| |
Collapse
|
19
|
Lithocholic acid-tryptophan conjugate (UniPR126) based mixed micelle as a nano carrier for specific delivery of niclosamide to prostate cancer via EphA2 receptor. Int J Pharm 2021; 605:120819. [PMID: 34166727 DOI: 10.1016/j.ijpharm.2021.120819] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 12/25/2022]
Abstract
Targeted delivery of chemotherapeutic agents is considered a prominent strategy for the treatment of cancer due to its site-specific delivery, augmented penetration, bioavailability, and improved therapeutic efficiency. In the present study, we employed UniPR126 as a carrier in a mixed nanomicellar delivery system to target and deliver anticancer drug NIC specifically to cancer cells via EphA2 receptors as these receptors are overexpressed in cancer cells but not in normal cells. The specificity of the carrier was confirmed from the significant enhancement in the uptake of coumarin-6 loaded mixed nanomicelle by EphA2 highly expressed PC-3 cells compared to EphA2 low expressed H4 cells. Further, niclosamide-loaded lithocholic acid tryptophan conjugate-based mixed nanomicelle has shown significant synergistic cytotoxicity in PC-3 but not in H4 cells. In vivo anticancer efficacy data in PC-3 xenograft revealed a significant reduction in the tumor volume (66.87%) with niclosamide-loaded lithocholic acid tryptophan conjugate nanomicelle, where pure niclosamide showed just half of the activity. Molecular signaling data by western blotting also indicated that niclosamide-loaded lithocholic acid tryptophan conjugate nanomicelle interfered with the EphA2 receptor signaling and inhibition of the Wnt/beta-catenin pathway and resulted in the synergistic anticancer activity compared to niclosamide pure drug.
Collapse
|
20
|
Di Muzio M, Millan-Solsona R, Dols-Perez A, Borrell JH, Fumagalli L, Gomila G. Dielectric properties and lamellarity of single liposomes measured by in-liquid scanning dielectric microscopy. J Nanobiotechnology 2021; 19:167. [PMID: 34082783 PMCID: PMC8176598 DOI: 10.1186/s12951-021-00912-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/25/2021] [Indexed: 12/31/2022] Open
Abstract
Liposomes are widely used as drug delivery carriers and as cell model systems. Here, we measure the dielectric properties of individual liposomes adsorbed on a metal electrode by in-liquid scanning dielectric microscopy in force detection mode. From the measurements the lamellarity of the liposomes, the separation between the lamellae and the specific capacitance of the lipid bilayer can be obtained. As application we considered the case of non-extruded DOPC liposomes with radii in the range ~ 100-800 nm. Uni-, bi- and tri-lamellar liposomes have been identified, with the largest population corresponding to bi-lamellar liposomes. The interlamellar separation in the bi-lamellar liposomes is found to be below ~ 10 nm in most instances. The specific capacitance of the DOPC lipid bilayer is found to be ~ 0.75 µF/cm2 in excellent agreement with the value determined on solid supported planar lipid bilayers. The lamellarity of the DOPC liposomes shows the usual correlation with the liposome's size. No correlation is found, instead, with the shape of the adsorbed liposomes. The proposed approach offers a powerful label-free and non-invasive method to determine the lamellarity and dielectric properties of single liposomes.
Collapse
Affiliation(s)
- Martina Di Muzio
- Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology (BIST), c/Baldiri i Reixac 11-15, 08028, Barcelona, Spain
| | - Ruben Millan-Solsona
- Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology (BIST), c/Baldiri i Reixac 11-15, 08028, Barcelona, Spain.,Departament D'Enginyeria Electrònica I Biomèdica, Universitat de Barcelona, C/Martí i Franqués 1, 08028, Barcelona, Spain
| | - Aurora Dols-Perez
- Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology (BIST), c/Baldiri i Reixac 11-15, 08028, Barcelona, Spain
| | - Jordi H Borrell
- Secció de Fisicoquímica, Facultat de Farmàcia I Ciències de L'Alimentació, Universitat de Barcelona, Av. Diagonal, 643, 08028, Barcelona, Spain
| | - Laura Fumagalli
- Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, UK.,National Graphene Institute, University of Manchester, Manchester, M13 9PL, UK
| | - Gabriel Gomila
- Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology (BIST), c/Baldiri i Reixac 11-15, 08028, Barcelona, Spain. .,Departament D'Enginyeria Electrònica I Biomèdica, Universitat de Barcelona, C/Martí i Franqués 1, 08028, Barcelona, Spain.
| |
Collapse
|
21
|
Havlíková M, Szabová J, Mravcová L, Venerová T, Chang CH, Pekař M, Jugl A, Mravec F. Cholesterol Effect on Membrane Properties of Cationic Ion Pair Amphiphile Vesicles at Different Temperatures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2436-2444. [PMID: 33545006 DOI: 10.1021/acs.langmuir.0c03504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This work is focused on the study of the effect of cholesterol on the properties of vesicular membranes of ionic amphiphilic pairs at different temperatures. The hexadecyltrimethylammonium-dodecyl sulfate ionic amphiphilic pair system with the addition of 10 mol % dioctadecyldimethylammonium chloride was chosen for a detailed study of vesicle properties. A large range of cholesterol concentrations (0-73 mol %) in the temperature range 10-80 °C was studied. Under these conditions, the size distribution, the membrane fluidity, and the surface layer were monitored together with the change in the mobility of water in the surface layer. Obtained quantities were correlated with each other and combined into appropriate graphs. It was found that in stable systems that meet the condition of unimodal size distribution with a PDI value lower than 0.3, temperature has virtually no effect on the size of vesicular systems. On the contrary, when studying the hydration and fluidity of the membrane, significant changes in these parameters were found, which, however, do not affect the short-term stability of these vesicular systems. The presented results thus indicate the possibility of adjusting the composition of the vesicular system in terms of fluidity and membrane hydration while maintaining short-term stability and size distribution.
Collapse
Affiliation(s)
- Martina Havlíková
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, Brno 612 00, Czech Republic
| | - Jana Szabová
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, Brno 612 00, Czech Republic
| | - Ludmila Mravcová
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, Brno 612 00, Czech Republic
| | - Tereza Venerová
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, Brno 612 00, Czech Republic
| | - Chien-Hsiang Chang
- Department of Chemical Engineering, National Cheng Kung University, No. 1, University Road, East District, Tainan City 70101, Taiwan
| | - Miloslav Pekař
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, Brno 612 00, Czech Republic
| | - Adam Jugl
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, Brno 612 00, Czech Republic
| | - Filip Mravec
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, Brno 612 00, Czech Republic
| |
Collapse
|
22
|
Aguiar L, Pinheiro M, Neves AR, Vale N, Defaus S, Andreu D, Reis S, Gomes P. Insights into the Membranolytic Activity of Antimalarial Drug-Cell Penetrating Peptide Conjugates. MEMBRANES 2020; 11:4. [PMID: 33375073 PMCID: PMC7822033 DOI: 10.3390/membranes11010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 11/27/2022]
Abstract
Conjugation of TP10, a cell-penetrating peptide with intrinsic antimalarial activity, to the well-known antimalarial drugs chloroquine and primaquine has been previously shown to enhance the peptide's action against, respectively, blood- and liver-stage malaria parasites. Yet, this was achieved at the cost of a significant increase in haemolytic activity, as fluorescence microscopy and flow cytometry studies showed the conjugates to be more haemolytic for non-infected than for Plasmodium-infected red blood cells. To gain further insight into how these conjugates distinctively bind, and likely disrupt, membranes of both Plasmodium-infected and non-infected erythrocytes, we used dynamic light scattering and surface plasmon resonance to study the interactions of two representative conjugates and their parent compounds with lipid model membranes. Results obtained are herein reported and confirm that a strong membrane-disruptive character underlies the haemolytic properties of these conjugates, thus hampering their ability to exert selective antimalarial action.
Collapse
Affiliation(s)
- Luísa Aguiar
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal;
| | - Marina Pinheiro
- LAQV-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, P-4050-313 Porto, Portugal; (M.P.); (S.R.)
| | - Ana Rute Neves
- Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, Ilha da Madeira, P-9020-105 Funchal, Portugal;
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, P-4200-450 Porto, Portugal;
- Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, P-4200-319 Porto, Portugal
| | - Sira Defaus
- Proteomics and Protein Chemistry Group, Department of Experimental and Health Sciences, Pompeu Fabra University, Dr. Aiguader 88, E-08003 Barcelona, Spain; (S.D.); (D.A.)
| | - David Andreu
- Proteomics and Protein Chemistry Group, Department of Experimental and Health Sciences, Pompeu Fabra University, Dr. Aiguader 88, E-08003 Barcelona, Spain; (S.D.); (D.A.)
| | - Salette Reis
- LAQV-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, P-4050-313 Porto, Portugal; (M.P.); (S.R.)
| | - Paula Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal;
| |
Collapse
|
23
|
Łukawski M, Dałek P, Witkiewicz W, Przybyło M, Langner M. Experimental evidence and physiological significance of the ascorbate passive diffusion through the lipid bilayer. Chem Phys Lipids 2020; 232:104950. [PMID: 32763228 DOI: 10.1016/j.chemphyslip.2020.104950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/23/2020] [Accepted: 07/21/2020] [Indexed: 12/31/2022]
Abstract
The diverse range of functions performed by ascorbate in many metabolic processes requires its effective redistribution between various aqueous body compartments. It is believed that this hydrophilic molecule needs protein transporters for crossing the biological membrane barriers. Any effective model reflecting the ascorbate distribution within the body requires bi-directional fluxes, but only the ascorbate transporters facilitating its intake by cells have been identified to date. The cellular efflux of this molecule still lacks proper mechanistic explanation, nevertheless data suggesting possible passive ascorbate transport recently appeared. In the paper, we provide experimental evidences that ascorbate associates efficiently with the lipid bilayer interface and slowly crosses its hydrophobic core. The measured logPmembrane/water and membrane permeability coefficient equal to 3 and 10-7 - 10-8 cm/s, respectively. The ascorbate passive diffusion across the lipid bilayer provides the missing element needed for the construction of a consistent physiological model describing the ascorbate local homeostasis. The model was effectively used for the construction of the mechanistic description of the processes, which facilitate the ascorbate homeostasis in the brain.
Collapse
Affiliation(s)
- Maciej Łukawski
- Laboratory for Biophysics of Macromolecular Aggregates, Department of Biomedical Engineering, Wrocław University of Science and Technology, Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Paulina Dałek
- Laboratory for Biophysics of Macromolecular Aggregates, Department of Biomedical Engineering, Wrocław University of Science and Technology, Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Wojciech Witkiewicz
- Research and Development Centre, Specialized Hospital in Wrocław, Kamieńskiego 73 A, 51-124 Wrocław, Poland
| | - Magda Przybyło
- Laboratory for Biophysics of Macromolecular Aggregates, Department of Biomedical Engineering, Wrocław University of Science and Technology, Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Marek Langner
- Laboratory for Biophysics of Macromolecular Aggregates, Department of Biomedical Engineering, Wrocław University of Science and Technology, Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
24
|
Sforzi J, Palagi L, Aime S. Liposome-Based Bioassays. BIOLOGY 2020; 9:E202. [PMID: 32752243 PMCID: PMC7466007 DOI: 10.3390/biology9080202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 12/12/2022]
Abstract
This review highlights the potential of using liposomes in bioassays. Liposomes consist of nano- or micro-sized, synthetically constructed phospholipid vesicles. Liposomes can be loaded with a number of reporting molecules that allow a dramatic amplification of the detection threshold in bioassays. Liposome-based sensors bind or react with the biological components of targets through the introduction of properly tailored vectors anchored on their external surface. The use of liposome-based formulations allows the set-up of bioassays that are rapid, sensitive, and often suitable for in-field applications. Selected applications in the field of immunoassays, as well as recognition/assessment of corona proteins, nucleic acids, exosomes, bacteria, and viruses are surveyed. The role of magnetoliposomes is also highlighted as an additional tool in the armory of liposome-based systems for bioassays.
Collapse
|
25
|
Khanal D, Khatib I, Ruan J, Cipolla D, Dayton F, Blanchard JD, Chan HK, Chrzanowski W. Nanoscale Probing of Liposome Encapsulating Drug Nanocrystal Using Atomic Force Microscopy-Infrared Spectroscopy. Anal Chem 2020; 92:9922-9931. [DOI: 10.1021/acs.analchem.0c01465] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dipesh Khanal
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
- The University of Sydney, Sydney Nano Institute, Faculty of Medicine and Health, Sydney Pharmacy School, Sydney, New South Wales 2006, Australia
| | - Isra Khatib
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Juanfang Ruan
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, The University of New South Wales, New South Wales 2062, Australia
| | - David Cipolla
- Insmed Corporation, Bridgewater, New Jersey 08807, United States
| | - Francis Dayton
- Aradigm Corporation, Hayward, California 94545, United States
| | | | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Wojciech Chrzanowski
- The University of Sydney, Sydney Nano Institute, Faculty of Medicine and Health, Sydney Pharmacy School, Sydney, New South Wales 2006, Australia
| |
Collapse
|
26
|
Dai Y, Bai S, Hu C, Chu K, Shen B, Smith ZJ. Combined Morpho-Chemical Profiling of Individual Extracellular Vesicles and Functional Nanoparticles without Labels. Anal Chem 2020; 92:5585-5594. [PMID: 32162516 DOI: 10.1021/acs.analchem.0c00607] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biological nanoparticles are important targets of study, yet their small size and tendency to aggregate makes their heterogeneity difficult to profile on a truly single-particle basis. Here we present a label-free system called 'Raman-enabled nanoparticle trapping analysis' (R-NTA) that optically traps individual nanoparticles, records Raman spectra and tracks particle motion to identify chemical composition, size, and refractive index. R-NTA has the unique capacity to characterize aggregation status and absolute chemical concentration at the single-particle level. We validate the method on NIST standards and liposomes, demonstrating that R-NTA can accurately characterize size and chemical heterogeneity, including determining combined morpho-chemical properties such as the number of lamellae in individual liposomes. Applied to extracellular vesicles (EVs), we find distinct differences between EVs from cancerous and noncancerous cells, and that knockdown of the TRPP2 ion channel, which is pathologically highly expressed in laryngeal cancer cells, leads the EVs to more closely resemble EVs from normal epithelial cells. Intriguingly, the differences in EV content are found in small subpopulations of EVs, highlighting the importance of single-particle measurements. These experiments demonstrate the power of the R-NTA system to measure and characterize the morpho-chemical heterogeneity of bionanoparticles.
Collapse
Affiliation(s)
- Yichuan Dai
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Dept. of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Suwen Bai
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230026, China
| | - Chuanzhen Hu
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Dept. of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Kaiqin Chu
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Dept. of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bing Shen
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230026, China
| | - Zachary J Smith
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Dept. of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
27
|
Danaei M, Kalantari M, Raji M, Samareh Fekri H, Saber R, Asnani G, Mortazavi S, Mozafari M, Rasti B, Taheriazam A. Probing nanoliposomes using single particle analytical techniques: effect of excipients, solvents, phase transition and zeta potential. Heliyon 2018; 4:e01088. [PMID: 30603716 PMCID: PMC6307095 DOI: 10.1016/j.heliyon.2018.e01088] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/05/2018] [Accepted: 12/20/2018] [Indexed: 01/02/2023] Open
Abstract
There has been a steady increase in the interest towards employing nanoliposomes as colloidal drug delivery systems, particularly in the last few years. Their biocompatibility nature along with the possibility of encapsulation of lipid-soluble, water-soluble and amphipathic molecules and compounds are among the advantages of employing these lipidic nanocarriers. A challenge in the successful formulation of nanoliposomal systems is to control the critical physicochemical properties, which impact their in vivo performance, and validating analytical techniques that can adequately characterize these nanostructures. Of particular interest are the chemical composition of nanoliposomes, their phase transition temperature, state of the encapsulated material, encapsulation efficiency, particle size distribution, morphology, internal structure, lamellarity, surface charge, and drug release pattern. These attributes are highly important in revealing the supramolecular arrangement of nanoliposomes and incorporated drugs and ensuring the stability of the formulation as well as consistent drug delivery to target tissues. In this article, we present characterization of nanoliposomal formulations as an example to illustrate identification of key in vitro characteristics of a typical nanotherapeutic agent. Corresponding analytical techniques are discussed within the context of nanoliposome assessment, single particle analysis and ensuring uniform manufacture of therapeutic formulations with batch-to-batch consistency.
Collapse
Affiliation(s)
- M. Danaei
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, 3168 Victoria, Australia
| | - M. Kalantari
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, 3168 Victoria, Australia
| | - M. Raji
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, 3168 Victoria, Australia
| | - H. Samareh Fekri
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, 3168 Victoria, Australia
| | - R. Saber
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, 3168 Victoria, Australia
| | - G.P. Asnani
- Sinhgad Technical Education Society's, Smt. Kashibai Navale College of Pharmacy, Kondhwa, Pune 411 048, (Savitribai Phule Pune University), Maharashtra, India
| | - S.M. Mortazavi
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, 3168 Victoria, Australia
| | - M.R. Mozafari
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, 3168 Victoria, Australia
| | - B. Rasti
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, 3168 Victoria, Australia
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - A. Taheriazam
- Department of Orthopaedics, Tehran Medical Sciences Branch IAU, Azad University, 19168 93813 Tehran, Iran
| |
Collapse
|
28
|
Canale V, Germani R, Siani G, Fontana A, Di Profio P. Fractional ionization and size of cetyltrialkyl ammonium bromide and hydroxide micelles as a function of head-group lipophilicity and temperature. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.04.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, Khorasani S, Mozafari MR. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018; 10:E57. [PMID: 29783687 PMCID: PMC6027495 DOI: 10.3390/pharmaceutics10020057] [Citation(s) in RCA: 1969] [Impact Index Per Article: 328.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 02/07/2023] Open
Abstract
Lipid-based drug delivery systems, or lipidic carriers, are being extensively employed to enhance the bioavailability of poorly-soluble drugs. They have the ability to incorporate both lipophilic and hydrophilic molecules and protecting them against degradation in vitro and in vivo. There is a number of physical attributes of lipid-based nanocarriers that determine their safety, stability, efficacy, as well as their in vitro and in vivo behaviour. These include average particle size/diameter and the polydispersity index (PDI), which is an indication of their quality with respect to the size distribution. The suitability of nanocarrier formulations for a particular route of drug administration depends on their average diameter, PDI and size stability, among other parameters. Controlling and validating these parameters are of key importance for the effective clinical applications of nanocarrier formulations. This review highlights the significance of size and PDI in the successful design, formulation and development of nanosystems for pharmaceutical, nutraceutical and other applications. Liposomes, nanoliposomes, vesicular phospholipid gels, solid lipid nanoparticles, transfersomes and tocosomes are presented as frequently-used lipidic drug carriers. The advantages and limitations of a range of available analytical techniques used to characterize lipidic nanocarrier formulations are also covered.
Collapse
Affiliation(s)
- M Danaei
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, Victoria 3168, Australia.
| | - M Dehghankhold
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, Victoria 3168, Australia.
| | - S Ataei
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, Victoria 3168, Australia.
| | - F Hasanzadeh Davarani
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, Victoria 3168, Australia.
| | - R Javanmard
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, Victoria 3168, Australia.
| | - A Dokhani
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, Victoria 3168, Australia.
| | - S Khorasani
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, Victoria 3168, Australia.
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, Victoria 3168, Australia.
| |
Collapse
|